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REFLECTED SPECTRALLY NEGATIVE STABLE PROCESSES

AND THEIR GOVERNING EQUATIONS

BORIS BAEUMER, MIHÁLY KOVÁCS, MARK M. MEERSCHAERT, RENÉ L. SCHILLING,
AND PETER STRAKA

Abstract. This paper explicitly computes the transition densities of a spec-
trally negative stable process with index greater than one, reflected at its
infimum. First we derive the forward equation using the theory of sun-dual
semigroups. The resulting forward equation is a boundary value problem on
the positive half-line that involves a negative Riemann-Liouville fractional de-
rivative in space, and a fractional reflecting boundary condition at the origin.
Then we apply numerical methods to explicitly compute the transition den-
sity of this space-inhomogeneous Markov process, for any starting point, to
any desired degree of accuracy. Finally, we discuss an application to frac-
tional Cauchy problems, which involve a positive Caputo fractional derivative
in time.

1. Introduction

Consider a spectrally negative (no positive jumps) stable Lévy process Yt with
characteristic function

(1.1) E[eikYt ] = et(ik)
α

for some 1 < α � 2. If α = 2, then Yt is a Brownian motion with variance 2t. Now
define

(1.2) Zt = Yt − inf{Ys : 0 � s � t}.
The reflected stable process (1.2) is also the recurrent extension of the process Yt

killed at zero, which instantaneously and continuously leaves zero; see Patie and
Simon [42]. Let C∞(R) denote the Banach space of continuous functions f : R → R

that tend to zero as |x| → ∞, with the supremum norm. We say that a time-
homogeneous Markov process Xt is a Feller process if the semigroup Ttf(x) =
E[f(Xt+s)|Xs = x] satisfies Ttf ∈ C∞(R) and Ttf → f as t → 0 in the Banach
space (supremum) norm, for all f ∈ C∞(R). It is not hard to show (see Theorem
2.1 in this paper) that Zt is a Feller process, and since Zt � 0 by definition, the
space-inhomogeneous Markov process Zt lives on the state space [0,∞).

If α = 2, then this process is called “reflected Brownian motion” and the govern-
ing differential equation (forward Kolmogorov equation) for the transition density
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228 BORIS BAEUMER ET AL.

p(x, y, t) of Zt+s = y given Zs = x is the diffusion equation ∂tp(x, y, t) = ∂2
yp(x, y, t)

together with the reflecting boundary condition

(1.3) ∂yp(x, y, t)

∣∣∣∣
y=0+

:= lim
h→0+

p(x, y + h, t)− p(x, y, t)

h

∣∣∣∣
y=0

= 0 for all t > 0,

(i.e., the normal derivative vanishes); see for example Itô and McKean [25, Eq. 8].
This paper extends to the case of a reflected stable process. The stable process Yt

without reflection is a space-homogeneous Markov process, so its transition density
p(y, t) is independent of the initial state x. This density solves a fractional dif-
fusion equation, ∂tp(y, t) = Dα

−yp(y, t) that involves a negative Riemann-Liouville
fractional derivative in space; see (2.4) below for the definition. The fractional
derivative reduces to the usual second derivative in the case α = 2. The forward
equation for the reflected stable process turns out to be the fractional diffusion
equation ∂tp(x, y, t) = Dα

−yp(x, y, t) with the fractional reflecting boundary condi-
tion
(1.4)

Dα−1
−y p(x, y, t)

∣∣∣∣
y=0+

:= lim
h→0+

1

hα−1

∞∑
k=0

wα−1
k p(x, y + kh, t)

∣∣∣∣
y=0

= 0 for all t > 0,

using the (fractional) binomial coefficients

wα
k := (−1)k

(
α

k

)
.

When α = 2 we have wα−1
0 = 1, wα−1

1 = −1, and wα−1
k = 0 for k > 1, so that (1.4)

reduces to the classical condition (1.3), i.e., the one-sided first derivative. In either
case (α = 2 or 1 < α < 2), the boundary term enforces a no-flux condition at the
point y = 0 in the state space.

The connection between probability and differential equations has profound con-
sequences for mathematics [2, 8, 9, 36], and for its applications in science and en-
gineering [21, 39, 40, 47], including a probabilistic method called particle tracking
for solving fractional differential equations, by exploiting the associated Markov
process [10,54,55]. More details on fractional calculus, and its connection to prob-
ability theory, may be found in the recent book of Meerschaert and Sikorskii [37].
Since fractional derivatives are nonlocal operators, the appropriate specification of
boundary conditions requires a new approach [1, 16, 27, 29, 41, 50]. For example,
one can apply the theory of Volterra integral equations [44] or general nonlocal
operators [17]. The results in this paper can help clarify the meaning of reflecting
boundary conditions for fractional diffusion.

We believe that this idea will find many useful applications, both inside and
outside mathematics. As a first application, we show in Theorem 4.1 that a reflected
stable process can be used to solve a fractional Cauchy problem, in which the usual
first time derivative is replaced by a Caputo fractional derivative of order 0 < β < 1.

Notation. We write C∞[0,∞) for the Banach space of continuous functions that
vanish at infinity, i.e., limx→∞ u(x) = 0, with the uniform norm

‖u‖ = sup
x∈[0,∞)

|u(x)|.

Its topological dual is the space of (signed) Radon measures Mb[0,∞), and by
Mac[0,∞) we mean the absolutely continuous (with respect to Lebesgue measure)
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REFLECTED SPECTRALLY NEGATIVE STABLE PROCESSES 229

elements inMb[0,∞). OnMb[0,∞) we use vague (weak-∗) convergence; i.e., μn → μ
if, and only if,

∫
u dμn →

∫
u dμ for all u ∈ C∞[0,∞). The subscripts c, b, ac,∞

stand for ‘compact support’, ‘bounded’, ‘absolutely continuous’ and ‘vanishing at
infinity’. Fractional integrals and derivatives in the Riemann-Liouville sense are
denoted by Iα and Dα (see (2.1)–(2.4)) while Caputo derivatives are written as ∂α;
see (2.6).

Finally, Lg(s) = L[g(t)](s) =
∫∞
0

e−st g(t) dt denotes the usual Laplace trans-

form, and L−∞g(s) = L−∞[g(t)](s) =
∫∞
−∞ e−st g(t) dt is the bilateral Laplace

transform.

