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Abstract

Tempered fractional Brownian motion is obtained when the power law kernel in the moving average
representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper
develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we
develop some basic results on tempered fractional calculus.
c⃝ 2014 Published by Elsevier B.V.
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1. Introduction

This paper develops the theory of stochastic integration for tempered fractional Brownian
motion (TFBM). Our approach follows the seminal work of Pipiras and Taqqu [34] for fractional
Brownian motion (FBM). An FBM is the fractional derivative (or integral) of a Brownian motion,
in a sense made precise by [34]. A fractional derivative is a (distributional) convolution with a
power law [29,32,37]. Recently, some authors have proposed a tempered fractional derivative
[2,6] that multiplies the power law kernel by an exponential tempering factor. Tempering
produces a more tractable mathematical object, and can be made arbitrarily light, so that the
resulting operator approximates the fractional derivative to any desired degree of accuracy over
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a finite interval. Based on this work, the authors of this paper have recently proposed a tempered
fractional Brownian motion (TFBM), see [28] for basic definitions and properties.

Kolmogorov [22] first defined FBM using the harmonizable representation, as a model for
turbulence in the inertial range (moderate frequencies). Mandelbrot and Van Ness [26] later
developed the moving average representation of FBM. Since then, FBM has found many diverse
applications in almost every field of science and engineering [1,12,35]. Davenport [10] modified
the power spectrum of FBM to obtain a model for wind speed, which is now widely used
[24,31,33]. The authors showed in [28] that TFBM has the Davenport spectrum, and hence
TFBM offers a useful extension of the Kolmogorov model for turbulence, to include low
frequencies.

The structure of the paper is as follows. In Section 2 we prove some basic results on tempered
fractional calculus, which will be needed in the sequel. In Section 3 we apply the methods
of Section 2 to construct a suitable theory of stochastic integration for tempered fractional
Brownian motion. Finally, in Section 4 we discuss model extensions, related results, and some
open questions.

2. Tempered fractional calculus

In this section, we define tempered fractional integrals and derivatives, and establish their
essential properties. These results will form the foundation of the stochastic integration theory
developed in Section 3. We begin with the definition of a tempered fractional integral.

Definition 2.1. For any f ∈ L p(R) (where 1 ≤ p < ∞), the positive and negative tempered
fractional integrals are defined by

Iα,λ
+ f (t) =

1
Γ (α)


+∞

−∞

f (u)(t − u)α−1
+ e−λ(t−u)+du (2.1)

and

Iα,λ
− f (t) =

1
Γ (α)


∞

−∞

f (u)(u − t)α−1
+ e−λ(u−t)+du (2.2)

respectively, for any α > 0 and λ > 0, where Γ (α) =


+∞

0 e−x xα−1dx is the Euler gamma
function, and (x)+ = x I (x > 0).

When λ = 0 these definitions reduce to the (positive and negative) Riemann–Liouville frac-
tional integral [29,32,37], which extends the usual operation of iterated integration to a fractional
order. When λ = 1, the operator (2.1) is called the Bessel fractional integral [37, Section 18.4].

Lemma 2.2. For any α > 0, λ > 0, and p ≥ 1, Iα,λ
± is a bounded linear operator on L p(R)

such that

∥Iα,λ
± f ∥p ≤ λ−α

∥ f ∥p (2.3)

for all f ∈ L p(R).

Proof. Young’s Theorem [37, p. 12] states that if φ ∈ L1(R) and f ∈ L p(R) then φ∗ f ∈ L p(R)

and the inequality

∥φ ∗ f ∥p ≤ ∥φ∥1∥ f ∥p (2.4)
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holds for all 1 ≤ p < ∞, where ∗ denotes the convolution

[ f ∗ φ](t) =


+∞

−∞

f (u)φ(t − u)du = [φ ∗ f ](t).

Obviously Iα,λ
± is linear, and Iα,λ

± f (t) = [ f ∗ φ±
α ](t) where

φ+
α (t) =

1
Γ (α)

tα−1e−λt 1(0,∞)(t)

φ−
α (t) =

1
Γ (α)

(−t)α−1e−λ(−t)1(−∞,0)(t)
(2.5)

for any α, λ > 0. But

∥φ±
α ∥1 =

1
Γ (α)


+∞

0
tα−1e−λt dt =

1
Γ (α)


λ−αΓ (α)


= λ−α

using the formula for the Laplace transform (moment generating function) of the gamma
probability density, and then (2.3) follows from Young’s Inequality (2.4). �

Next we prove a semigroup property for tempered fractional integrals, which follows easily
from the following property of the convolution kernels in Definition 2.1.

Lemma 2.3. For any λ > 0 the functions (2.5) satisfy

φ±
α ∗ φ±

β = φ±

α+β (2.6)

for any α > 0 and β > 0.

Proof. For t > 0 we have

φ+
α ∗ φ+

β (t) =
1

Γ (α)Γ (β)

 t

0
(t − s)α−1e−λ(t−s) sβ−1e−λs ds

=
1

Γ (α + β)
tα+β−1e−λt

= φ+

α+β(t)

using the formula for the beta probability density. The proof for φ−
α is similar. �

The following lemma establishes the semigroup property for tempered fractional integrals on
L p(R). In the case λ = 0, the semigroup property for fractional integrals is well known (e.g., see
Samko et al. [37, Theorem 2.5]).

Lemma 2.4. For any λ > 0 we have

Iα,λ
± Iβ,λ

± f = Iα+β,λ
± f (2.7)

for all α, β > 0 and all f ∈ L p(R).

