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a b s t r a c t

Tempered fractional Brownianmotion (TFBM)modifies the power lawkernel in themoving
average representation of a fractional Brownianmotion, adding an exponential tempering.
Tempered fractional Gaussian noise (TFGN), the increments of TFBM, forma stationary time
series that can exhibit semi-long range dependence. This paper develops the basic theory
of TFBM, including moving average and spectral representations, sample path properties,
and an application to modeling wind speed.

© 2013 Published by Elsevier B.V.

1. Introduction

This paper defines a new stochastic process, which we call tempered fractional Brownian motion (TFBM), defined by
exponentially tempering the power law kernel in the moving average representation of a fractional Brownian motion
(FBM). The stationary increments of TFBM are called tempered fractional Gaussian noise (TFGN). When FGN is long range
dependent, the corresponding TFGN exhibits semi-long range dependence: Its autocovariance function closely resembles
that of FGN on an intermediate scale, but eventually falls off more rapidly. The spectral density of TFGN resembles a negative
power law for low frequencies, but remains bounded at very low frequencies.

2. Moving average representation

Let {B(t)}t∈R be a real-valued Brownian motion on the real line, a process with stationary independent increments
such that B(t) has a Gaussian distribution with mean zero and variance σ 2

|t| for all t ∈ R, for some σ > 0. Define
an independently scattered Gaussian random measure B(dx) with control measure m(dx) = σ 2dx by setting B[a, b] =

B(b)−B(a) for any real numbers a < b, and then extending to all Borel sets. Then the stochastic integrals I(f ) :=

f (x)B(dx)

are defined for all functions f : R → R such that

f (x)2dx < ∞, as Gaussian random variables with mean zero and

covariance E[I(f )I(g)] = σ 2

f (x)g(x)dx, see for example Chapter 3 in Samorodnitsky and Taqqu (1994).

Definition 2.1. Given an independently scattered Gaussian randommeasure B(dx) on R with control measure σ 2dx, for any
α < 1

2 and λ ≥ 0, the stochastic integral
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Bα,λ(t) :=


+∞

−∞


e−λ(t−x)+(t − x)−α

+
− e−λ(−x)+(−x)−α

+


B(dx) (2.1)

where (x)+ = xI(x > 0), and 00
= 0, will be called a tempered fractional Brownian motion (TFBM).

It is easy to check that the function

gα,λ,t(x) := e−λ(t−x)+(t − x)−α
+

− e−λ(−x)+(−x)−α
+

(2.2)

is square integrable over the entire real line for any α < 1
2 , so that TFBM is well-defined. When −1/2 < α < 1/2, FBM is a

special case of TFBM with λ = 0. Note also that

gα,λ,ct(cx) = c−αgα,cλ,t(x) (2.3)

for all t, x ∈ R and all c > 0. The next results shows that TFBM has a nice scaling property, involving both the time scale
and the tempering. Here the symbol , indicates equality of finite dimensional distributions.

Proposition 2.2. TFBM (2.1) is a Gaussian stochastic process with stationary increments, such that
Bα,λ(ct)


t∈R ,


cHBα,cλ(t)


t∈R (2.4)

for any scale factor c > 0, where the Hurst index H = 1/2 − α.

Proof. Since B(dx) has control measure m(dx) = σ 2dx, the random measure B(c dx) has control measure c1/2σ 2dx. Given
t1 < t2 < · · · < tn, a change of variable x = cx′ then yields

Bα,λ(cti) : i = 1, . . . , n


=


gα,λ,cti(x)B(dx) : i = 1, . . . , n


d
=


c−αgα,cλ,ti(x

′)c1/2B(dx′) : i = 1, . . . , n


so that (2.4) holds with H = 1/2− α. For any s, t ∈ R, the integrand (2.2) satisfies gα,λ,s+t(s+ x) − gα,λ,s(s+ x) = gα,λ,t(x),
and hence a change of variable x = s + x′ in the moving average representation yields