2. The reflected stable process

Given a real number α > 0 that is not an integer, define the positive Riemann-
Liouville fractional integral

(2.1) Iαx f(x) =
1

Γ(α)

∫ ∞

0

f(x− y)yα−1 dy =
1

Γ(α)

∫ x

−∞
f(y)(x− y)α−1 dy,

the negative Riemann-Liouville fractional integral

(2.2) Iα−xf(x) =
1

Γ(α)

∫ ∞

0

f(x+ y)yα−1 dy =
1

Γ(α)

∫ ∞

x

f(y)(y − x)α−1 dy,

the positive Riemann-Liouville fractional derivative

(2.3) Dα
x f(x) :=

dn

dxn
In−α
x f(x) =

1

Γ(n− α)

dn

dxn

∫ x

−∞
f(y)(x− y)n−α−1 dy,

and the negative Riemann-Liouville fractional derivative

(2.4) Dα
−xf(x) :=

dn

d(−x)n
In−α
−x f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ ∞

x

f(y)(y − x)n−α−1 dy,

where n− 1 < α < n. If α ∈ (1, 2), then n = 2. See [7, 37, 45] for more details.
Let Zt be the stochastic process defined in (1.2), where Yt is a stable Lévy process

with index 1 < α < 2 and characteristic function (1.1). Next we will show that Zt

is a conservative time-homogeneous Markov process whose (backward) semigroup
Ttf(x) = E[f(Zt+s)|Zs = x] is strongly continuous (‖Ttf − f‖ → 0 as t ↓ 0),
contractive (‖Ttf‖ � ‖f‖), and analytic (the mapping t �→ T (t)f has an analytic
extension to the sectorial region {reiθ ∈ C : r > 0, |θ| < α} for some α > 0) on the
Banach space X = C∞[0,∞), and give a core for the generator. Recall that a core
CA of a closed linear operator A is a subset of its domain D(A) that is dense within
the domain in the graph norm; i.e., for each f ∈ D(A) there exists a sequence
{fn} ⊂ CA such that fn → f and Afn → Af .

Write

(2.5)
Sb :=

{
f ∈ C∞[0,∞) : f ′′ ∈ C(0,∞), f ′′(x) = O(1) as x → ∞,

f ′′(x) = O(xα−2) as x → 0, f ′ ∈ Cb(0,∞), f ′(0+) = 0
}

and denote by ∂α
x the (positive) Caputo fractional derivative of order α > 0, which

can be defined by

(2.6) ∂α
x f(x) = In−α

x f (n)(x) =
1

Γ(n− α)

∫ x

0

(x− y)n−1−αf (n)(y) dy
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230 BORIS BAEUMER ET AL.

where n − 1 < α < n and f (n) is the nth derivative of f . The Caputo fractional
derivative differs from the Riemann-Liouville form (2.3) because the operations of
differentiation and (fractional) integration do not commute in general. For example,
when 0 < α < 1 we have

(2.7) ∂α
x f(x) = Dα

xf(x)− f(0)
x−α

Γ(1− α)

for suitably nice bounded functions (e.g., see [37, p. 39]).

Theorem 2.1. Let Zt denote the reflected process (1.2) where Yt is a stable Lévy
process with index α = 1/β ∈ (1, 2) and characteristic function (1.1). Then Zt is a
Feller process, the transition semigroup Ttf(x) = E[f(Zt+s)|Zs = x] on C∞[0,∞)
is analytic, with generator Af = ∂α

x f for all f ∈ CA = {f ∈ Sb : ∂
α
x f ∈ C∞[0,∞)},

where ∂α
x is the Caputo fractional derivative (2.6), and CA is a core of A.

Proof. Define the running infimum It = inf{Ys : 0 � s � t} and the running

supremum St = sup{Ys : 0 � s � t}. Let Ŷt = −Yt denote the dual process, and let

Ît and Ŝt denote the running infimum and supremum of Ŷt, respectively. Since Ŷt

is also a Lévy process, it follows from [12, Section VI.1, Proposition 1] that Ŝt − Ŷt

is a Feller process, and since Ŝt = −It, it follows that Ŝt − Ŷt = −It + Yt = Zt.
Hence Zt is a Feller process.

It follows from [11, Proposition 4] that CA ⊂ D(A) and Af = ∂α
x f for all f ∈ CA.

Note that the extension from f ′′ bounded to |f ′′(x)| = O(xα−2) at x = 0+ is also
mentioned in the proof.

Since A generates a strongly continuous contraction semigroup, the resolvent op-
erators R(λ,A) := (λ−A)−1 exist for all Reλ > 0 and they are bounded operators.
We will now show that

(2.8) R(λ,A)g(x) = −αxα−1E′
α(λx

α) � g(x) +
Lg(λ1/α)

λ1−1/α
Eα(λx

α)

for all g ∈ C∞[0,∞), where Lg is the Laplace transform, � is the convolution
operator, and the Mittag-Leffler function Eα(x) =

∑∞
n=0 x

n/Γ(1 + αn).
Let Rλ,g denote the right-hand side of (2.8). Since

L[Eα(λx
α)](s) =

sα−1

sα − λ
and L[αxα−1E′

α(λx
α)](s) =

1

sα − λ

(see e.g. [22, 32]), it follows that

(2.9) LRλ,g(s) =
Lg(s)

λ− sα
− sα−1

λ− sα
λ1/αLg(λ1/α)

λ
.

Using the fact that [f � g]′(x) = [f ′ � g](x) + f(0)g(x) it follows that Rλ,g is twice
differentiable for any g ∈ C∞[0,∞)∩C2[0,∞). Equation (2.6) implies that for any
f ∈ C2[0,∞) we have

L[∂α
x f ](s) = sα−2

(
s2Lf(s)− sf(0)− f ′(0)

)
= sαLf(s)− sα−1f(0).

Taking the Laplace transform of λRλ,g − ∂α
xRλ,g, we therefore obtain that

L
[
λRλ,g − ∂α

xRλ,g

]
(s) = λLRλ,g(s)− sαLRλ,g(s) + sα−1Rλ,g(0)

= Lg(s)− sα−1

λ1−1/α
Lg(λ1/α) + sα−1Rλ,g(0)

= Lg(s)

(2.10)
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REFLECTED SPECTRALLY NEGATIVE STABLE PROCESSES 231

for any g ∈ C∞[0,∞) ∩ C2[0,∞), and hence R(λ,A)g = Rλ,g. By continuous
extension, (2.8) holds for all g ∈ C∞[0,∞).

To show that CA is a core, note that for g ∈ C2
∞[0,∞) := C2[0,∞) ∩C∞[0,∞),

∂α
xR(λ,A)g = λR(λ,A)g − g ∈ C∞[0,∞)

and hence R(λ,A)C2
∞[0,∞) ⊂ CA. Pick f ∈ D(A) and g = λf − Af . Since

C2
∞[0,∞) is dense in C∞[0,∞), there exists a sequence {gn} ⊂ C2

∞[0,∞) with
gn → g. Thus, fn = R(λ,A)gn → f and Afn = λfn − gn → λf − g = Af . Since
fn ∈ R(λ,A)C2

∞[0,∞) ⊂ CA, we see that CA is a core.
Finally we show that {Tt}t�0 is an analytic semigroup. Since R(λ,A) is a

bounded operator for all Reλ > 0, a general result from the theory of semigroups
[3, Corollary 3.7.12] shows that {Tt} is analytic if for some some M > 0 we have

(2.11) ‖λR(λ,A)g‖ � M‖g‖
for all Reλ > 0 and all g ∈ C∞[0,∞). Then the result follows from Lemma 5.2,
and this completes the proof. �

Remark 2.2. Patie and Simon [42] show that the reflected stable process Zt in
Theorem 2.1 has the backward generator

(2.12) Af(x) = f ′(0)
x1−α

Γ(2− α)
+

∫ x

0

f ′′(x− y)
y1−α

Γ(2− α)
dy.

They also give the exact domain of the generator [42, Proposition 2.2]. If f ∈ Sb,
then f ′(0) = 0, and Af reduces to the Caputo fractional derivative (2.6).

