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a b s t r a c t

This paper derives physicallymeaningful boundary conditions for fractional diffusion equa-
tions, using a mass balance approach. Numerical solutions are presented, and theoretical
properties are reviewed, including well-posedness and steady state solutions. Absorbing
and reflecting boundary conditions are considered, and illustrated through several exam-
ples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional
derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting
boundary value problem is not positivity preserving.

© 2018 Published by Elsevier B.V.

1. Introduction

The space-fractional diffusion equation replaces the second derivative or Laplacian in the traditional diffusion equation
with a fractional derivative. Fractional derivatives were invented soon after their integer-order counterparts, and by now
have become an established field of study with a wide variety of applications in science and technology [1–8]. Practical ap-
plications include physics [9–12], finance [13–17], microbiology [18–20], medical imaging [21–26], and hydrology [27–30].
Zaslavsky [31,32] initiated the application of fractional calculus to chaotic dynamical systems. These methods may also be
applicable to nonlinear dynamics in Hodgkin–Huxley neurons and pancreatic beta cells [33–35]. Many effective numerical
methods have been developed for fractional differential equations, along with proofs of stability and consistency [7,36–50].
Because fractional derivatives are nonlocal operators, the concept of a boundary condition takes on new meaning [51,52],
and the specification, implementation, and interpretation of physically meaningful boundary conditions remains an open
problem.

Meerschaert and Tadjeran [42,43] consider a fractional diffusion equation with Dirichlet boundary conditions, but the
physical meaning of those boundary conditions was not addressed. Jin et al. [53] establish variational formulations for
fractional differential equations with zero Dirichlet boundary conditions. Ferreira [54] establishes a Lyapunov inequality
for a fractional equation with zero Dirichlet boundary conditions. Zhu et al. [55] prove a Lyapunov formula for a fractional
equation with periodic boundary conditions. D. del-Castillo-Negrete [56] considers space–time fractional diffusions on an
interval with absorbing boundary conditions. Montefusco et al. [57] consider a fractional reaction–diffusion equation with
a traditional Neumann boundary condition. Xie et al. [58] consider a fractional Poisson equation with traditional Neumann
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boundary conditions. Laskin [59] solves a fractional Schrödinger equationwith reflecting boundary conditions using a square
potential. Szekeres and Izsák [60] solve fractional diffusion equationswith zero Dirichlet and traditional Neumann boundary
conditions via periodic extensions. Lim And Teo [61,62] apply both the traditional Neumann condition and a fractional
Neumann condition to study the finite temperature Casimir force acting on a piston moving freely inside a rectangular
cavity. Wang and Yang [63] consider a fractional Poisson equation with both traditional and fractional Neumann boundary
conditions, and they show that the appropriate choice of boundary condition depends on the type of fractional derivative.
Voller [64] solves a fractional Stefan problem, with a nonzero Dirichlet condition on the left, and a moving boundary on
the right. Kolokoltsov [65] implements Dirichlet and Neumann conditions by modifying the jump intensity in the Lévy
representation. Warma [66] gives an abstract characterization of Neumann boundary conditions for the fractional Laplacian
based on Dirichlet forms. Umarov [67] proves existence and uniqueness for general nonlocal diffusions with Wentcel’s
boundary conditions, defined by a pseudo-differential operator. Du et al. [68] develop Dirichlet and Neumann volume
constraints based on the theory of nonlocal diffusion. Dipierro et al. propose a new kind of Neumann condition that restricts
integration in the definition of the fractional Laplacian to the boundary. Krepysheva et al. [69] implement an elastic reflecting
boundary condition for the fractional Laplacian by modifying the integration kernel. Cusimano et al. [70] and Ilic et al. [71]
take a different approach to elastic reflection, taking limits of a discrete fractional Laplacian.

This paper considers space-fractional diffusion equations on the unit interval 0 ≤ x ≤ 1 with absorbing or reflecting
boundary conditions. Both Riemann–Liouville and Caputo flux forms are considered, and the profound difference in their
solutions is illustrated. To specify a fractional diffusion equation on a bounded domain, appropriate boundary conditions
must be enforced [51,52]. We discuss absorbing (Dirichlet) and reflecting (Neumann) boundary conditions, which can take
a very different form for a fractional evolution equation. In particular, the appropriate Neumann boundary condition sets a
fractional derivative equal to zero at the boundary, not the first derivative as in the traditional diffusion equation. We also
show that the Caputo form does not preserve positivity, and hence cannot provide a suitable model for anomalous diffusion.

By varying the type of space-fractional derivative and the boundary conditions, we obtain a number of possible fractional
diffusion equations on the unit interval. For each of these, we develop and apply a suitable numerical solution method. We
demonstrate that fractional Neumann boundary conditions are physically meaningful zero-flux conditions that correspond
to inelastic reflection. We also show that the traditional Neumann condition is not satisfied at the boundary. We then
review the underlying theory from the point of view of abstract evolution equations, semigroups and generators. Well-
posedness is verified, including uniqueness of solutions. Steady-state solutions are identified, and convergence to steady
state is demonstrated.

2. Fractional boundary value problems

Consider the fractional diffusion equation
∂

∂t
u(x, t) = C Dαu(x, t) for 1 < α < 2 (2.1)

on the entire real line, where the Riemann–Liouville fractional derivative

Dαu(x, t) =
1

Γ (n − α)
∂n

∂xn

∫ x

−∞

u(y, t)(x − y)n−α−1dy (2.2)

for α > 0 and n−1 < α ≤ n. Note that (2.2) is a nonlocal operator that depends on the values of u(y, t) at every point y < x.
The exact analytical solution to (2.1) can be written in terms of a stable probability density function. Although this analytical
solution cannot be computed in closed form, there are readily available codes that compute the stable density, and these can
be used to plot the solutions to (2.1). See for example [72, Chapter 5].

However, if we restrict the fractional diffusion to a finite interval, then there are no known analytical solutions, and
numerical methods must be used. First consider the fractional diffusion equation

∂

∂t
u(x, t) = C Dα

[0,x]u(x, t) for 1 < α < 2 (2.3)

on the state space 0 ≤ x ≤ 1 with initial condition u(x, 0) = u0(x) ≥ 0. On this finite domain, we define the Riemann–
Liouville fractional derivative

Dα
[0,x]u(x, t) =

1
Γ (n − α)

∂n

∂xn

∫ x

0
u(y, t)(x − y)n−α−1dy, (2.4)

the only difference from (2.2) being the lower limit of integration. This is still a nonlocal operator, since it depends on the
values of u(y, t) at every point 0 ≤ y ≤ x.