Bα,λ(s + ti) − Bα,λ(s) : i = 1, . . . , n


,


gα,λ,ti(x

′)B(dx′) : i = 1, . . . , n


which shows that TFBM has stationary increments. �

Proposition 2.3. TFBM (2.1) has the covariance function

Cov

Bα,λ(t), Bα,λ(s)


=

σ 2

2


C2
t |t|2H + C2

s |s|2H − C2
t−s |t − s|2H


(2.5)

for any s, t ∈ R, where H = 1/2 − α. Here

C2
t =

2Γ (2H)

(2λ|t|)2H
−

2Γ

H +

1
2


√

π

1
(2λ|t|)H

KH(λ|t|), (2.6)

for t ≠ 0, where Kν(z) is the modified Bessel function of the second kind, and C2
0 = 0.

Proof. Use the moving average representation (2.1) with σ = 1 to define

C2
t := E[Bα,λ|t|(1)2] =


+∞

−∞


e−λt(1−x)+(1 − x)−α

+
− e−λt(−x)+(−x)−α

+

2
dx

=


+∞

−∞

e−2λt(1−x)+(1 − x)−2α
+

dx +


+∞

−∞

e−2λt(−x)+(−x)−2α
+

dx

− 2


+∞

−∞

e−λt(1−x)+(1 − x)−α
+

e−λt(−x)+(−x)−α
+

dx. (2.7)

Apply the definition of the gamma function, along with a standard integral formula from p. 344 in Gradshteyn and Ryzhik
(2000), to see that (2.6) holds. Since TFBM has stationary increments, it follows from (2.4) that E[Bα,λ(t)2] = |t|2HC2

t for all
t real. Recall the elementary formula ab =

1
2 [a

2
+ b2 − (a − b)2], set a = Bα,λ(t) and b = Bα,λ(s), take expectations, and

use the stationary increments property again, to see that (2.5) holds. �

Remark 2.4. The integral representation (2.1) is causal, i.e., Bα,λ(t) depends only on the values of B(s) for s ≤ t . For
applications to spatial statistics, consider
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Bp,q
α,λ(t) = p


+∞

−∞


e−λ(t−x)+(t − x)−α

+
− e−λ(−x)+(−x)−α

+


B(dx)

+ q


+∞

−∞


e−λ(x−t)+(x − t)−α

+
− e−λ(x)+(x)−α

+


B(dx) (2.8)

for p, q ≥ 0. It is not hard to check, bymimicking the proof of Proposition 2.2, that this process also has stationary increments,
and satisfies the scaling property

Bp,q
α,λ(ct)


t∈R ,


cHBp,q

α,cλ(t)

t∈R (2.9)

for any scale factor c > 0, where the Hurst index H = 1/2 − α. When p = q > 1, (2.8) is a well-balanced TFBM.

3. Harmonizable representation

Let B̂1 and B̂2 be independent Gaussian random measures with B̂1(A) = B̂1(−A), B̂2(A) = −B̂2(−A) and E[(B̂i(A))2] =

m(A)/2, wherem(dx) = σ 2dx, and define the complex-valued Gaussian randommeasure B̂ = B̂1 + iB̂2. If f (x) is a complex-
valued function of x real such that its Fourier transform f̂ (k) := (2π)−1/2


e−ikxf (x) dx exists and


|f̂ (k)|2dk < ∞, we

define the stochastic integral Î(f̂ ) =

f̂ (k)B̂(dk) :=


f̂1(k)B̂1(dk) −


f̂2(k)B̂2(dk), where f̂ = f̂1 + if̂2 is separated

into real and imaginary parts. Then Î(f̂ ) is a Gaussian randomvariablewithmean zero, such thatE[Î(f̂ )Î(ĝ)] =

f̂ (k)ĝ(k) dk

for all such functions, and the Parseval identity

f (x)g(x) dx =


f̂ (k)ĝ(k) dk implies that


f (x)B(dx),


g(x)B(dx)

 d
=

f̂ (k)B̂(dk),

ĝ(k)B̂(dk)


, see Proposition 7.2.7 in Samorodnitsky and Taqqu (1994).

