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[1] Gaussian setting time is the time scale at which solute plumes converge to their
asymptotic Gaussian shape. This study estimates the Gaussian setting time using a
high‐resolution hydrofacies model of a typical fluvial system, with an instantaneous
point source in the mobile phase. Monte Carlo simulations are augmented by a
time‐nonlocal transport model to forecast plume shape at late time. Analysis of plume
spatial moments indicates that convergence to Fickian transport is affected by molecular
diffusion and the thickness of low‐permeability floodplain layers. These layers can cause
non‐Gaussian tailing to persist at late time because the low‐permeability lenses are
elongated in the horizontal, so that most particles escape vertically by diffusion. A simple
empirical setting time formula is developed, which can be fitted using data from driller’s
logs that characterize the thickness of the low‐permeability lenses. The empirical
formula may be useful for predicting setting time in fluvial aquifers similar to those
considered in this study. For such aquifers, the plume will often exit the region prior to
the setting time, so the asymptotic Gaussian model will not be a useful predictor of
plume shape.

Citation: Zhang, Y., and M. M. Meerschaert (2011), Gaussian setting time for solute transport in fluvial systems, Water Resour.
Res., 47, W08601, doi:10.1029/2010WR010102.

1. Introduction

[2] Traditional theory holds that passive tracer transport
through stationary heterogeneous media should converge to
Gaussian limits after sampling all scales of heterogeneity.
The transition from non‐Fickian transport to asymptotic
limits is a fundamental issue in stochastic hydrology [Dagan
and Fiori, 2003]. Of particular interest is the Gaussian set-
ting time tS required to reach Gaussianity. This value is
important in assessing long‐term water quality, and under-
standing the transient non‐Fickian diffusion observed in
many geophysical processes [Meerschaert et al., 2008].
Prediction of tS however is complicated by the intrinsic
complexity of natural geological formations.
[3] This study develops a convenient formula for the

Gaussian setting time tS that is valid for transport in
regional‐scale fluvial aquifer‐aquitard systems, assuming a
point source in the mobile phase. Section 2 develops a
realistic Monte Carlo transport model, taking into account
the influence of medium heterogeneity (characterized by
driller’s logs) and tracer diffusivity. Since it is not practical
to run the Monte Carlo model over very long time scales,
section 3 fits the Monte Carlo results to a stochastic model.
Then section 4 computes the Gaussian setting time tS by
checking convergence of plume spatial moments up to
fourth order. Two end‐member scenarios are presented as an
example of the extensive simulations conducted to develop
and verify the setting time formula (7). This formula pro-

vides a practical method for determining the travel time
needed before tracer plumes become approximately Gauss-
ian. It also indicates those situations where Gaussian con-
vergence cannot be expected because the plume exits the
region before the setting time.

2. Monte Carlo Simulations

[4] Monte Carlo simulations conducted by Zhang et al.
[2007] and LaBolle and Fogg [2001] showed that passive
tracer transport in a fine‐material‐dominated fluvial system,
such as the one underlying the Lawrence Livermore National
Laboratory site, exhibits transient non‐Fickian behavior. The
simulated late time tail of breakthrough curve (BTC) trans-
forms from power law to exponential because of the finite
thickness of diffusion‐limited clayeymaterial (i.e., floodplain
deposits). In this section, we extend the above two studies by
also considering coarse‐material‐dominated systems, and
evaluating the influence of molecular diffusion on the setting
time, as suggested by Fiori et al. [2003].
[5] Here we introduce the Monte Carlo approach briefly.

Details are given by LaBolle and Fogg [2001]. A Markov
Chain indicator model [Carle and Fogg, 1996] generates
high‐resolution realizations of hydrofacies architecture
(given driller’s logs; see Figure 1a). Then steady state dis-
charge vectors are calculated for these hydrofacies models,
and finally, solute transport is simulated using the code
RWHet [LaBolle, 2006]. Model parameters, boundary con-
ditions, and tracer injection mode are the same as those used
by Zhang et al. [2007]. In particular, the hydrodynamic
dispersion coefficient is the sum of mechanical dispersion
(with an isotropic dispersivity 0.01 m, as suggested by
LaBolle and Fogg [2001]) and molecular diffusion (D?). An
instantaneous point source was used.
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[6] In a typical fluvial system, low‐permeability flood-
plain deposits form the relatively immobile layers, while
highly permeable nonfloodplain deposits compose the
interconnected mobile phase [LaBolle and Fogg, 2001]. In
the following, we term the fine‐material‐dominated system
“Scenario‐Fine” (Figure 1c), and the coarse‐grain system
“Scenario‐Coarse” (Figure 1d). Each scenario produced 100
realizations, whose average provides the ensemble plume
BTCs shown in Figures 1e and 1f.
[7] Monte Carlo simulations of BTCs show that both the