In view of Theorem 2.1, Ttf(x) = E[f(Zt+s)|Zs = x] is a strongly continuous,
analytic semigroup on the Banach space X := C∞[0,∞) with the supremum norm,
with generator Af(x) = ∂α

x f(x) for f ∈ Sb such that ∂α
x f ∈ X. The dual (or

adjoint) semigroup T ∗
t is defined on the dual space X∗ = Mb[0,∞) of finite signed

Radon measures on [0,∞) equipped with the total variation norm: Given a measure
μ ∈ Mb[0,∞), use the Jordan decomposition to write μ = μ+ − μ− uniquely as a
difference of two positive measures, and define ‖μ‖ = μ+[0,∞) + μ−[0,∞). The
dual semigroup satisfies

(2.13)

∫
Ttf(x)μ(dx) =

∫
f(x)[T ∗

t μ](dx)

for all f ∈ C∞[0,∞) and all μ ∈ Mb[0,∞). See [19, Section 2.5] for more details. In
probabilistic terms, since Ttf(x) = E[f(Zt+s)|Zs = x] for this time-homogeneous
Markov process, equation (2.13) implies that∫

Ttf(x)μ(dx) =

∫
E[f(Zt+s)|Zs = x]μ(dx)

=

∫
f(y)Pt(dy, μ) =

∫
f(y)[T ∗

t μ](dy)

where Pt(y, μ) =
∫
P (y, x, t)μ(dx) and P (y, x, t) = P[Zt+s � y|Zs = x] is the

transition probability distribution of the Markov process Zt. Hence, if μ is the
probability distribution of Zs, then T ∗

t μ(dy) = Pt(dy, μ) is the probability distribu-
tion of Zt+s. The dual semigroup is also called the forward semigroup associated
with the Markov process Z, since it maps the probability distribution forward in
time.
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232 BORIS BAEUMER ET AL.

Next we will compute the generator A∗ of the forward semigroup. This is the
adjoint of the generator A of the backward semigroup, in the sense that∫

Af(x)μ(dx) =

∫
f(x)[A∗μ](dx)

for all f ∈ D(A) and μ ∈ D(A∗). Theorem 2.3 will show that every measure
μ ∈ D(A∗) has a Lebesgue density g ∈ L1[0,∞), so that μ(dy) = g(y) dy, and that
the adjoint A∗g := A∗μ of the positive fractional Caputo derivative Af(x) = ∂α

x f(x)
in our setting is the negative Riemann-Liouville fractional derivative A∗g(y) =
Dα

−yg(y) using (2.4).
The forward semigroup T ∗

t of a Markov process is not, in general, strongly con-
tinuous on Mb[0,∞). That is, there exist measures μ such that T ∗

t μ �→ μ in the
total variation norm as t ↓ 0. For example, if T ∗

t is the forward semigroup asso-
ciated with the diffusion equation ∂tp = ∂2

xp, and μ = δ0 is a point mass at the
origin, then T ∗

t μ is a Gaussian probability measure with mean 0 and variance 2t for
all t > 0, and since μ{0} = 1 and Ttμ{0} = 0 for all t > 0, we have ‖Ttμ− μ‖ = 1
for all t > 0 in the total variation norm.

To handle this situation, we define the sun-dual space of X := C∞[0,∞) as

X� := {μ ∈ X∗ : lim
t↓0

‖T ∗
t μ− μ‖ = 0},

a closed subspace of X∗ = Mb[0,∞) on which the forward semigroup is strongly
continuous. It follows from basic semigroup theory [19, Section 2.6] that for μ ∈
X�, T ∗

t μ ∈ X� for all t � 0, and X� = D(A∗). The restriction of {T ∗
t }t�0 to

X� is called the sun-dual semigroup {T�
t }t�0 with generator A�μ = A∗μ for all

μ ∈ D(A�), where

(2.14) D(A�) = {μ ∈ D(A∗) : A∗μ ∈ X�}.

For the reflected stable process, we will show in Theorem 2.3 that C�
∞[0,∞) is the

space of absolutely continuous elements of Mb[0,∞),

Mac[0,∞) =
{
μ ∈ Mb[0,∞) : μ(dy) = g(y) dy for some g ∈ L1[0,∞)

}
,

and we will derive the forward equation of the reflected stable process on the sun-
dual space. For a general bounded measure μ ∈ Mb[0,∞), we will then prove in
Corollary 2.5 that T ∗

t μ can be computed as the vague limit of T�
t μn, where μn → μ

vaguely, and μn ∈ C�
∞[0,∞) for all n.

Theorem 2.3. Let Zt denote the Feller process (1.2), where Yt is a stable Lévy pro-
cess with index α = 1/β ∈ (1, 2) and characteristic function (1.1), with (backward)
semigroup Ttf(x) = E[f(Zt+s)|Zs = x] on C∞[0,∞). Then C�

∞[0,∞) = Mac[0,∞)
and the generator A�g := A�μ of the sun-dual semigroup {T�(t)}t�0 is given by

(2.15) A�g(y) = Dα
−yg(y)

with domain D(A�) = {g ∈ L1[0,∞) : Dα
−yg(y) ∈ L1[0,∞), Dα−1

−y g(0) = 0}.

Proof. Suppose A∗μ = ν ∈ Mb[0,∞) for some μ ∈ Mb[0,∞), so that
∫
Af(x)μ(dx)

=
∫
f(x)ν(dx) for all f ∈ D(A). Set v(x) := ν[0, x] for x � 0 and v(x) = 0 for x < 0.

If f ∈ Sb with ∂α
x f ∈ C∞[0,∞), then it follows from Theorem 2.1 that f ∈ D(A)

and Af = ∂α
x f . It is obvious from the definition (2.6) that ∂α−1

x f ′(x) = ∂α
x f(x).
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REFLECTED SPECTRALLY NEGATIVE STABLE PROCESSES 233

Let

Iαx f(x) =

∫ x

0

(x− y)α−1

Γ(α)
f(y) dy

denote the positive Riemann-Liouville fractional integral (2.1) of order α > 0 for a
function f ∈ C∞[0,∞), and apply the general formula [7, Eq. (1.21)] Iα−1

x ∂α−1
x f ′(x)

= f ′(x) − f ′(0) to see that f ′(x) = Iα−1
x ∂α−1

x f ′(x) = Iα−1
x ∂α

x f(x) = Iα−1
x Af(x).

Since f(x) → 0 as x → ∞, and v(0) = 0 for x < 0, we can apply the integration by
parts formula [23, Theorem 19.3.13]∫ b

a

f(x)ν(dx) = f(b)v(b)− f(a)v(a)−
∫ b

a

v(x)f ′(x)dx

with a < 0, and then let b → ∞, to see that∫ ∞

0

f(x)ν(dx) = −
∫ ∞

0

f ′(x)v(x) dx.

Thus, for all f ∈ Sb with ∂α
x f ∈ C∞[0,∞), a Fubini argument yields∫ ∞

0

f(x)ν(dx) =−
∫ ∞

0

∫ x

0

(x− y)α−2

Γ(α− 1)
Af(y) dy v(x) dx

=−
∫ ∞

0

∫ ∞

y

(x− y)α−2

Γ(α− 1)
v(x) dxAf(y) dy

=

∫ ∞

0

Af(y)μ(dy).