Proposition 3.1. The TFBM (2.1) has the harmonizable representation

Bα,λ(t) =
Γ (1 − α)

√
2π


+∞

−∞

e−itk
− 1

(λ − ik)1−α
B̂(dk). (3.1)

Proof. To show that the stochastic integral (3.1) exists, note that
+∞

−∞

 e−itx
− 1

(λ − ix)1−α

2 dx ≤


+∞

−∞

4
(λ2 + x2)1−α

dx < ∞,

since the last integrand is bounded and O(x2α−2) as |x| → ∞, with 2α − 2 < −1. Observe that the function gα,λ,t , given by
(2.2), has the Fourier transform

gα,λ,t(k) =
1

√
2π


+∞

−∞

e−ikx 
e−λ(t−x)+(t − x)−α

+
− e−λ(−x)+(−x)−α

+


dx

=
1

√
2π

 t

−∞

e−ikxe−λ(t−x)(t − x)−αdx −

 0

−∞

e−ikxeλx(−x)−αdx


=
1

√
2π


e−ikt


+∞

0
e−u(λ−ik)u−αdu −


+∞

0
e−u(λ−ik)u−αdu


=

Γ (1 − α)
√
2π

e−ikt
− 1

(λ − ik)1−α

using the well-known formula for the characteristic function of the gamma density. Then (2.1) along with Proposition 7.2.7
in Samorodnitsky and Taqqu (1994) implies

Bα,λ(t) =


+∞

−∞

gα,λ,t(x)B(dx)

,


+∞

−∞

gα,λ,t(k)B̂(dk) =
Γ (1 − α)

√
2π


+∞

−∞

e−ikt
− 1

(λ − ik)1−α
B̂(dk)

which is equivalent to (3.1). �

Remark 3.2. The spectral representation (3.1) reduces to that of causal FBM in the special case λ = 0 and−1/2 < α < 1/2,
see for example Eq. (7.2.17) in Samorodnitsky and Taqqu (1994). The general TFBM (2.8) has spectral representation

Bp,q
α,λ(t) =

Γ (1 − α)
√
2π


R

e−itk
− 1

ik


p ik

(λ − ik)1−α
−

q ik
(λ + ik)1−α

B(dk). (3.2)
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lag

Fig. 1. The autocovariance function (4.4) for TFGN with σ = 1, λ = 0.001 and H = 0.7 (solid line) and for the corresponding FGN with σ = 1, λ = 0 and
H = 0.7 (dotted line).

4. Tempered fractional Gaussian noise

Given a TFBM (2.1), we define tempered fractional Gaussian noise (TFGN)

Xj = Bα,λ(j + 1) − Bα,λ(j) for integers − ∞ < j < ∞. (4.1)

It follows easily from (2.1) that TFGN has the moving average representation

Xj =


+∞

−∞


e−λ(j+1−x)+(j + 1 − x)−α

+
− e−λ(j−x)+(j − x)−α

+


B(dx). (4.2)

Using (3.1), it also follows that the harmonizable representation of TFGN is

Xj =
Γ (1 − α)

√
2π


+∞

−∞

e−ikj e−ik
− 1

(λ − ik)1−α
B̂(dk). (4.3)

It follows from (2.5) that TFGN is a stationary Gaussian time series with mean zero and covariance function

r(j) := E[X0Xj] =
σ 2

2


|j + 1|2H C2

j+1 − 2 |j|2H C2
j + |j − 1|2H C2

j−1


, (4.4)

where H = 1/2 − α, and Cj is given by (2.6).

Remark 4.1. Using the well-known fact that Kν(x) ∼
√

π(2x)−1/2e−x as x → ∞, it follows easily from (2.6) that

t2HC2
t → 2Γ (2H)(2λ)−2H as t → ∞, (4.5)

and hence Cj ∼ Cj+1 as j → ∞. Then (4.4) along with a Taylor series expansion shows that

r(j) ∼ σ 2C2
j H(2H − 1)|j|2H−2 as j → ∞,

compare Proposition 7.2.10 in Samorodnitsky and Taqqu (1994). For λ > 0 sufficiently small, the power law terms in (2.7)
dominate, C2