low‐permeability deposits and the tracer diffusivity affect the
convergence to Fickian transport by controlling the residence
time of solute particles. Firstly, the thickness distribution of
flood plain layers (denoted asP(Z)) affects residence times for
solute particles. A combination of broader residence times
(due to a wider distribution of floodplain layers with different
thickness) produces a heavier trailing edge, and a longer
setting time tS. For example, the BTC tail for Scenario‐Fine
(Figure 1e) is obviously heavier than that for Scenario‐Coarse
(Figure 1f) with a narrower P(Z) (Figure 1b). Secondly, the
molecular diffusion of the tracer governs the residence
time for a given floodplain layer. An increase of D* can
decrease residence time and accelerate the transition from
non‐Fickian to Fickian diffusion, resulting in a faster set-
ting time (Figures 1e and 1f). The dominant effect of
molecular diffusion on late time tracer dynamics is con-

sistent with the traditional multirate mass transfer (MRMT)
process: the mobile part of the plume washes away first,
and the late time tail is composed of immobile particles
leaking out into the mobile zone.

3. Stochastic Model

[8] Since it is not practical to run the Monte Carlo
model from section 2 over very long time scales, here we
develop a stochastic model to extrapolate tracer transport
over the time scale needed to assess Gaussian convergence.
The tempered stable Lévy motion (TSLM) model devel-
oped by Meerschaert et al. [2008] describes a two‐phase
transient anomalous dispersion process that is asymptoti-
cally Gaussian:
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where CM and CT [ML−3] denote the dissolved solute con-
centrations in the mobile and total (mobile plus immobile)
phases, respectively, g (dimensionless) is the order of the time

Figure 1. (a) Driller’s logs at the Lawrence Livermore National Laboratory site. (b) Probability density
function for thickness of floodplain layers, denoted as P(Z). Three‐dimensional view of the hydrofacies
model for (c) Scenario‐Fine and (d) Scenario‐Coarse. Breakthrough curve at L = 400 m for (e) Scenario‐
Fine and (f) Scenario‐Coarse. The long‐dashed line in Figures 1e and 1f denotes the model simulation,
and the vertical dashed lines indicate the diffusion time scale t = 1/l.
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fractional derivative, b [T g−1] is the fractional capacity
coefficient, l [T −1] is the tempering strength, V [LT −1]
denotes velocity, D [L2 T−1] dispersion strength, CM,0 the
initial concentration, g(t) = −

R
t
∞e−ltt−g−1/G(−g)dt [T −g] the

memory function (G is the gamma function), and ∂g,l/∂t
denotes the tempered fractional derivative. This model is a
special case of theMRMT [cf.Willmann et al., 2008], with an
exponentially tempered power law memory function that
represents the combination of immobile zones with different
thickness. It is conceptually similar to a CTRW with trun-
cated or tempered power law waiting times [Dentz et al.,
2004; Bijeljic and Blunt, 2006] but has the advantage that
the underlying differential equations can be specified. The
use of tempered stable retention times in hydrology was
originally suggested by Cvetkovic and Haggerty [2002]. The
power law index g indicates the range of thickness, with a
smaller g indicating awider range. The parameter l, related to
the classical diffusion characteristic time, accounts for the
influence of molecular diffusion and floodplain thickness on
tracer dynamics:

� ¼ D*= Z*ð Þ2 ð2Þ

where Z* [L] represents the effective thickness of floodplain
layers. Zhang et al. [2007] found that residence time in a
thickness‐averaged floodplain layer is a good approximation
to the transition time of BTC slopes. Hence we take Z* simply
as the average thickness.
[9] Formula (2) was used to estimate l on the basis of the

BTCs obtained from Monte Carlo simulations in section 2.
Both l and the velocity V can be predicted (V is estimated as
the arithmetic mean). The predicted l using (2) is 1.687 ×
10−2 yr−1 for Scenario‐Coarse and 2.450 × 10−4 yr−1 for
Scenario‐Fine, and V is 12.15 and 14.64 m/yr for Scenario‐
Coarse and Scenario‐Fine, respectively. The remaining param-
eters are obtained by fitting the BTC (Figures 1e and 1f).
The best fit parameters are g = 0.69, b = 0.98 yr−0.31, and
D = 45 m2/yr for Scenario‐Coarse, and g = 0.59, b =
0.28 yr−0.41, and D = 140 m2/yr for Scenario‐Fine. The
general match between Monte Carlo and TSLM simulations
shows the applicability of TSLM and (2). We also used
TSLM to predict BTCs at various locations, and tracer
snapshots at various times, which generally match the Monte
Carlos simulations (not shown), to further validate the sto-
chastic model.
[10] The truncation parameter l controls the transition

from power law distribution to exponential for the late time
BTC [Meerschaert et al., 2008]. When time t � 1/l, non‐
Fickian transport converges gradually to Fickian, leading to
the well‐known estimate [Attinger et al., 1999] for Gaussian
setting time

tS � 1=� ¼ Z*ð Þ2=D*: ð3Þ

This formula will be tested and refined in section 4.