(2.16)

Next we will show that S := {Af : f ∈ Sb with ∂α
x f ∈ C∞[0,∞)} is dense in

C∞[0,∞), and then it will follow that any measure μ ∈ D(A∗) has a Lebesgue
density

(2.17) g(y) = −
∫ ∞

y

(x− y)α−2

Γ(α− 1)
v(x) dx = −Iα−1

−y v(y)

where A∗μ = ν and v(x) = ν[0, x]. Let C∞
c [0,∞) denote the space of smooth

functions with compact support, i.e., such that h(x) = 0 for all x > M , for some
M > 0. It is not hard to check that the space Q = {h ∈ C∞

c [0,∞) :
∫
h = 0} is

dense in C∞[0,∞). Then we certainly have

lim
x→∞

Iαx h(x) = lim
x→∞

∫ M

0

(x− s)α−1 − xα−1

Γ(α)
h(s) ds = 0,

and therefore, the function f(x) = Iαx h(x) is an element of C∞[0,∞) for any h ∈ Q.
Elementary estimates suffice to check that f ∈ Sb as well. Since the positive Caputo
derivative is a left inverse of the positive Riemann-Liouville integral [7, Eq. (1.21)],
we also have ∂α

x f(x) = ∂α
x I

α
x h(x) = h(x) ∈ C∞[0,∞). Hence h = Af ∈ S for all

h ∈ Q, and thus Q ⊆ S. Now for any f ∈ C∞[0,∞) there exists a sequence fn → f
in the supremum norm, with fn ∈ S for all n. Then some simple estimates can be
used to verify that

∫
f(y)μ(dy) =

∫
f(y)g(y) dy, and it follows that the measure

μ has the Lebesgue density g. Hence we can identify D(A∗) with a subspace of
L1[0,∞).

Next we will show that this subspace is dense in L1[0,∞). Define

φn(x) :=
1

Γ(α)

(
1
n − x

)α−1 �[0,1/n)(x),
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and note that Dα−1
−x φn(x) ≡ 1 for x ∈ (0, 1/n) by a straightforward computation.

Note that the set U := {g(x) − [Dα−1
−x g(0)]φn : g ∈ C∞

c [0,∞), n ∈ N} is dense in
L1[0,∞), and that Dα

−xg(x) ∈ L1[0,∞) for all g ∈ U . Furthermore, U is a subset
of

G =
{
g ∈ L1[0,∞) : Dα

−xg ∈ L1[0,∞), Dα−1
−x g(0) = 0

}
.

For any g ∈ G and f ∈ Sb with ∂α
x f ∈ C∞[0,∞), we have Dα−1

−x g(0) = 0 and
f ′(0) = 0. Then Theorem 2.1, a Fubini argument, and integration by parts (twice)
using equation (2.4) yields∫ ∞

0

Af(y) g(y) dy =

∫ ∞

0

∫ y

0

(y − x)1−α

Γ(2− α)
f ′′(x) dx g(y) dy

=

∫ ∞

0

∫ ∞

x

(y − x)1−α

Γ(2− α)
g(y) dy f ′′(x) dx

=

∫ ∞

0

I2−α
−x g(x)f ′′(x) dx

=

∫ ∞

0

Dα−1
−x g(x)f ′(x) dx

=

∫ ∞

0

f(x)Dα
−xg(x) dx.

(2.18)

Furthermore, as {f ∈ Sb : Af ∈ C∞[0,∞)} is a core, for all f ∈ D(A) there exists
a sequence fn in the core such that fn → f and Afn → Af . Hence (2.18) holds
for all f ∈ D(A) and therefore g ∈ D(A∗) and A∗g = Dα

−xg for any g ∈ G. Since
U is dense in L1[0,∞), and U ⊆ G ⊆ D(A∗), it follows that D(A∗) is dense in
L1[0,∞). Since C�

∞[0,∞) is the smallest closed set containing D(A∗) by definition,
and since L1[0,∞) is a closed subspace of Mb[0,∞), we have shown that L1[0,∞) =
C�

∞[0,∞).
Equation (2.14) implies that ν = A∗μ is an element of C�

∞[0,∞) for any μ ∈
D(A�), and therefore, we have ν(dx) = h(x) dx for some h ∈ L1[0,∞), as well
as μ(dy) = g(y) dy for some g ∈ L1[0,∞). Since v(x) = ν[0, x], it follows that
h(x) = v′(x). Since Dα−1

−y is a left inverse of Iα−1
−y in general, it follows from (2.17)

that v(y) = −Dα−1
−y g(y). Then we have

(2.19) h(x) = v′(x) =
d

dx

[
−Dα−1

−x g(x)
]
= Dα

−xg(x) = A∗g(x)

for all g ∈ D(A�), which proves the generator formula (2.15). Equation (2.19)
also shows that Dα

−xg(x) ∈ L1[0,∞) for all g ∈ D(A�), and since v is continuous

with v(0) = 0, it follows that Dα−1
−x g(0) = v(0) = 0 for all g ∈ D(A�). This

proves that D(A�) ⊆ G. Since D(A�) is defined as the set of g ∈ D(A∗) such
that A∗g ∈ L1[0,∞), it follows from (2.18) that g ∈ D(A�) for all g ∈ G, so that
G ⊆ D(A�) as well, which completes the proof. �

Theorem 2.3 establishes the forward equation of the reflected stable process Zt,
for certain initial conditions. It shows that, for any initial condition μ0(dx) =
g(x)dx where g ∈ L1[0,∞), μt := T�μ solves the Cauchy problem

∂tμ(t) = A�μ(t); μ(0) = μ0
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on the sun-dual space. This implies that, for any probability density p0(x) such
that p0(x) = 0 for x < 0, the function p(x, t) = T�p0(x) solves the forward equation

(2.20) ∂tp(x, t) = Dα
−xp(x, t); p(x, 0) = p0(x), Dα−1

−x p(x, t)
∣∣∣
x=0

≡ 0.

The next two results will allow us to compute the transition probability density
y �→ p(x, y, t) of the time-homogeneous Markov process y = Zt+s for any initial
state x = Zs, by applying Theorem 2.3 to a sequence of initial conditions μn ∈ X�

such that μn → δx. The first result shows that the transition density exists.

Corollary 2.4. The semigroup T�
t is a strongly continuous bounded analytic semi-

group on L1(R+) and the transition probability distributions T ∗
t δx have smooth den-

sities y �→ p(x, y, t) for all t > 0 and all x � 0.