3. Absorbing boundary conditions

Now let us impose a zero boundary condition at each endpoint:

u(0, t) = u(1, t) = 0 for all t ≥ 0. (3.1)
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The zero Dirichlet boundary conditions (3.1) are usually called absorbing boundary conditions, but do they have the same
meaning for a nonlocal operator? To illuminate this issue, let us develop a numerical method to solve the fractional diffusion
equation (2.3), paying special attention to meaning of the zero boundary conditions (3.1).

The fractional derivative (2.2) can be approximated using the Grünwald–Letnikov formula [72, Proposition 2.1]

Dαu(x, t) = lim
h→0

h−α

∞∑
i=0

(−1)i
(

α

i

)
u(x − ih, t) (3.2)

where the Grünwald weights are given by

gα
i = (−1)i

(
α

i

)
=

(−1)iΓ (α + 1)
Γ (i + 1)Γ (α − i + 1)

(3.3)

for all i ≥ 0. Since the finite domain fractional derivative (2.4) is equivalent to the Riemann–Liouville fractional derivative
of a function that vanishes for x < 0, we immediately obtain that

Dα
[0,x]u(x, t) = lim

h→0
h−α

[x/h]∑
i=0

gα
i u(x − ih, t). (3.4)

This approximation can be used to construct numerical solutions to the fractional diffusion equation, but the resulting
methods are unstable [42, Proposition 2.3]. Instead, we apply a shifted Grünwald formula

Dα
[0,x]u(x, t) ≈ h−α

[x/h]+1∑
i=0

gα
i u(x − (i − 1)h, t) (3.5)

which results in a stable method [42, Theorem 2.7].
To illuminate the role of the boundary conditions, first consider the fractional diffusion equation (2.1) on the real line. As

a thought experiment, discretize xj = jh and tk = k∆t and apply the Grünwald approximation to obtain the explicit Euler
scheme

u(xj, tk+1) = u(xj, tk) + Ch−α

∞∑
i=0

gα
i u(xj−i+1, tk)∆t. (3.6)

The Grünwald weights are gα
0 = 1, gα

1 = −α, gα
2 = α(α − 1)/2! and so forth, and note that gα

i > 0 for all i ̸= 1. The scheme
is mass-preserving because [72, Eq. (2.11)]

∞∑
i=0

gα
i = 0, (3.7)

and hence to understand a physical model of the fractional diffusion, it will suffice to consider u(xj, tk)h as the mass at
location xj at time tk. The total mass Mk =

∑
ju(xj, tk)h does not vary with time tk, but rather remains equal to the initial

mass M0 =
∑

ju0(xj)h. The scheme moves a mass C∆th−α−1gα
i u(xj−i+1, tk)h from location xj−i+1 to location xj when i ̸= 1.

The total mass C∆th−αα u(xj, tk) moved out of location xj is equal to the sum of the amounts moved from location xj to
another location, because

∑
i̸=1g

α
i = α. In this scheme, mass can be transported large distances to the right, but only one

step size h to the left. Note that the scheme (3.6) is also positivity preserving for Cαh−α∆t ≤ 1, since a fraction ≤ 100% of
the mass at each point is removed, and then redistributed.

Now we want to restrict to the unit interval 0 ≤ x ≤ 1 and impose the zero boundary conditions (3.1). Since we are
solving a nonlocal problem, this requires some care. Unlike a traditional diffusion equation, the Euler scheme (3.6) moves
mass a long distance in one time step, for any step size. That mass can land outside the unit interval, and then it must be
accounted for in the scheme. Part of the picture is to understand how the Grünwald approximation (3.4) accounts for this
mass. The remaining part is to understand the zero boundary conditions.

Let us note that the discretization of the fractional diffusion equation (2.3) on the bounded domain using (3.5) takes the
form

u(xj, tk+1) = u(xj, tk) + Ch−α

j+1∑
i=0

gα
i u(xj−i+1, tk)∆t, ∀ 0 ≤ j ≤ n. (3.8)

Comparing with (3.6), we can see that no mass is moved to location xj from any location xj−i+1 when i > j + 1, i.e., when
xj−i+1 < 0 lies outside the domain 0 ≤ x ≤ 1.

Now we impose the boundary conditions (3.1) by setting u(xj, tk) = 0 when j = 0 (location xj = 0) or j = n (location
xj = 1), where nh = 1. Since our initial condition u0(x) must also satisfy the boundary conditions, we start with all the mass
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inside the open interval 0 < x < 1. To enforce the boundary conditions, we have to modify the Euler scheme (3.8). After a
simple change of variables, we can write (3.8) in the form

u(xj, tk+1) = u(xj, tk) + Ch−α

n∑
i=0

biju(xi, tk)∆t, ∀ 0 ≤ j ≤ n, (3.9)

where bij = gα
j−i+1 for i ≤ j + 1 and bij = 0 for i > j + 1. Next we will modify certain coefficients bij to enforce the boundary

conditions. First consider the left end point x0 = 0. Since the mass at this location has to remain zero,

0 =

1∑
i=0

bi0u(xi, tk).

Since u(x0, tk) = 0 for all k, this requires b10 = 0. Now the mass C∆th−α−1gα
0 u(x1, tk)h that would have been transported

from location x1 to location x0 is instead removed from the system, to enforce the zero boundary condition. Next consider
the right end point xn = 1. Since the mass at this location has to remain zero, we require

0 =

n∑
i=0

binu(xi, tk).

Since u(xn, tk) = 0 for all k, and since all u(xi, tk) ≥ 0 for step size ∆t ≤ hα/Cα and a nonnegative initial condition, we must
have bin = 0 for all i = 0, 1, 2, n− 1. This change alters (3.8) by taking the mass C∆th−αgα

n−i+1u(xi, tk) that would have been
transported from location xi < 1 to location xn = 1 and removing it from the system. The resulting scheme can be written
in the form (3.9) where

bij =

{
gα
j−i+1 if 0 < j < n and i ≤ j + 1,

0 otherwise. (3.10)

To interpret (3.10), recall that Ch−αbiju(xi, tk)∆t is the mass transferred from location xi to location xj during this time step.
In summary, the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with zero boundary conditions (3.1) is indeed a model

with absorbing boundary conditions. As compared to the Euler scheme on the entire real line, here the mass scheduled for
transport to or beyond the boundary of the unit interval is instead deleted from the system, or absorbed. This scheme is also
positivity preserving so long as Cα∆th−α

≤ 1, since a fraction of the mass at each point is removed, and then redistributed
or absorbed.