4. Setting Time via Plume Spatial Moments

[11] To estimate Gaussian setting time tS and refine (3), we
explore the temporal evolution of plume spatial moments.
First we analytically compute the asymptotic moments of the
TSLM model (1), and then we apply the results of section 3

to determine the travel time tS required for the simulated
plume moments to approach their asymptotic values.

4.1. Asymptotic Moments for Gaussian Limits

[12] Asymptotic moments are first derived for the total
phase, model (1b). The nth‐order moment vT

n(s) in Laplace
space t ↦ s are vT

n(s) = indnCT (k, s)/dk
n∣k = 0, where CT (k, s)

is the solution of (1b) in Fourier (x ↦ k) and Laplace space.
The late time approximation of vT

n(t) is obtained by the
inverting the Laplace transform of vT

n (s → 0). The resulting
late time asymptotic moments up to fourth order, including
the mass (MT), mean (ET), variance (sT

2), skewness (ST), and
kurtosis (�T), take the form:

MT ¼ 1; ð4aÞ

ET � Vt

1þ �����1
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�T � �3b3V 4 þ 42b2V 2D� 24bD2

a 2D� bV 2ð Þ2 t�1 ! 0; ð4eÞ

where “T” denotes the total phase, a = 1/(1 + bglg−1), and
b = a2b(g − 1)glg−2.
[13] The late time spatial moments in the mobile phase

(1a) are the same as (4), except for the decline of mobile
mass

MM � 1= 1þ �����1
� �

: ð5Þ

[14] The asymptotes (4) show that both mean and vari-
ance increase linearly with time. Skewness and kurtosis tend
to zero, but �T falls to zero faster than ST. The same pattern
was observed by Fiori et al. [2003] for a multi‐indictor
model of permeability structure.
[15] The setting time tS can be estimated given the

asymptotic skewness (4d). Using ∣S∣ ≤ 0.04 as the criterion
for skewness to approach zero, we obtain the setting time

tS ¼ a1=2 2D� bV 2ð Þ3=2
56:25b2V 3 � 150bVD

" #�2

: ð6Þ

The threshold ∣S∣ ≤ 0.04 is similar to the one used by Fiori
et al. [2003], and the resulting values of tS give reasonable
results for every scenario simulated, two of which are
included in this paper. This setting time formula (6) can be
calculated only after model parameters are obtained. This
requires a Monte Carlo simulation, followed by a stochastic
model fitting. Hence, the formula (6) is computable but not
computationally efficient. In section 4.2, we develop a
simplified formula for tS by numerically analyzing the full
evolution of plume moments.
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4.2. Numerical Evaluation of Spatial Moments

[16] The complete evolution of spatial moments is solved
numerically by a Lagrangian approach [Meerschaert et al.,
2008]. Monte Carlo simulations provide “real“ moment
data (shown by symbols in Figure 2) at early time, before
particles exit the downstream boundary of the domain (see
Figures 1c and 1d) used in the Monte Carlo simulation.
Plume moments are ensemble averaged, to be consistent
with the stochastic model. Monte Carlo simulations for
Scenario‐Coarse already indicate that the plume is becom-
ing asymptotic: the mobile mass stabilizes, while the mean
and variance become linear with time. The predicted mo-
ments using model (1) and parameters obtained in section 3
generally match the Monte Carlo simulations, except for
very early time (t < 3 years; see Figure 2f) when solute
particles have encountered only a small subset of the aquifer
heterogeneity.
[17] Each spatial moment converges to its asymptotic limit

at a different speed. Mobile mass and mean displacement
converge relatively early (t ≈ 1/l, Figures 2a and 2b). The
variance reaches its asymptotic limit around time t ≈ 10/l
(Figure 2c). The kurtosis approaches zero at a later time

10/l ≤ t ≤ 100/l (Figures 2d–2f), and the skewness
approaches zero much later (t ≈ 1000/l, Figures 2g–2i).
Therefore, only after a fairly long time

tS � 103=� � 103 Z*ð Þ2=D*; ð7Þ

will all the moments up to fourth order exhibit Gaussian
statistics. Equation (7) represents a useful and practical
estimate for Gaussian setting time based on matching
moments, which can be computed from driller’s logs.
[18] Formula (7) refines (3), showing that the setting time

tS required to match the first four moments exceeds the dif-
fusion time scale 1/l by three orders of magnitude. This long
empirical setting time is caused by the persistence of non‐
Gaussian plume shape because of the “sequestration” effect
[LaBolle and Fogg, 2001] of solute in low‐permeability
regions. The diffusion time scale represents the average res-
idence time in the thickest immobile phase. By this time, the
particles leaving and reentering the mobile phase approach
equilibrium, resulting in a stable mass partition for particles in
different phases, and Fickian scaling of the plume mean.
However, the overall plume shape remains non‐Gaussian for
an extended period because of the sequestration effect.