Proof. It is well known that the spectra of A and A∗ coincide, and R(λ,A∗) =
R(λ,A)∗ for all λ in the resolvent set of A (and A∗). Therefore, since A is a
sectorial operator, being the generator of a bounded analytic semigroup, it follows
that A∗ is a sectorial operator as well, and hence A∗ generates a bounded analytic
semigroup (not necessarily strongly continuous at 0) on C∗

∞[0,∞) = Mb[0,∞) by
[3, Theorem 3.7.1] which coincides with T ∗

t for all t > 0 by the uniqueness of the

Laplace transform. Therefore, the restriction of A∗ to D(A∗) = L1[0,∞) (i.e., the
operator A�) generates a strongly continuous bounded analytic semigroup T�

t on
L1[0,∞) by [3, Remark 3.7.13]. Furthermore, [3, Remark 3.7.20] shows that for
all n ∈ N and t > 0 we have that T ∗

t μ ∈ D((A∗)n) for all μ ∈ Mb[0,∞) and that
T�
t f ∈ D((A�)n) for all f ∈ L1[0,∞). Since D(A∗) ⊂ L1[0,∞), it follows that

T ∗
s μ ∈ L1[0,∞) for all s > 0 and μ ∈ Mb[0,∞). Therefore for all t > 0 and

μ ∈ Mb[0,∞) we have

T ∗
t μ = T ∗

t
2
T ∗

t
2
μ = T�

t
2

T ∗
t
2
μ ∈ D((A�)n)

for all n ∈ N. Thus by taking μ = δx it follows that T ∗
t δx ∈ D((A�)n) for

all n. Using Theorem 2.3, we have that D(A�) = {g ∈ L1[0,∞) : Dα
−yg(y) ∈

L1[0,∞), Dα−1
−y g(0) = 0}, and then it follows that

(
Dα

−y

)n
T ∗
t δx ∈ L1[0,∞) for all

n. In particular, the transition probability distribution T ∗
t δx has a density function

y �→ p(x, y, t) for all t > 0 and all x � 0. To see that this function is smooth
note that any positive integer m can be written in the form m = nα − β for some
integer n � 1 and some positive real number β < α. A straightforward calcula-

tion shows that for f ∈ D((A�)n) we have
(
Dα

−y

)n
f = Dnα

−yf and Iβ−yD
nα
−yf =

Dnα−β
−y f ∈ L1[0,∞) for all β < α and n � 1. Since Dm

−yf = (−1)m(d/dy)mf , we

have (d/dy)mp(x, y, t) ∈ L1[0,∞) for all m. �

Corollary 2.5. Let {μn} ⊂ C�
∞[0,∞) = Mac[0,∞) such that μn → μ vaguely as

n → ∞ for some μ ∈ Mb[0,∞); then T�
t μn → T ∗

t μ vaguely as n → ∞.

Proof. Since T�
t μn = T ∗

t μn for all n � 1, for all φ ∈ C∞[0,∞) we have∫
φ(x)[T�

t μn](dx) =

∫
φ(x)[T ∗

t μn](dx) =

∫
[Ttφ](x)μn(x)dx

n→∞−−−−→
∫
[Ttφ](x)μ(dx) =

∫
φ(x)[T ∗

t μ](dx),

(2.21)

and the result follows. �
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In Section 3, we will apply Corollary 2.5 to compute the transition densities of
the reflected stable process to any desired degree of accuracy, by solving the forward
equation numerically. For any initial state Zs = x, we will approximate the initial
condition μ0 = δx in the numerical method by a sequence of measures μn with L1-
densities, and then Corollary 2.5 guarantees that the resulting solutions converge
to the transition density in the supremum norm as n → ∞.

Remark 2.6. Using integration by parts, one can write the backward generator in
the form of an integro-differential operator (e.g., see Jacob [26])

(2.22) Af(x) = b(x)f ′(x) +

∫
[f(x+ y)− f(x)− yf ′(x)]φ(x, dy),

with coefficients

b(x) =
x1−α

Γ(2− α)
and

φ(x, dy) =
α(α− 1)

Γ(2− α)
|y|−1−αdy�(−x,0)(y) +

α− 1

Γ(2− α)
x−αε−x(dy).

(2.23)

The jump intensity φ(x, dy) describes the behavior of the process Zt, which trun-
cates jumps of the stable process Yt starting at the point x > 0 in the state space,
so that a jump (they are all negative) of size |y| > x is changed to a jump of size x.
This keeps the sample paths of Zt inside the half-line [0,∞). Since the drift b(x)
is unbounded, the existence of a Markov process Zt with generator (2.22) would
not follow from general theory (e.g., see [20, Section 4.5] or [48, Section 3]). Hence
the reflected stable process Zt is an interesting example of a Markov process with
unbounded drift coefficient.

3. Transition density of the reflected stable process

To the best of our knowledge, there is no known analytical formula for the
transition density y �→ p(x; t, y) of the reflected stable process y = Zt+s started at
x = Zs > 0. In this section, we compute and plot this transition density, by numeri-
cally solving the associated forward equation (2.20). The existence and smoothness
of these transition densities is guaranteed by Corollary 2.4. Corollary 2.5 shows
that T�

t gn(y)dy → T ∗
t δx(dy) in the supremum norm as n → ∞ for any sequence

of functions gn ∈ L1[0,∞) such that gn(y)dy → δx(y)dy (vague convergence). We
take gn(y) = n �[x,x+1/n](y). Then the solutions T�

t gn provide estimates of the

transition density to any desired degree of accuracy. Theorem 2.3 shows that T�
t gn

solves the forward equation (2.20). Hence, we can compute the transition densities
of the stable process by solving the forward equation numerically, with this initial
condition.

In order to compute the probability density p(x, y, t) numerically, we consider
the fractional boundary value problem

(3.1) ∂tu(y, t) = Dα
−yu(y, t); u(y, 0) = δx(y); Dα−1

−y u(0, t) = 0.

We develop forward-stepping numerical solutions uh(yi, t) that estimate u(yi, t) at
locations yi = ih for i = 0, 1, . . . , N over an interval [0, ymax] in the state space,
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where ymax is chosen large enough and h is chosen small enough so that enlarging
the domain further, or making the step size smaller, has no appreciable effect on the
computed solutions (e.g., the resulting graph does not visibly change). We approx-
imate the delta function initial condition u(y, 0) = δx(y) by setting uh(yi, 0) = 1/h
for yi = x and uh(yi, 0) = 0 otherwise, a numerical representation of the initial
condition gn(y) = n �[x,x+1/n](y) with h = 1/n.

Numerical methods for fractional differential equations are an active area of
research. One important finding [34, 35] is that a shifted version of the Grünwald
finite difference formula (1.4) for the fractional derivative is required to obtain a
stable, convergent method. Hence we approximate

(3.2) Dα
−yu(yi, t) ≈

1

hα

N+1−i∑
k=0

wα
kuh(yi+k−1, t) where wα

k := (−1)k
(
α

k

)

for i � 2. Note that this approximation of Dα
−yu(yi, t) does not depend on the

value of uh at the boundary y0 = 0. We enforce the boundary condition at y0 = 0
at each step; i.e., we set

uh(y0, t) = −
N∑

k=1

wα−1
k uh(yk, t)

so that

Dα−1
−y u(y0, t) ≈

N∑
k=0

wα−1
k uh(yk, t) = 0

since wα−1
0 = 1. Finally, for i = 1 we approximate

Dα
−yu(y1, t) ≈

1

hα

N∑
k=0

wα
kuh(y1+k−1, t)

=
1

hα

(
N∑

k=1

wα
kuh(yk, t)−

N∑
k=1

wα−1
k uh(yk, t)

)

=− 1

hα

N∑
k=1

wα−1
k−1uh(yk, t)

(3.3)

using an elementary identity for fractional binomial coefficients wα
k − wα−1

k =

−wα−1
k−1 .
This leads to the following linear system of ordinary differential equations:

(3.4)
d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uh(y1, t)
...
...
...

uh(yN , t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1

hα

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 α− 1 . . . . . . −wα−1
N−1

1 −α wα
2 . . . wα

N−1

0 1
. . .