Write β = Ch−α∆t , uk
j = u(xj, tk), the solution vector uk = [uk

0, . . . , u
k
n], and the (n+1)×(n+1) iterationmatrix B = [bij].

Then we can express the explicit Euler scheme (3.9) in vector-matrix form

uk+1 = uk + βukB. (3.11)

In this form, the ij entry of the matrix B is proportional to the rate at which mass is transferred from location xi to location
xj. Equivalently, we can write

uT
k+1 = uT

k + βBTuT
k . (3.12)

The formulation (3.12) is traditional in numerical analysis, e.g., see [43, p. 4], while (3.11) is used for Markov chains,
e.g., see [73, Section 8.1].

The explicit Euler scheme (3.12) is stable under a step size condition αβ ≤ 1, or equivalently, Cα∆t ≤ hα , see
[43, Proposition 2.1]. The implicit Euler scheme

uT
k+1 = uT

k + βBTuT
k+1 (3.13)

is unconditionally stable [42, Theorem 2.7]. As noted in the Introduction, by now there are a wide variety of numerical
methods to solve this problem. For example, the explicit Euler scheme (3.11) can be viewed as the temporal discretization
of a linear system of ordinary differential equations (method of lines, e.g., see [40,74]), and then any standard method for
solving the linear system can be employed.

Fig. 1 shows a numerical solution of the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with zero boundary conditions
(3.1). The solutionwas plotted using theMATLAB routine ode15s for stiff systems of ordinary differential equations, viewing
the explicit Euler scheme (3.11) as the temporal discretization of a linear system of ordinary differential equations (method
of lines), with time step ∆t = 0.01 and spatial grid size h = 0.001. The tent function initial condition

u0(x) =

{25x − 7.5 for 0.3 < x ≤ 0.5,
−25x + 17.5, for 0.5 < x < 0.7,
0 otherwise

(3.14)
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Fig. 1. Numerical solution of the fractional diffusion equation (2.3) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with zero boundary conditions at time t = 0
(solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

satisfies the zero boundary conditions, and integrates to total mass M = 1. Because of the absorbing boundary conditions,
solutions tend to zero as t increases. Refining the temporal or spatial discretization resulted in no visible change in the plots.
Because the fractional derivative (2.4) is one sided, solution curves are skewed for all t > 0, even though the initial mass
distribution is symmetric. This can also be seen from (3.8), since the mass βgα

0 u
k
i moved from state xi to state xi−1 exceeds

the total amount of mass moved to the right (which is less than β(α − 1)uk
i ), at any node inside the domain. We have also

written explicit Euler codes for all the examples in this paper using the free and open source R programming language [75].
Please contact the authors to obtain the MATLAB or R codes.

Remark 3.1. A few crucial differences from the traditional diffusion setup should be noted. First of all, one can also
characterize the physical problem as absorbing on the exterior of the open domain 0 < x < 1, not just at the boundary.
Physically, mass can be displaced a long distance from the domain, and then absorbed. Second, the form of the fractional
derivative (2.4) also incorporates absorbing outside the domain. The fractional diffusion equation (2.1) on the real line
with the exterior condition u(x, t) = 0 for x ≤ 0 or x ≥ 1 is equivalent to the fractional diffusion equation (2.3) on the
bounded domain 0 ≤ x ≤ 1 with zero boundary conditions (3.1). The fractional derivative itself codes the zero exterior
condition on x < 0. For more details, and an interesting connection to stochastic processes, see [51]. Third, since the positive
Riemann–Liouville fractional derivative (2.2) is one-sided, depending only on values of the function to the left, the zero
exterior condition on x ≥ 1 is automatically enforced. Another way to see this is that, in the Euler scheme, mass can be
transported to location xj from any location to the left, but not from the right.

Remark 3.2. Theoretical properties of the solution are discussed in [51,76]. There it is shown that the Cauchy problem (2.3)
on 0 ≤ x ≤ 1 with zero boundary conditions (3.1) (or equivalently, zero exterior condition) is well-posed: There exists a
unique solution for any initial condition u0(x) that depends continuously on this initial function. The general theory in [51]
applies on the Banach space C0(0, 1) of continuous functions that vanish at the end points, with the supremum norm. In [76]
the Banach space L1[0, 1] is considered. Since both the implicit and explicit Euler methods are consistent, and stable (in the
explicit case, under a step size condition on ∆t), and since the problem (2.3) on 0 ≤ x ≤ 1 with zero boundary conditions is
well-posed, the Lax Equivalence Theorem [77, p. 45] implies that either of these Euler methods will converge to the unique
solution as h → 0 and ∆t → 0. The same is true for any other stable, consistent numerical method. The theory in [51] also
relates the Cauchy problem (2.3) on 0 ≤ x ≤ 1 with zero boundary conditions to a probability model, which implies that
the problem is positivity preserving. The analysis in [76] also computes the exact domain of the generator Dα

[0,x] on L1[0, 1]
with zero boundary conditions.

Remark 3.3. The astute reader will notice that (3.8) with j = n involves the mass at location xn+1 = 1 + h when j = n,
and this xn+1 term does not appear in (3.9). We could indeed track the mass moved to the location xn+1, which is outside the
domain, but with the zero boundary condition u(xn, tk) = 0, none of this mass can ever come back into the domain. Indeed,
mass from location xn+1 can only move left one step to location xn = 1, and the zero boundary condition forbids this. In
other words, if we did include state xn+1 in our scheme, then we would also conclude bn+1,n = 0 by the same argument that
bin = 0 for 0 ≤ i ≤ n − 1. Hence we need not track the mass at this location.