j remains almost constant, and r(j) falls off like |j|2H−2 for moderate values of j > 0. For larger j, the exponential
terms in (2.7) dominate, and (4.5) implies that r(j) ∼ j−22H(2H − 1)Γ (2H)(2λ)−2H as j → ∞. Hence TFGN is short range
dependent, but its covariance function is arbitrarily close to that of long range dependent FGN for small values of λ, and
moderate lags, when −1/2 < α < 1/2. We call this property semi-long range dependence, since it is analogous to the semi-
heavy tails of Barndorff-Nielsen (1998). Fig. 1 shows a log–log plot of r(j) in the case H = 0.7 and λ = 0.001, where FGN
exhibits long range dependence.

Proposition 4.2. TFGN (4.1) has the spectral density

h(k) =
Γ (1 − α)2

2π

e−ik
− 1

2 +∞
ℓ=−∞

σ 2

[λ2 + (k + 2πℓ)2]H+1/2
. (4.6)

Proof. Recall that the spectral density

h(k) =
1
2π

+∞
j=−∞

eikjr(j) and r(j) =

 π

−π

e−ikjh(k)dk. (4.7)
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Define C =
√
2π/Γ (1 − α) and apply (4.3) to write

r(j) =
σ 2

C2


+∞

−∞

e−ikj

e−ik
− 1

2
(λ2 + k2)(1−α)

dk

=
1
C2


+π

−π

e−ikj
e−ik

− 1
2 +∞

ℓ=−∞

σ 2

[λ2 + (k + 2πℓ)2](1−α)
dk (4.8)

and then it follows from (4.7) that the spectral density of TFGN is given by (4.6). �

Remark 4.3. Extending definition (4.1) to all j real, we obtain the continuous parameter TFGN

Xt = Bα,λ(t + 1) − Bα,λ(t).

The harmonizable representation of this process is given by (4.3)with j replaced by t , and the proof of Proposition 4.2 implies
that Xt has spectral density

h(ω) =
Γ (1 − α)2

2π

e−iω
− 1

2 σ 2

[λ2 + ω2]H+1/2
(4.9)

for all real ω. The fact that e−iω
− 1 ∼ −iω as ω → 0 yields the low frequency approximation

h(ω) ≈
σ 2Γ (1 − α)2

2π
ω2

(λ2 + ω2)H+1/2
,

see Section 6 for an application to wind speed data.

5. Sample path properties

We say that the sample paths of a stochastic process X(t) satisfy a uniform Hölder condition of order β on the compact
set K ⊂ R if there exists a positive random variable A such that

|X(x) − X(y)| ≤ A|x − y|β

almost surely for all x, y ∈ K .We say that the process hasHölder critical exponent γ ∈ (0, 1) if the process satisfies a uniform
Hölder condition of any order β ∈ (0, γ ) on any compact set K ⊂ R, and fails to satisfy this condition for β ∈ (γ , 1).

Theorem 5.1. The sample paths of the TFBM (2.1) have Hölder critical exponent H = 1/2 − α for any α ∈ (−1/2, 1/2) and
any λ ≥ 0.

Proof. Since Bα,λ(0) = 0, it follows from Proposition 4 in Bonami and Estrade (2003) that if

γ = sup

β > 0 : E


Bα,λ(t)2


= o


|t|2β


as |t| → 0


, (5.1)

then the TFBM Bα,λ(t) satisfies a uniform Hölder condition of order β on any compact set for any β ∈ (0, γ ), and moreover,
if we also have

γ = inf

β > 0 : |t|2β = o


E


Bα,λ(t)2


as |t| → 0,


, (5.2)

then this TFBM has Hölder critical exponent γ . Use the harmonizable representation (3.1) to write

E

Bα,λ(t)2


=

1
C2


+∞

−∞

e−itk
− 1

(λ − ik)1−α


e−itk − 1

(λ − ik)1−α


dk

=
2
C2


+∞

−∞

[1 − cos(tk)] (λ2
+ k2)α−1dk

where C =
√
2π/Γ (1 − α), and apply the Tauberian theorem for Fourier transforms, Theorem 1 in Pitman (1968), to see

that E

Bα,λ(t)2


∼ H(1/t) as t → 0, where

H(x) =
2
C2


|k|>x

(λ2
+ k2)α−1dk.
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Fig. 2. Left panel: Sample paths of TFBM (thick black line) with λ = 0.03 and H = 0.3, and FBM (thin black line) with H = 0.3. Both graphs use the same
noise realization B(t). The right panel shows the same plots for λ = 0.01 and H = 0.7.