. . . wα
N−2

...
. . .

. . .
. . .

...
0 . . . 0 1 −α

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uh(y1, t)
...
...
...

uh(yN , t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

whose solution can be approximated using any numerical ODE solver (indeed, this
is a linear system of the form u′ = Au, so it has a solution u(t) = etAu(0) for any
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Figure 1. The transition densities of p(x, y, t) with α = 1.2, x =
0, 1, 2, 4 (left to right) at times t = 0.5 (left panel), t = 1 (middle
panel), and t = 2 (right panel).
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Figure 2. The transition densities of p(x, y, t) with α = 1.8, x =
0, 1, 2, 4 (left to right) at times t = 0.5 (left panel), t = 1 (middle
panel), and t = 2 (right panel).

initial condition). The resulting numerical solutions with ymax = 12, h = 0.01,
starting points x = 0, 1, 2, 4, and α = 1.2, 1.8 are depicted in Figures 1 and 2,
where each frame represents a snapshot at times t = 0.5, 1 and 2 respectively. The
L1-error of the numerical solutions for x = 0 decays linearly with h. For h = 0.01
the L1-error is less than 0.05 for α = 1.2, and less than 0.004 for α = 1.8, for every
case plotted. A short MATLAB code to compute the numerical solution is included
in the Appendix.

Remark 3.1. It is interesting to note that the matrix in (3.4) is essentially the rate
matrix of a discrete state Markov process in continuous time. Extending the state
space to N = ∞, we obtain a Markov process Zh

t on the state space {ih : i > 0}
that approximates the reflected stable process, with uh(xi, t) = P(Zh

t = ih). The
transition rate from state ih to state jh for i > j > 1 is

wα
i−j+1 ≈ α(α− 1)(i− j)−α−1/Γ(2− α),
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the jump intensity of the stable process Yt, in view of [37, Eq. (2.5)]. The transition
rate from state ih for i > 1 to state jh for j = 1, in the first row of the rate
matrix, is wα−1

i−1 ≈ i−α/Γ(1 − α), the rate at which the process Yt would jump
into the negative half-line. This can be computed as φ(−∞,−ih) where φ(dy) =
α(α − 1)|y|−1−αdy/Γ(2 − α) is the Lévy measure of the process Yt, e.g., see [37,
Proposition 3.12].

Remark 3.2. As noted in the introduction, the fractional boundary condition in
(3.1) is a natural extension of the boundary condition (1.3) for Brownian motion
on the half-line. The fractional boundary condition in (3.1) can be written in
Grünwald finite difference form using [37, Proposition 2.1] to arrive at (1.4).

Remark 3.3. Bernyk, Dalang and Peskir [11, Appendix] computed the backward
generator of a general reflected stable Lévy process. Caballero and Chaumont
[14, Theorem 3] compute the backward generator of a killed stable Lévy process. It
may be possible to develop the forward equation and compute the transition density
for those processes, using the methods of this paper. This would be interesting for
applications to fractional diffusion, since it could elucidate the relevant fractional
boundary conditions.

4. Fractional Cauchy problems

In this section, we show that the reflected stable process (1.2) with index 1 <
α � 2 can be used as a time change to solve the fractional Cauchy problem

(4.1) ∂β
t p(x, t) = Lp(x, t); p(x, 0) = f(x)

of order β = 1/α, when L generates a Feller process. The time-fractional Caputo
derivative in (4.1) is defined by

(4.2) ∂β
t f(t) =

1

Γ(1− β)

∫ ∞

0

f ′(t− r)r−βdr,

a special case of (2.6). Fractional Cauchy problems are useful in a wide variety of
practical applications [21,39,40,47], and the next result allows a Markovian particle
tracking solution for such problems [10, 54, 55].

Theorem 4.1. For any β ∈ [1/2, 1), let Zt be given by (1.2), where Yt is an α-stable
Lévy process with characteristic function (1.1) for α = 1/β. If Xt is an independent
Markov process such that Ttf(x) = Ex[f(Xt)] forms a uniformly bounded, strongly
continuous semigroup with generator L on some Banach space B of real valued
functions, then p(x, t) = Ex[f(XZt

)] solves the fractional Cauchy problem (4.1) for
any f ∈ D(L), the domain of the generator.

Proof. Theorem 3.1 in [4] states that if u(x, t) solves the Cauchy problem ∂tu(x, t) =
Lu(x, t); u(x, 0) = f(x) on B for some f ∈ Dom(L), then the solution to the
associated fractional Cauchy problem (4.1) on B is given by

(4.3) p(x, t) =

∫ ∞

0

u(x, r)h(r, t) dr

where

(4.4) h(r, t) =
t

β
r−1−1/β gβ(tr

−1/β)
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and gβ(t) is the stable probability density function with Laplace transform

Lg(s) =

∫ ∞

0

e−stgβ(t) dt = e−sβ

for some 0 < β < 1. Since Yt has no positive jumps, the first passage time Dt :=
inf{r > 0 : Yr > t} is a stable subordinator with E[e−sDt ] = exp(−ts1/α), and
the supremum process St = sup{Yr : 0 � r � t} is also the first passage time
Et = inf{u > 0 : Du > t} of Dt; see Bingham [13]. Note that P(DEt

> t) = 1
[12, Theorem III.4]. Apply [33, Corollary 3.1] (or Exercises 29.7 and 29.18 in
Sato [46]) to see that (4.4) is also the probability density of Et. It follows from
[12, Section VI.1, Prop. 3] that

(4.5) P(St � x) = P(Zt � x) for all t > 0 and all x > 0.

Hence (4.4) is also the probability density of Zt, and the theorem follows. �

Remark 4.2. An alternate proof of Theorem 4.1 uses the reflection principle for
spectrally negative stable Lévy processes. Extending the usual argument for re-
flected Brownian motion, let τx = inf{u > 0 : Yu > x}. Since Yt is self-similar,
we have P(Yt > 0) = 1/α for every t > 0 (e.g., see [6, Theorem 4.1 (i)]). Defining
Y x
t := Yt−τx − x for t � τx, we have

P(St � x) = P(St � x, Yt > x) + P(St � x, Yt � x)

= P(Yt > x) + P(τx � t, Y x
t � 0)

and since P(τx � t, Y x
t � 0) = (1− α−1)P(St � x) it follows that

(4.6) P(St � x) = αP(Yt > x) = P(Yt > x|Yt � 0) for all t > 0 and all x > 0.

An application of Zolotarev duality for stable densities [6, Theorem 4.1 (ii)] implies

(4.7) P(Et > x) = P(Yt > x|Yt � 0) for all t > 0 and all x > 0.

Then the theorem follows using (4.5), [4, Theorem 3.1] and [33, Corollary 3.1].

Remark 4.3. Theorem 4.1 confirms a conjecture in the paper [6, Remark 5.2]. There
we set Zt = Yσ(t) where σ(t) = inf{u > 0 : Hu > t} and Hu =

∫ u

0
�Ys>0 ds. In

essence, the negative excursions are cut away, and the positive excursions are joined
together without any gaps in time. Since Yt has no positive jumps, any up-crossing
at the origin is a renewal point, so this process has the same distribution as (1.2).