B. Baeumer et al. / Journal of Computational and Applied Mathematics 339 (2018) 414–430 419

4. Reflecting boundary conditions

The proper formulation of physicallymeaningful reflecting boundary conditions for the fractional diffusion equation (2.3)
requires careful consideration of the nonlocal operator (2.4). Suppose that our goal is for mass leaving the domain to instead
come to rest at the boundary. Unlike the traditional diffusion setup, this mass can come from far inside the domain, not just
an adjacent grid point. Now the mass that was removed from the system in the Dirichlet model of Section 3 will instead be
preserved, and moved to the boundary.

Let us consider the right boundary xn = 1, since long movements are always to the right in our setup. For each
i = 1, 2, . . . , n − 1, at each time step, mass βαuk

i is moved out of location xi, and redistributed. Of this total, a fraction
βgα

j−i+1u
k
i is moved to location xj when j = i− 1 or j > i. Hence the mass landing at, or exiting the domain through, the right

boundary xn = 1 from location xi for i = 1, 2, . . . , n − 1 is
∞∑
j=n

βgα
j−i+1u

k
i .

Then using (3.7), along with the identity [8, Eq. (20.4)]
n∑

j=0

gα
j = gα−1

n , (4.1)

we set bin = −gα−1
n−i in (3.9), for each i = 1, 2, . . . , n − 1. In the scheme (3.6) on the real line, the mass βgα

0 u
k
n moves from

location xn to location xn−1, and the remainder of the mass βαuk
n leaving location xn moves to the right, outside the domain

0 ≤ x ≤ 1. In the reflecting scheme, we retain this mass at location xn by setting bnn = −1 = −gα
0 .

The only way that mass can move to the left boundary x0 = 0 in this scheme is from the adjacent node x1 = h, hence we
leave b10 = gα

0 = 1. In the scheme (3.6) on the real line, mass βgα
0 u

k
0 moves from location x0 to location x−1 < 0. To prevent

this, and thus to keep the scheme mass-preserving, recall that gα
0 = 1 and gα

1 = −α, and set b00 = 1 − α. To prevent mass
leaving state x0 from jumping through the right boundary, we also set

b0n =

∞∑
j=n

gα
j+1 = −gα−1

n > 0,

and hence the explicit Euler scheme for the case of reflecting boundary conditions is written in the form (3.9) with

bij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gα
j−i+1 if 0 < j < n and i ≤ j + 1,

1 if i = 1 and j = 0,
1 − α if i = j = 0,
−gα−1

n−i if j = n and i ≤ n,
0 otherwise.

(4.2)

Next we will argue that the reflecting boundary conditions for the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 can
be written in the form

Dα−1
[0,x]u(0, t) = Dα−1

[0,x]u(1, t) = 0 for all t ≥ 0, (4.3)

using the Riemann–Liouville fractional derivative (2.4) of order α − 1. When α = 2, this reduces to the classical reflecting
condition ∂

∂xu(x, t) = 0 at the boundary. First consider the right boundary xn = 1, and write out the iteration equation for
this node: From (3.9) and (4.2) with β = Ch−α∆t we have uk+1

n = uk
n − βgα−1

n uk
0 − · · · − βgα−1

1 uk
n−1 − βgα−1

0 uk
n which is

algebraically equivalent to

h
uk+1
n − uk

n

∆t
= −Ch1−α

n∑
i=0

gα−1
n−i u

k
i = −Ch1−α

n∑
i=0

gα−1
n−i u(xn − (n − i)h, tk).

Letting ∆t → 0 and h → 0, and using the Grünwald approximation (3.4), we arrive at the reflecting boundary condition
(4.3) at the right boundary x = 1.

The iteration equation at the left boundary is uk+1
0 = uk

0 + β(1 − α)uk
0 + βuk

1. Recalling that gα−1
0 = 1 and gα−1

1 = 1 − α,
this reduces to

h
uk+1
0 − uk

0

∆t
= Ch1−α

1∑
i=0

gα−1
1−i u

k
i ,

which is consistent with the reflecting boundary condition (4.3) at the left boundary x = 0. To rigorously prove that the left
boundary condition in (4.3) holds, [76, Proposition 19] extends the matrix h−αB by interpolation to an operator on L1[0, 1],
and proves convergence to the generator (2.4) with boundary conditions (4.3).



420 B. Baeumer et al. / Journal of Computational and Applied Mathematics 339 (2018) 414–430

Fig. 2. Numerical solution of the fractional diffusion equation (2.3) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with reflecting boundary conditions (4.3) at time
t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

Remark 4.1. The reflecting boundary conditions (4.3) can be seen as zero flux conditions at the boundary: Note that the
fractional diffusion equation (2.3) can be derived from the traditional conservation of mass equation

∂

∂t
u(x, t) = −

∂

∂x
q(x, t) (4.4)

together with the flux equation (or fractional Fick’s Law, see [78])

q(x, t) = −CDα−1
[0,x]u(x, t) = −C

∂

∂x
1

Γ (2 − α)

∫ x

0
u(y, t)(x − y)1−αdy. (4.5)

Hence (4.3) simply sets the flux to zero at the boundary. When α = 2, the fractional Fick’s Law reduces to the traditional
Fick’s Law q(x, t) = −C ∂

∂xu(x, t). D. del-Castillo-Negrete [56, Eq. (3)] noted that the flux in the Riemann–Liouville fractional
diffusion equation is fractional.

Fig. 2 shows a numerical solution of the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with reflecting boundary
conditions, using the same numerical method and initial function as in Fig. 1. As in Fig. 1, and for the same reason, solution
curves are skewed for all t > 0, even though the initial mass distribution is symmetric. However, there is a profound
difference in the solutions. Here the total mass (area under the curve) remains equal to the initial mass M = 1 for all
t > 0, because of the reflecting boundary conditions. As t increases, the solutions approach the steady state solution
u∞(x) = (α − 1)xα−2 on 0 < x < 1.

Remark 4.2. The general steady state solution to the fractional diffusion equation (2.3) is u∞(x) = c1xα−1
+ c2xα−2 where

c1, c2 are arbitrary real numbers. To see this, note that the Riemann–Liouville fractional derivative Dα
[0,x]u(x) =

d2

dx2
J2−α
[0,x]u(x)

where the Riemann–Liouville fractional integral

Jγ

[0,x]u(x) =
1

Γ (γ )

∫ x

0
u(y)(x − y)γ−1dy (4.6)

for any γ > 0. Using the general formula (e.g., see [72, Example 2.7])

Jγ

[0,x][x
p
] =

Γ (p + 1)
Γ (p + γ + 1)

xp+γ (4.7)

we see that

J2−α
[0,x]u∞(x) = c1Γ (α)x + c2Γ (α − 1).