Since λ2
+k2 ∼ k2 as k → ∞, for any ε > 0, there exists someM > 0 such that (1−ε)k2α−2 < (λ2

+k2)α−1 < (1+ε)k2α−2

for all k > M , and hence we have

4(1 − ε)

(1 − 2α)C2
x2α−1 < H(x) <

4(1 + ε)

(1 − 2α)C2
x2α−1

for all x > M . Substitute t = 1/x to see that both (5.1) and (5.2) holdwith γ = 1−2α = 2H , which completes the proof. �

Remark 5.2. When α < −1/2, TFBM has continuously differentiable sample paths. To see this, write Bα,λ(t) = Zt − Z0
where the stationary Gaussian stochastic process

Zt :=


+∞

−∞

e−λ(t−x)+(t − x)−α
+

B(dx)

belongs to the Matérn class. Hence its sample paths are p times continuously differentiable for any H > p, see for example
Handcock and Stein (1993, p. 406).

Remark 5.3. The harmonizable representation

X(t) =


+∞

−∞


e−itk

− 1

f̂ (k)B̂(dk)

defines a mean zero Gaussian processes with stationary increments for any Fourier filter f̂ (k) such that

[1 − cos(tk)]

|f̂ (k)|2dk < ∞. If |f̂ (k)|2 is regularly varying at infinity with index 2α − 2 for some −1/2 < α < 1/2, the Karamata
Theorem (e.g., see Lemma 5.3.8 (d) in Meerschaert and Scheffler, 2001) implies that H(x) varies regularly at infinity with
index 2α − 1, and then the proof of Theorem 5.1 extends to show that X(t) has Hölder critical exponent 1 − 2α. Several
examples of such processes are given in Bonami and Estrade (2003).

The sample paths of TFBM closely resemble that of FBM for small values of the tempering parameter λ > 0. The left
panel in Fig. 2 compares a typical sample path of both processes, simulated using the same white noise B(dx), in a case
where FBM is negative dependent. The right panel shows the corresponding sample paths in a case where FBM is long
range dependent. These simulations use a discretized version of the moving average representation (2.1). It would also be
interesting to develop a simulation method based on the harmonizable representation (3.1).

6. Discussion

Wind speed data are important for electrical power generation and structural engineering. The most popular model for
wind speed near the earth’s surface, due to Davenport (1961), see also Li and Kareem (1990), can be written in the form
st = µ + Xt where µ = E[st ] is the average wind speed, and Xt has normalized spectral density

4800DV10
x2

(1 + x2)
4
3

(6.1)

where V10 is the mean velocity (m/s) at an altitude of 10 m, D is the corresponding drag coefficient, and x = 1200ω/V10. In
view of Remark 4.3, it is not hard to check that (6.1) corresponds to the spectral density of a continuous parameter TFGN
with λ = V10/1200 and H = 5/6. Hence TFGN can provide a useful stochastic process model for wind speed data. Fig. 3
compares the spectral density of TFGN and FGN in the case where FGN is long range dependent. The spectral density of FGN
blows up at the origin like a power law. The spectral density of TFGN follows the same power law at moderate frequencies,
but remains bounded at very low frequencies, a behavior typically seen in wind speed data. See for example in Davenport
(1961), Norton (1981), Jang and Jyh-Shinn (1999), and Pérez Beaupuits et al. (2004).
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Fig. 3. The spectral density (4.9) for TFGN with σ = 1, λ = 0.06 and H = 0.7 (solid line) and FGN with σ = 1, λ = 0 and H = 0.7 (dotted line).
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