5. Resolvent estimates

In this section, we develop bounds on the norm of the resolvent used in Theorem
2.1. Note that both terms in the formula (2.8) for the resolvent R(λ,A) diverge
as x → ∞. For example, it follows directly from [22, Eq. (6.4)] that Eα(λx

α) ∼
α−1eλ

1/αx as x → ∞. Hence it is useful to begin by establishing an alternative
representation. Recall that Yt is a negatively skewed stable process with index
1 < α � 2 and characteristic function (1.1). Let gα(x) denote the probability
density function of −Y1, a totally positively skewed stable law taking values on the
entire real line.
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Lemma 5.1. For any g ∈ C∞[0,∞) and any Reλ > 0 we have

R(λ,A)g(x) =

∫ ∞

0

∫ ∞

0

e−λt 1

t1/α
gα

(
x− ξ

t1/α

)
g(ξ) dt dξ

+
Lg(λ1/α)

λ1−1/α

∫ ∞

0

e−λt x

αt1+1/α
gα

( x

t1/α

)
dt,

(5.1)

where Lg is the usual Laplace transform.

Proof. First we will show that the right-hand side of (5.1) vanishes for any x < 0.
Recall that gα(x) is a standard positively skewed stable density with index 1 <
α � 2 and characteristic function exp((−ik)α), and hence gα(−x) is a standard
negatively skewed stable density with index 1 < α � 2 and characteristic function
exp((ik)α), i.e., the density of Y1 in (1.1). For 0 < β < 1, let gβ(x) denote the stan-
dard positively skewed stable density with characteristic function exp(−(−ik)β).
Since this density is supported on the positive real line, we can also write

(5.2) Lgβ(s) = exp(−sβ) for all Re s > 0

(e.g., see [56, Lemma 2.2.1]). Apply the Zolotarev Duality Theorem for stable
densities [56, Theorem 2.3.1] to see that when β = 1/α we have

(5.3) gα(−x) = x−1−αgβ(x
−α) for all x > 0.

Then for x < 0, the first term in (5.1) is∫ x

−∞

∫ ∞

0

e−λt 1

t1/α
gα

( u

t1/α

)
g(x− u) dt du

=

∫ x

−∞

∫ ∞

0

e−λt 1

t1/α

(
− u

t1/α

)−1−α

g1/α

((
− u

t1/α

)−α
)
g(x− u) dt du

=−
∫ x

−∞

∫ ∞

0

d

dλ

[
e−λt

] 1

(−u)1+α
g1/α

(
t

(−u)α

)
dt g(x− u) du

=

∫ x

−∞

1

u

d

dλ

∫ ∞

0

e−λt 1

(−u)α
g1/α

(
t

(−u)α

)
dt g(x− u) du.

Using (5.2) we have

(5.4)

∫ ∞

0

e−λt 1

(−u)α
g1/α

(
t

(−u)α

)
dt = exp(−[λ(−u)α]β) = exp(uλ1/α),

and then the first term in (5.1) equals∫ x

−∞

1

u

d

dλ

[
euλ

1/α
]
g(x− u) du =

1

α
λ1/α−1

∫ ∞

0

e(x−y)λ1/α

g(y) dy

=
1

α
λ1/α−1exλ

1/α

Lg(λ1/α)

=
Lg(λ1/α)

αλ1−1/α

∫ ∞

0

e−λt 1

(−x)α
g1/α

(
t

(−x)α

)
dt

=
Lg(λ1/α)

λ1−1/α

∫ ∞

0

e−λt (−x)

αt1+1/α
gα

( x

t1/α

)
dt

where we have used (5.4) again in the next-to-last line. Since the last line above is
the negative of the second term in (5.1), it follows that the sum of these two terms
vanishes for all x < 0.
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Since the positively skewed stable density gα(x) tends to zero at a super-
exponential rate as x → −∞ (e.g., see [56, Theorem 2.5.2]), its bilateral Laplace
transform L−∞[gα](s) is well defined for all s > 0, and in fact we can write

(5.5)

∫ ∞

−∞
e−sx 1

t1/α
gα

( x

t1/α

)
dx = ets

α

for all t > 0 and all s > 0.

Then it follows that
(5.6)∫ ∞

0

e−λt

∫ ∞

−∞
e−sx 1

t1/α
gα

( x

t1/α

)
dx dt =

1

λ− sα
for all s > 0 and all Reλ > 0.

Then for any g ∈ C∞[0,∞) the convolution property of the bilateral Laplace trans-
form implies that the first term in (5.1) satisfies

(5.7)

∫ ∞

−∞
e−sx

∫ ∞

−∞

∫ ∞

0

e−λt 1

t1/α
gα

(
x− ξ

t1/α

)
g(ξ) dt dξ dx =

g̃(s)

λ− sα

for all s > 0 and all Reλ > 0.
As for the second term, in view of the fact that the complex contour integral

∫ ∞

λ

d

ds

[
1

u− sα

]
du =

αsα−1

λ− sα

(integrate along {λ+ r : r > 0}) it follows using (5.6) that

sα−1

λ− sα
=

1

α

∫ ∞

λ

d

ds

[∫ ∞

0

e−ut

∫ ∞

−∞
e−sx 1

t1/α
gα

( x

t1/α

)
dx dt

]
du

=

∫ ∞

−∞
e−sx

∫ ∞

0

(
−x

α

)
1

t1/α
gα

( x

t1/α

)[∫ ∞

λ

e−ut du

]
dt dx

= −
∫ ∞

−∞
e−sx

∫ ∞

0

e−λt
(x

α

) 1

t1+1/α
gα

( x

t1/α

)
dt dx.

Then it follows immediately that the bilateral Laplace transform of the second term
in (5.1) equals the second term in (2.9). Since the right-hand side of (5.1) vanishes
for x < 0, its bilateral Laplace transform equals its ordinary Laplace transform.
(Note however that neither term on the right-hand side of (5.1) vanishes for x < 0,
only their sum.) But then (5.1) has the same Laplace transform as R(λ,A)g(x), and
since both are continuous in view of (2.8), the result follows using the uniqueness
of the Laplace transform. �

Lemma 5.2. Under the assumptions of Theorem 2.1, we have for every 1 < α � 2
that (2.11) holds for all Reλ > 0 and all g ∈ C∞[0,∞), with M = Mα + 1 +
sec(π/(2α)) for some Mα depending only on α.

Proof. Denote by BUC(R) the Banach space of bounded, uniformly continuous
functions with the supremum norm. Given g ∈ C∞[0,∞), define ḡ ∈ BUC(R)
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by setting ḡ(x) = g(x) for x > 0 and ḡ(x) = g(0) for x � 0. Use (5.1) to write
R(λ,A)g(x) = I1 − I2 + I3 where

I1 =

∫ ∞

0

∫ ∞

−∞
e−λt 1

t1/α
gα

(
x− ξ

t1/α

)
ḡ(ξ) dξ dt,

I2 =

∫ ∞

0

∫ 0

−∞
e−λt 1

t1/α
gα

(
x− ξ

t1/α

)
ḡ(ξ) dξ dt,

I3 =
Lg(λ1/α)

λ1−1/α

∫ ∞

0

e−λt x

αt1+1/α
gα

( x

t1/α

)
dt.