ThenDα
[0,x]u∞(x) = 0 for all 0 < x < 1. The only steady state solution with total mass 1 that satisfies the reflecting boundary

conditions (4.3) has c1 = 0 and c2 = α − 1. The only steady state solution that satisfies the absorbing boundary conditions
(4.3) has c1 = 0 and c2 = 0.
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Fig. 3. Numerical solution of the fractional diffusion equation (2.3) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with boundary conditions (5.1): Reflecting on
the left, and absorbing on the right at time t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

5. Absorbing on one side, reflecting on the other

Next we consider the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with a reflecting boundary condition on the left,
and an absorbing boundary condition on the right:

Dα−1
[0,x]u(0, t) = 0 and u(1, t) = 0 for all t ≥ 0 (5.1)

The explicit Euler scheme for this problem is (3.9) with

bij =

⎧⎪⎨⎪⎩
gα
j−i+1 if 0 < j < n and i ≤ j + 1,

1 if i = 1 and j = 0,
1 − α if i = j = 0,
0 otherwise.

(5.2)

This combines the reflecting boundary condition at x0 = 0 from (4.2) and the absorbing boundary condition at xn = 1 from
(3.10).

Fig. 3 shows the resulting numerical solution of the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with boundary
conditions (5.1), using the same numerical method and initial function as in Fig. 1. The solutions are skewed to the right, and
approach the steady state solution u∞ = 0 as t increases. In this model, mass accumulates at the reflecting boundary x = 0,
but then will eventually be absorbed at the right boundary x = 1.

Next we consider the opposite case, the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with an absorbing boundary
condition on the left, and a reflecting boundary condition on the right:

u(0, t) = 0 and Dα−1
[0,x]u(1, t) = 0 for all t ≥ 0. (5.3)

The explicit Euler scheme for this problem is (3.9) with

bij =

⎧⎨⎩
gα
j−i+1 if 0 < j < n and i ≤ j + 1,

−gα−1
n−i if j = n and i ≤ n,

0 otherwise.
(5.4)

This combines the absorbing boundary condition at x0 = 0 from (3.10) and the reflecting boundary condition at xn = 1 from
(4.2).

Fig. 4 shows the resulting numerical solution of the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with boundary
conditions (5.3), using the same numerical method and initial function as in Fig. 1. The solutions are skewed to the right, and
approach the steady state solution u∞ = 0 as t increases. In this model, mass is reflected at the right boundary, and then
eventually absorbed at the left boundary.

Remark 5.1. In [76, Proposition 19] it is shown that the Cauchy problem (2.3) on 0 ≤ x ≤ 1 with boundary conditions
(4.3) or (5.1) or (5.3) is well-posed on the Banach space L1[0, 1], and the exact domain of the generator is computed. Then it
follows as in Remark 3.2 that any stable and consistent numerical method converges to the unique solution.
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Fig. 4. Numerical solution of the fractional diffusion equation (2.3) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with boundary conditions (5.3): Reflecting on
the right, and absorbing on the left at time t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

6. Caputo fractional flux

An alternative to the fractional diffusion equation (2.3) is the Caputo fractional flux model. The Caputo fractional
derivative is defined by

∂
γ

[0,x]u(x) =
1

Γ (n − γ )

∫ x

0
u(n)(y)(x − y)n−γ−1dy (6.1)

for γ > 0 and n − 1 < γ ≤ n, where u(n)(x) is the nth derivative. It differs from (2.4) in that the derivative is moved inside
the integral. These two fractional derivatives are not equivalent. For example,

∂
γ

[0,x]u(x) = Dγ

[0,x]u(x) − u(0)
x−γ

Γ (1 − γ )
(6.2)

when 0 < γ < 1 [72, Eq. (2.33)]. Recall from Remark 4.1 that the fractional diffusion equation (2.3) can be derived from the
conservation of mass equation (4.4) and the Riemann–Liouville fractional Fick’s Law (4.5). Noting that Fick’s Law is purely
empirical, we can instead consider the Caputo fractional flux

q(x, t) = −C∂α−1
[0,x]u(x, t) = −

C
Γ (2 − α)

∫ x

0
u′(y, t)(x − y)1−αdy, (6.3)

where u′(x, t) denotes the x derivative. This leads to the fractional diffusion equation with Caputo flux:

∂

∂t
u(x, t) = C Dα

[0,x]u(x, t), (6.4)

where the Patie–Simon fractional derivative is defined by

Dα
[0,x]u(x) =

1
Γ (2 − α)

∂

∂x

∫ x

0

∂

∂x
u(x − y)y−αdy (6.5)

for 1 < α < 2. Patie and Simon [79, p. 570] showed that this operator is the (backward) generator of a standard spectrally
negative α-stable process reflected to stay positive [79, p. 573]. Use the relation (6.2) and the definition (2.4) to see that

Dα
[0,x]f (x) =

d
dx

[
∂α−1
[0,x] f (x)

]
=

d
dx

[
Dα−1

[0,x]f (x) − f (0)
x1−α

Γ (2 − α)

]
= Dα

[0,x]f (x) − f (0)
x−α

Γ (1 − α)

(6.6)

which relates the two derivatives when 1 < α < 2.
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A Grünwald finite difference scheme for the fractional derivative (6.5) can be written as

Dα
[0,x]f (x) = lim

h→0
h−α

[ j+1∑
i=0

gα
i f (x − (i − 1)h) − gα−1

j+1 f (x − jh)

]
(6.7)

where j = j(h) = [x/h]. To see this, apply [72, Proposition 2.1] to see that the first term in (6.7) converges to Dα
[0,x]f (x). Then

note that x − jh → 0 as h → 0, and that [72, Eq. (2.5)]

gα−1
j ∼

1 − α

Γ (2 − α)
j−α as j → ∞, (6.8)

meaning that the ratio between the left and right terms tends to 1 as j → ∞. Then

h−αgα−1
j+1 ∼ h−α 1 − α

Γ (2 − α)
([x/h] + 1)−α

∼
1 − α

Γ (2 − α)
x−α

=
x−α

Γ (1 − α)
using Γ (z + 1) = zΓ (z). Then (6.7) follows using (6.6).