Figure 2. Evolution of spatial moments for Scenario‐Fine (red) and Scenario‐Coarse (grey). The sym-
bols denote the Monte Carlo simulations, and the lines denote the prediction using the tempered stable
Lévy motion (TSLM) model (1). The dashed lines in Figures 2a, 2b, and 2c denote the asymptotic mo-
ments (5), (4b), and (4c), respectively. The vertical dashed lines denote the time for each moment to reach
Gaussian statistics.
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[19] Formula (7) provides a reasonable approximation to
(6) for a number of simulated scenarios (Figure 3). Although
the two formulae use different parameters, some parameters
used in (6) can be related to the parameters in (7). For
example, Zhang et al. [2007] found that the time index g in
(6) depends on thickness of floodplain layers. The capacity
coefficient b relates to the mass partition between mobile
and immobile phases (see (5)), which depends on P(Z) and
D*. The velocity V, which is present in (6) but not in (7),
disappears in the useful approximation tS ≈ (−b/a)(56.252)
obtained from (6) using the approximation 0 ≈ D/V2 � ∣b∣.

5. Discussion

[20] This paper has developed a useful formula (7) to
predict Gaussian setting time tS for transport in regional‐
scale fluvial depositional systems. The setting time can be
predicted on the basis of driller’s logs. Hence it can provide
a useful guide to model selection. In particular, if the travel
time required for the plume to settle into an asymptotic
Gaussian shape exceeds the time for the plume to exit the
region, then a more sophisticated preasymptotic model is
indicated. In the regional‐scale fluvial systems simulated in
this study, the setting time tS depends on the thickness of
floodplain layers, and the rate of molecular diffusion. Thus,
vertical borehole data can provide critical information for
setting time because the relatively low permeability deposits
tend to elongate horizontally, forcing the trapped particles to
escape vertically by diffusion. The setting time formula (7)
was developed on the basis of Monte Carlo simulations
and extended in time using a well‐tested analytic model
that captures the preasymptotic behavior. The formula (7)
indicates the time required for plume spatial moments (up
to order 4) to approach their asymptotic values. By this time,
the mobilemass, mean, variance, skewness, and kurtosis of
the plume match the Gaussian ergodic limit.
[21] Previous research, using a matrix diffusion approach

[e.g., Harvey and Gorelick, 1995; Haggerty and Gorelick,
1995; Carrera et al., 1998; Haggerty et al., 2000], sug-
gests that the characteristic time scale for the transport
behavior to become Fickian is the diffusion scale t = 1/l
[see also Attinger et al., 1999; Kitanidis, 1988; Taylor,
1954]. The matrix diffusion model is characterized by a 1/2
slope for the memory function and 3/2 slope for the BTC
(point source), consistent with the parameter g = 0.53 fitted
for Scenario‐Fine, and the BTC slope in Figure 1e for D? =
5.2 × 10–5 m2/d. It would be interesting to repeat the anal-

ysis of section 3 using a matrix diffusion model, which
would eliminate one fitting parameter.
[22] The Gaussian setting time tS is found to be generally

much longer than the diffusion scale t = 1/l. This reflects
the fact that plume skewness and kurtosis converge much
more slowly than the variance. If the modeler wishes only to
match the plume variance, the diffusion time scale may be
adequate. On the other hand, even convergence of four
moments is not sufficient to prove a Gaussian limit. In this
sense, formula (7) may be considered optimistic. For a
highly heterogeneous aquifer (e.g., Scenario‐Fine) with
large immobile zones (clayey lenses), the Gaussian setting
time tS is much longer than the travel time required to exit
the region. The plume moves on to a different region and
remains preasymptotic.
[23] The two scenarios reported here represent end‐

members of fluvial systems. We also checked the approxi-
mation (7) by building many additional hydrofacies models
with different P(Z). The predicted setting time (7) generally
captured the “real” transition time to Gaussian diffusion and
remained close to (6); see Figure 3 for a representative
sample. The formula (7) was found accurate for lognormal K
distributions, with long‐range‐dependent (fractal) correla-
tions. On the other hand, our results are quite sensitive to the
injection mode. A widely distributed source in the mobile
zone was found to accelerate convergence to Gaussian shape.
Distributing solute uniformly throughout a wide band,
including mobile and immobile zones, delays the converge to
an asymptotic Gaussian limit. We attribute this to particles
that start out deeply embedded in an immobile zone. We
conclude that the empirical setting time formula (7) may be
useful to predict setting time in fluvial aquifers similar to
those considered in this study, with a point source.
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