(5.8)

The formula

Tα
t f(x) =

∫ ∞

−∞

1

t1/α
gα

(
x− ξ

t1/α

)
f(ξ) dξ

=

∫ ∞

−∞

1

t1/α
gα

(
ξ

t1/α

)
f(x− ξ) dξ :=

∫ ∞

−∞
gt,α(ξ)f(x− ξ) dξ, f ∈ BUC(R),

defines a strongly continuous convolution semigroup on BUC(R). Indeed, T̄α
t f =

f ∗ gt,α, f ∈ L1(R), defines a strongly continuous semigroup on L1(R); see, e.g.,

[24, Theorem 21.4.3], noting that the Fourier transform of gt,α is et(ik)
α

. The latter
follows from (5.5) which also holds for s = ik, as gα is absolutely integrable. Then,
Tα
t is a subordinate semigroup (where the right-translation group on BUC(R),

which is strongly continuous [19, Chapter I, Section 4.15], is subordinated against
T̄α,t) which is strongly continuous by [5, Theorem 4.1].

Next we show that Tα
t is a bounded analytic semigroup on BUC(R), by showing

that ‖ d
dtT

α
t f‖ = ‖AαT

α
t f‖ � Mt−1‖f‖ for some M > 0; see [3, Theorem 3.7.19].

Here, the operator Aα denotes the generator of Tα
t . We have that∥∥∥∥ d

dt
Tα
t f

∥∥∥∥ �
∫ ∞

−∞

∣∣∣∣ ddtgt,α(x)
∣∣∣∣ dx ‖f‖.

Recall Carlson’s inequality (see [15, 18])

∫ ∞

−∞
|h(x)| dx � C

(∫ ∞

−∞
|F[h](k)|2 dk

)1/4
(∫ ∞

−∞

∣∣∣∣ ddkF[h](k)
∣∣∣∣
2

dk

)1/4

where F[h](k) =
∫
e−ikxh(x) dx denotes the Fourier transform of h. Note that

F[ ddtgt,α](k) = (ik)αet(ik)
α

. It is easy to check, using the formula for the gamma
probability density, that∫ ∞

−∞

∣∣∣(ik)αet(ik)α∣∣∣2 dk �
∫ ∞

−∞
|k|2αe−2tcα|k|αdk � Cαt

−2− 1
α

for some cα, Cα > 0, and that

∫ ∞

−∞

∣∣∣∣ ddk
(
(−ik)αet(−ik)α

)∣∣∣∣
2

dk � 2

∫ ∞

−∞

(
|k|2(α−1) + t2|k|2(2α−1)

)
e−2cαt|k|αdk

� Cαt
−2+ 1

α .
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Hence ‖AαT
α
t f‖ � Kαt

−1‖f‖, and so Tα
t is a bounded analytic semigroup on

BUC(R). Therefore, by [3, Corollary 3.7.12],

‖λI1‖ =

∥∥∥∥λ
∫ ∞

0

e−λtTα
t ḡ dt

∥∥∥∥ = ‖λR(λ,Aα)ḡ‖ � Mα‖ḡ‖ = Mα‖g‖, Reλ > 0.

Next write

|λI2| �|λg(0)|
∥∥∥∥
∫ ∞

0

∫ 0

−∞
e−λt 1

t1/α
gα

(
x− ξ

t1/α

)
dξ dt

∥∥∥∥
�|λ|‖g‖

∥∥∥∥∥
∫ ∞

0

e−λt

∫ ∞

x

t1/α

gα(y) dy dt

∥∥∥∥∥
=|λ|‖g‖

∥∥∥∥∥−e−λt

λ

∫ ∞

x

t1/α

gα(y) dy

∣∣∣∣∣
∞

0

+
1

λ

∫ ∞

0

e−λt x

αt1+1/α
gα

( x

t1/α

)
dt

∥∥∥∥∥ .

(5.9)

A substitution t = (x/u)α leads to

(5.10)

∫ ∞

0

e−λt x

αt1+1/α
gα

( x

t1/α

)
dt =

∫ ∞

0

e−λ(x/u)αgα (u) du,

and then it follows that

|λI2| � ‖g‖
∥∥∥∥
∫ ∞

0

e−λ( x
y )

α

gα(y) dy

∥∥∥∥ � ‖g‖

for all Reλ > 0 and all g ∈ C∞[0,∞).
Another application of (5.10) shows that |λI3| � |λ1/αLg(λ1/α)|. If λ = reiθ for

some r > 0 and |θ| < π/2, then λ1/α = r1/αeiθ/α has real part r1/α cos(θ/α) �
r1/α cos(π/(2α)). Hence |λ1/α| = r1/α � Re[λ1/α]/ cos(π/(2α)) for all Reλ > 0. It
is not hard to check that Re[λ|Lg(λ)|] � ‖g‖ for all Reλ > 0 and all g ∈ C∞[0,∞).
Then we have

|λI3| � |λ1/αLg(λ1/α)| =
∣∣∣∣ |λ1/α|
Re[λ1/α]

· Re[λ1/α|Lg(λ1/α)|]
∣∣∣∣ � 1

cos(π/(2α))
‖g‖

for all Reλ > 0 and all g ∈ C∞[0,∞), and the result follows. �

Remark 5.3. Following a slightly different path using Fourier transforms, it is pos-
sible to show that

λR(λ,A)g(x) = λR(λ,Dα
x )ḡ(x)− λR(λ,Dα

x )g(0)�(−∞,0)(x)

+ cα(λR(λ,Dα
x )− I)�(−∞,0)(x)

where ḡ(x) = g(x) for x > 0, ḡ(x) = g(0) for x � 0, cα = λ1/αLg(λ1/α), I is
the identity operator, and �(−∞,0)(x) is the indicator function. This form clarifies
that the resolvent of the Caputo fractional derivative A = ∂α

x is a modification of
the resolvent of the Riemann-Liouville fractional derivative Dα

x to account for the
boundary term, which is natural in view of (2.7). The same resolvent bound in
Lemma 5.2 can also be obtained using this form.
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Appendix

The following Matlab code computes the transition density p(x, y, t) in the case
x = 2 for the reflected stable process Zt defined by (1.2), where Yt is a stable Lévy
process with characteristic function (1.1) and index 1 < α < 2. This code was used
to generate the plots in Figures 1 and 2.

%%% Matlab script to compute p(x,y,t)

%% enter variables

alpha=1.2; ymax=12; N=1200; t=[0,.5,1,2]; x=2;

%% initialise parameters

h=ymax/N; y=(h:h:ymax)’;

u0=zeros(N,1);u0(floor(x/h)+1)=1/h; % initial condition

%% Make Grunwald matrix

w=ones(1,N+1);

for k=1:N

w(k+1)=w(k)*(k-alpha-1)/k;

end

w=w/h^alpha;

M=spdiags(repmat(w,N,1),-1:1:N-1,N,N); %enter w’s along diagonals

M(1,:)=-cumsum(w(1:N))’; %change first row for BC

%% Solve ODE system

[~,p]=ode113(@(t,u) M*u,t,u0);
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and with a foreword by S. M. Nikol′skĭı; Translated from the 1987 Russian original; Revised
by the authors. MR1347689 (96d:26012)
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