Next we construct an explicit Euler scheme (3.9) for the fractional diffusion equation with Caputo flux (6.4). For xj = jh,
tk = k∆t , and uk

j = u(xj, tk), the Grünwald approximation of the Patie–Simon fractional derivative is

Dα
[0,x]u

k
j ≈ h−α

[ j+1∑
i=0

gα
j−i+1u

k
i − gα−1

j+1 uk
0

]
= h−α

n∑
i=0

bijuk
i

where b0j = gα
j+1 − gα−1

j+1 , bij = gα
j−i+1 for 0 < i ≤ j + 1, and bij = 0 for i > j + 1. Hence the only change in the iteration

matrix B = [bij] is in the top row. From (4.1) it follows easily that

gα
n − gα−1

n = −gα−1
n−1 , (6.9)

and hence we can write b0j = −gα−1
j . Now in order to solve the fractional diffusion equation with Caputo flux (6.4), we need

only to enforce appropriate boundary conditions.
First assume zero boundary conditions. As in (3.10) it is sufficient to set bij = 0 for j = 0 or j = n, since amass proportional

to bij is transported from location xi to location xj, andwewant thismass to vanish. Then, we obtain the explicit Euler scheme
(3.9) with weights

bij =

⎧⎨⎩
gα
j−i+1 if 0 < j < n and 0 < i ≤ j + 1,

−gα−1
j if i = 0 and 0 < j < n,

0 otherwise.
(6.10)

The iteration matrix B = [bij] differs from (3.10) only in the first row i = 0. Since the mass at the left endpoint x0 = 0 is
always zero in this case, and since the first row of the matrix B transfers mass out of state x0 = 0, there is no difference in
the solutions, and hence Fig. 1 is also the solution to the fractional diffusion equation with Caputo flux (6.4) and absorbing
boundary conditions (3.1). In fact, since we assume a zero boundary condition on the left, u(0, t) = 0 for all t > 0, the
fractional diffusion equation with Caputo flux (6.4) and the Riemann–Liouville equation (2.3) on 0 ≤ x ≤ 1 are equivalent,
due to the relation (6.6).

Next consider a reflecting boundary condition on both sides. Since the iteration matrix B = [bij] has not changed except
in the first row, the argument in Section 4 applies for every state xj with j > 0, i.e., we set bjn = −gα−1

n−i for all i = 1, 2, . . . , n
as in (4.2). As for the first row, the only way that mass can move to the left boundary x0 = 0 in this scheme is from the
adjacent node x1 = h, hence we leave b10 = gα

0 = 1. In the scheme (3.9) for the Patie–Simon fractional derivative, we have
b00 = −gα−1

0 = −1. To prevent mass from state x0 = 0 jumping through the right boundary xn = 1, since b0j = −gα−1
j for

j = 1, 2, . . . , n − 1, and since we require
∑

jbij = 0 for a mass-preserving scheme, we must set

b0n = −

n−1∑
j=0

b0j = 1 +

n−1∑
j=1

gα−1
j =

n−1∑
j=0

gα−1
j = gα−2

n−1

using (4.1). Hence the explicit Euler scheme for this problem is (3.9) with

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

gα
j−i+1 if 0 < j < n and 0 < i ≤ j + 1,

1 if i = 1 and j = 0,
−1 if i = j = 0,
−gα−1

j if i = 0 and 0 < j < n,

gα−2
n−1 if j = n and i = 0,

−gα−1
n−i if j = n and 0 < i ≤ n,

0 otherwise.

(6.11)
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Fig. 5. Numerical solution of the fractional diffusion equation with Caputo flux (6.4) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with reflecting boundary
conditions (6.12) at time t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

Next we will argue that the reflecting boundary conditions for the fractional diffusion equation with Caputo flux (6.4) on
0 ≤ x ≤ 1 can be written in the form

∂α−1
[0,x]u(0, t) = ∂α−1

[0,x]u(1, t) = 0 for all t ≥ 0, (6.12)

using the Caputo derivative (6.1). That is, the reflecting boundary conditions zero out the Caputo flux at the boundary.
First consider the right boundary xn = 1, and write out the iteration equation for this node: From (3.9) and (6.11) with
β = Ch−α∆t we have

uk+1
n = uk

n − βgα−2
n−1 u

k
0 − βgα−1

n−1 u
k
1 − · · · − βgα−1

1 uk
n−1 − βgα−1

0 uk
n.

Using (6.9) this is equivalent to

h
uk+1
n − uk

n

∆t
= −Ch1−α

[
n∑

i=0

gα−1
n−i u

k
i − gα−2

n uk
0

]
.

Letting ∆t → 0 and h → 0, the left-hand side converges to zero, the first term on the right converges to Dα−1
[0,x]u(1, t) using

the Grünwald approximation (3.4), and recalling that hn = 1, the second term

Ch1−αgα−2
n uk

0 ∼ Cnα−1 2 − α

Γ (3 − α)
n1−αuk

0 →
C

Γ (2 − α)
u(0, t)

as h → 0 using (6.8). Using (6.2) with γ = α−1 and x = 1, it follows that the entire right-hand side converges to the Caputo
derivative of order α − 1, and hence the reflecting boundary condition (6.12) holds at the right boundary x = 1.

Using b0j = gα
j+1 − gα−1

j+1 , the iteration equation at the left boundary is uk+1
0 = uk

0 + βgα
1 u

k
0 − βgα−1

1 uk
0 + βgα−1

0 uk
1. This

reduces to

h
uk+1
n − uk

n

∆t
= −Ch1−α

[
1∑

i=0

gα−1
1−i u

k
i − gα−2

1 uk
0

]
which is consistent with the reflecting boundary condition (6.12) at the left boundary x = 0. A rigorous proof that the left
boundary condition in (6.12) holds is similar to the case of the Riemann–Liouville generator, see [76, Proposition 19].

Remark 6.1. Comparing (4.3) and (6.12) shows that the form of the reflecting boundary condition also changes when we
change the type of fractional derivative in the fractional diffusion equation. When α = 2, both forms reduce to the classical
reflecting boundary condition ∂

∂xu(0, t) =
∂
∂xu(1, t) = 0. D. del-Castillo-Negrete [56, Section II.B] suggested using a Caputo

fractional flux to avoid singularities at the boundary.

Fig. 5 shows a numerical solution of the fractional diffusion equation with Caputo flux (6.4) on 0 ≤ x ≤ 1 with reflecting
boundary conditions, using the same numerical method and initial function as in Fig. 1. Solution curves are skewed for
0 < t < ∞, and the total mass remains equal to the initial mass M = 1 for all t > 0, since the scheme is mass-preserving.
As t increases, the solutions approach the unique steady state solution u∞(x) = 1 on 0 ≤ x ≤ 1 with unit mass, which is
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Fig. 6. Numerical solution of the fractional diffusion equation with Caputo flux (6.4) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with boundary conditions
(6.14): reflecting on the left, and absorbing on the right at time t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

very different than the unit mass steady state solution u∞(x) = (α − 1)xα−2 to the Riemann–Liouville fractional diffusion
equation (2.3) on 0 ≤ x ≤ 1 with reflecting boundary conditions. In the present case, the steady state solution is easy to
verify, by simply plugging into (6.4).

Remark 6.2. The left reflecting boundary condition for the fractional diffusion equation with Caputo flux (6.4) can also be
written in the traditional form

∂

∂x
u(0, t) = 0 for all t ≥ 0. (6.13)

To see this, rewrite the iteration equation uk+1
0 = uk

0 − βuk
0 + βuk

1 in the equivalent form

hα−1 u
k+1
n − uk

n

∆t
= C

[
uk
1 − uk

0

h

]
and let h → 0 and ∆t → 0. In view of (6.1), the condition (6.13) also implies that the Caputo fractional derivative ∂α−1

[0,x]
u(0, t) = 0. The same is not true of the Riemann–Liouville derivative, and indeed, even the steady state solution u∞(x) =

(α −1)xα−2 of the Riemann–Liouville fractional diffusion equation (2.3) with reflecting boundary conditions does not satisfy
the condition (6.13). The nonlocal right reflecting boundary condition for the fractional diffusion equation with Caputo flux
(6.4) cannot be reduced to a local first derivative condition, since it depends on the values of the solution across the entire
domain. Indeed, one can see in Fig. 5 that ∂

∂xu(1, t) ̸= 0 at the right boundary.

Next we consider the fractional diffusion equation with Caputo flux (6.4) on 0 ≤ x ≤ 1 with boundary conditions

∂α−1
[0,x]u(0, t) = 0 and u(1, t) = 0 for all t ≥ 0, (6.14)

reflecting at the left boundary x = 0 and absorbing at the right boundary x = 1. Here we simply zero out the coefficients bij
from (6.11) governing mass transport from state i to state j = n. This yields the explicit Euler scheme (3.9) with

bij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gα
j−i+1 if 0 < j < n and 0 < i ≤ j + 1,

1 if i = 1 and j = 0,
−1 if i = j = 0,
−gα−1

j if i = 0 and 0 < j < n,
0 otherwise.

(6.15)

Fig. 6 shows a numerical solution of the fractional diffusion equation with Caputo flux (6.4) on 0 ≤ x ≤ 1 with boundary
conditions (6.14), using the same numerical method and initial function as in Fig. 1. Solution curves are skewed for all t > 0,
and approach the unique steady state solution u∞(x) = 0 on 0 ≤ x ≤ 1 as t increases. In [76, Proposition 19] it is shown
that the Cauchy problem (6.4) with these boundary conditions (6.12) or (6.14) is well-posed on the Banach space L1[0, 1],
and the exact domain of the generator is computed.

Finally we consider the fractional diffusion equation with Caputo flux (6.4) on 0 ≤ x ≤ 1 with boundary conditions

u(0, t) = 0 and ∂α−1
[0,x]u(1, t) = 0 for all t ≥ 0, (6.16)
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absorbing at the left boundary x = 0 and reflecting at the right boundary x = 1. Since u(0, t) = 0 for all t > 0, this problem
is mathematically equivalent to the fractional diffusion equation (2.3) on 0 ≤ x ≤ 1 with boundary conditions (5.3). Hence
Fig. 4 also represents the solution to this fractional boundary value problem. One can also see this by setting bi0 = 0 in (6.11)
to get

bij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gα
j−i+1 if 0 < j < n and 0 < i ≤ j + 1,

−gα−1
j if i = 0 and 0 < j < n,

−gα−2
n−1 if j = n and i = 0,

−gα−1
n−i if j = n and 0 < i ≤ n,

0 otherwise.

(6.17)

Since uk
0 = 0 for all k, the first row of the iteration matrix B is immaterial, and the rest of the matrix is exactly the same as

for the corresponding case of the fractional diffusion equation (2.3).

Remark 6.3. The general steady state solution to the fractional diffusion equation with Caputo flux (6.4) is u∞(x) =

c1xα−1
+ c2. This can be verified by a calculation similar to Remark 4.2: Since Dα

[0,x]u(x) =
d
dxJ

2−α
[0,x]u

′(x), we have

Dα
[0,x]u∞(x) =

d
dx

J2−α
[0,x]c1(α − 1)xα−2

=
d
dx

[c1(α − 1)Γ (α − 1)] = 0

using (4.7). Zero boundary conditions require c2 = 0 to make u∞(0) = 0, and then also c1 = 0 to make u∞(1) = 0. For
reflecting boundary conditions, we compute

∂α−1
[0,x]u∞(x) = J2−α

[0,x]u
′

∞
(x) = c1Γ (α)

for 0 < x < 1. The right boundary condition ∂α−1
[0,x]u∞(1) = 0 requires c1 = 0, and then the left boundary condition is satisfied

for any real number c2. Take c2 = 1 to get the solution with total mass 1. If just the left boundary condition is absorbing, we
require c2 = 0, and then the reflecting boundary condition on the right requires c1 = 0 as well. If just the right boundary
condition is absorbing, then c1 + c2 = 0. Then if the left boundary is reflecting, c1 = 0, and hence c2 = 0 as well.

Remark 6.4. Cushman and Ginn [27] use the fractional derivative (6.4) (on the real line, with the lower integration limit
0 changed to −∞) to model contaminant transport in groundwater, see also [80]. For such problems, all three fractional
derivatives are equivalent, since the boundary term at x = −∞ vanishes.

Remark 6.5. In [81] we show that the backward generator of a standard spectrally negative α-stable process reflected to
stay positive is the Caputo fractional derivative (6.1). Since [79, Eq. (1.2)]

∂α
[0,x]u(x) = Dα

[0,x]u(x) − u′(0)
x1−α

Γ (2 − α)
(6.18)

for 1 < α < 2, and since u′(0) = 0 for every function in the domain of the generator [79, Remark 2.3 (a)], these two forms
are completely equivalent.

Remark 6.6. For either the Riemann–Liouville fractional diffusion equation (2.1) or the fractional diffusion equation with
Caputo flux (6.4), the fractional derivative operator with a zero boundary condition at one or both boundaries is invertible
[76, Proposition 6]. This implies that, for any initial data u0(x), the solution converges to the unique steady state solution
u∞ = 0, see Appendix for details. In the case of reflecting boundary conditions, one canwrite the solution u = (u−u∞)+u∞,
and apply a similar argument to the first term, to show that all solutions converge to steady state.

7. What can go wrong

One could also consider the Caputo fractional differential equation
∂

∂t
u(x, t) = C ∂α

[0,x]u(x, t) (7.1)

with 1 < α < 2 on the unit interval 0 ≤ x ≤ 1, using the Caputo fractional derivative (6.1). However, solutions to (7.1)
are not positivity preserving. An explicit Euler scheme to solve this problem can be developed using the Caputo Grünwald
formula

∂α
[0,x]f (x) = lim

h→0
h−α

[ j+1∑
i=0

gα
i f (x − (i − 1)h) − gα−1

j+1 f (x − jh)

− gα−2
j+1 f (x − (j − 1)h) + gα−2

j+1 f (x − jh)
] (7.2)
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Fig. 7. Numerical solution of the Caputo fractional differential equation (7.1) with α = 1.5 and C = 1 on 0 ≤ x ≤ 1 with zero boundary conditions (3.1)
at time t = 0 (solid line), t = 0.01 (dashed), t = 0.04 (dash dot), t = 0.2 (dotted). Solutions take negative values even though the initial function (7.4) is
nonnegative.

where j = j(h) = [x/h]. The proof that (7.2) holds is very similar to (6.7). This leads to the explicit Euler scheme (3.9) with

bij =

⎧⎪⎪⎨⎪⎪⎩
gα
j−i+1 if 0 < j < n and 1 < i ≤ j + 1,

−gα−1
j + gα−2

j+1 if i = 0 and 0 < j < n,
gα
j − gα−2

j+1 if i = 1 and 0 < j < n,
0 otherwise.

(7.3)

Fig. 7 shows a numerical solution of the fractional differential equation (7.1) on 0 ≤ x ≤ 1withDirichlet boundary conditions
(3.1), and initial function

u0(x) =

⎧⎨⎩ 64π3

π2 − 4

(
x −

1
4

)2
sin(4πx) for 0 < x < 0.25,

0 otherwise,
(7.4)

using the same numerical method as in Fig. 1. Since the solution takes negative values with nonnegative initial data, the
Caputo fractional differential equation (7.1) cannot provide a physically meaningful model for anomalous diffusion.

Remark 7.1. If one considers the Caputo fractional differential equation (7.1) on 0 ≤ x ≤ 1 with 1 < α < 2 and the
traditional Neumann boundary conditions

∂

∂x
u(0, t) =

∂

∂x
u(1, t) = 0 for all t ≥ 0, (7.5)

then the Caputo and Patie–Simon fractional derivatives are equal, in light of (6.18). Since (7.5) implies (6.12) by (6.1),
solutions to (7.1) with the boundary conditions (7.5) also solve the problem (6.4) with reflecting boundary conditions (6.12).
However, the domain of the fractional derivative (6.5) with the reflecting boundary conditions (6.12) is strictly larger, and
there are solutions to (6.4) with reflecting boundary conditions (6.12) that do not solve (7.1) with the boundary conditions
(7.5), e.g., note that ∂

∂xu(1, t) ̸= 0 in Fig. 5.
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Appendix

The following result implies that solutions in this paper converge to the steady state solution u∞ = 0 if at least
one boundary condition is absorbing. This follows because, in this case, the fractional derivative operator is invertible
[76, Proposition 6] and generates a strongly continuous positive contraction semigroup [76, Theorem 20].

Lemma A.1. Let (Ω, µ) be a σ -finite measure space and X = Lp(Ω), 1 ≤ p < ∞, or let Ω be a locally compact Hausdorff space
and X = C0(Ω). Suppose that A generates a strongly continuous positive contraction semigroup on X and that A−1 exists as a
bounded operator on X. Then, for all x ∈ X, we have ∥T (t)x∥ → 0 as t → ∞ exponentially fast.

Proof. Let σ (A) denote the spectrum of A and ρ(A) the resolvent set of A. Since A generates a strongly continuous contraction
semigroup, it follows from the Hille–Yosida Theorem that (0, ∞) ⊂ ρ(A). As A−1 exists as a bounded operator on X , it follows
that 0 ∈ ρ(A). Since A generates a strongly continuous positive contraction semigroup on X , it follows that the resolvent
R(λ, A) of A satisfies R(λ, A) =

∫
∞

0 e−λtT (t) dt ≥ 0 (strong Bochner integral) for λ > 0 as the positive cone is closed in X . The
resolvent is an analytic function of λ for λ ∈ ρ(A) and hence continuous. Therefore A−1

= limλ→0+R(λ, A) ≥ 0, again, since
the positive cone is closed in X .

Let s(A) denote the spectral bound of A; that is,

s(A) = sup{Re λ : λ ∈ σ (A)}

and ω0 ∈ R the growth bound of the semigroup; that is,

ω0 = inf{ω ∈ R : there isMω ≥ 1 such that ∥T (t)∥ ≤ Mωeωt , t ≥ 0}.

It follows from [82, Chapter VI, Lemma 1.9] that A−1
≥ 0 implies that s(A) < 0. Finally, by [83, Theorem 5.3.6] when

X = Lp(Ω) and [83, Theorem 5.3.8] when X = C0(Ω), it follows that ω0 = s(A) and hence ω0 < 0. Thus, there is ϵ > 0 and
Mϵ ≥ 1 such that ∥T (t)∥ ≤ Mϵe−ϵt , t ≥ 0, and the proof is complete. □
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