Proof. Lemma 2.2 shows that both sides of (2.7) belong to L p(R) for any f ∈ L p(R), and
then the result follows immediately from Lemma 2.3 along with the fact that Iα,λ

± f (t) =

[ f ∗ φ±
α ](t). �

The next result shows that positive and negative tempered fractional integrals are adjoint
operators with respect to the inner product ⟨ f, g⟩2 =


f (x)g(x) dx on L2(R).
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Lemma 2.5 (Integration by Parts). Suppose f, g ∈ L2(R). Then

⟨ f, Iα,λ
+ g⟩2 = ⟨Iα,λ

− f, g⟩2 (2.8)

for any α > 0 and any λ > 0.

Proof. Write
+∞

−∞

f (x)Iα,λ
+ g(x) dx =


+∞

−∞

f (x)
1

Γ (α)

 x

−∞

g(u)(x − u)α−1e−λ(x−u) du dx

=


+∞

−∞

g(u)

Γ (α)


+∞

u
f (x)(x − u)α−1e−λ(x−u) dx du

=


+∞

−∞

Iα,λ
− f (x)g(x) dx

and this completes the proof. �

Next we discuss the relationship between tempered fractional integrals and Fourier
transforms. Recall that the Fourier transform

F [ f ](k) = f̂ (k) =
1

√
2π


+∞

−∞

e−ikx f (x)dx

for functions f ∈ L1(R)∩L2(R) can be extended to an isometry (a linear onto map that preserves
the inner product) on L2(R) such that

f (k) = lim
n→∞

1
√

2π

 n

−n
e−ikx f (x) dx (2.9)

for any f ∈ L2(R), see for example [20, Theorem 6.6.4].

Lemma 2.6. For any α > 0 and λ > 0 we have

F [Iα,λ
± f ](k) = f̂ (k)(λ ± ik)−α (2.10)

for all f ∈ L1(R) and all f ∈ L2(R).

Proof. The function φ+
α in (2.5) has Fourier transform

F [φ+
α ](k) =

1

Γ (α)
√

2π


∞

0
e−ikt tα−1e−λt dt =

1
√

2π
(λ + ik)−α (2.11)

by the formula for the Fourier transform of a gamma density. For any two functions f, g ∈ L1(R),
the convolution f ∗ g ∈ L1(R) has Fourier transform

√
2π f̂ (k)ĝ(k) (e.g., see [29, p. 65]), and

then (2.10) follows. The argument for Iα,λ
− is quite similar. If f ∈ L2(R), approximate by the L1

function f (x)1[−n,n](x) and let n → ∞. �

Remark 2.7. Recall that the space of rapidly decreasing functions S(R) consists of the infinitely
differentiable functions g : R → R such that

sup
x∈R

xng(m)(x)

 < ∞,
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where n, m are non-negative integers, and g(m) is the derivative of order m. The space S ′(R) of
continuous linear functionals on S(R) is called the space of tempered distributions. The Fourier
transform, and inverse Fourier transform, can then be extended to linear continuous mappings
of S ′(R) into itself. If f : R → R is a measurable function with polynomial growth, so that

| f (x)|(1 + |x |)−pdx < ∞ for some p > 0, then T f (ϕ) =


f (x)ϕ(x) dx := ⟨ f, ϕ⟩1
is a tempered distribution, also called a generalized function. The Fourier transform of this
generalized function is defined as T̂ f (ϕ) = ⟨ f̂ , ϕ⟩1 = ⟨ f, ϕ̂⟩1 = T f (ϕ̂) for ϕ ∈ S(R). See
Yosida [43, Ch.VI] for more details. If f is a tempered distribution, then the tempered fractional
integrals Iα,λ

± f (x) exist as convolutions with the tempered distributions (2.5). The same holds for
Riemann–Liouville fractional integrals (the case λ = 0), but that case is more delicate, because
the power law kernel (2.5) with λ = 0 is not in L1(R).

Next we consider the inverse operator of the tempered fractional integral, which is called a
tempered fractional derivative. For our purposes, we only require derivatives of order 0 < α < 1,
and this simplifies the presentation.

Definition 2.8. The positive and negative tempered fractional derivatives of a function f : R →

R are defined as

Dα,λ
+ f (t) = λα f (t) +

α

Γ (1 − α)

 t

−∞

f (t) − f (u)

(t − u)α+1 e−λ(t−u)du (2.12)

and

Dα,λ
− f (t) = λα f (t) +

α

Γ (1 − α)


+∞

t

f (t) − f (u)

(u − t)α+1 e−λ(u−t)du (2.13)

respectively, for any 0 < α < 1 and any λ > 0.

If λ = 0, the definitions (2.12) and (2.13) reduce to the positive and negative Marchaud
fractional derivatives [37, Section 5.4].

Note that tempered fractional derivatives cannot be defined pointwise for all functions
f ∈ L p(R), since we need | f (t) − f (u)| → 0 fast enough to counter the singularity of the
denominator (t − u)α+1 as u → t .

Next we establish the existence and compute the Fourier transform of tempered fractional
derivatives on a natural domain.

Theorem 2.9. Assume f and f ′ are in L1(R). Then the tempered fractional derivative Dα,λ
+ f (t)

exists and

F [Dα,λ
± f ](k) = f (k)(λ ± ik)α (2.14)

for any 0 < α < 1 and any λ > 0.

Proof. A standard argument from functional analysis (e.g., see [11, Proposition 2.2]) shows that
if f, f ′

∈ L1(R), then

I :=


R


R

| f (t) − f (u)|

|t − u|1+α
dt du < ∞ (2.15)

for any 0 < α < 1. To see this, write I = I1 + I2 where

I1 : =


R


R∩{|t−u|<1}

| f (t) − f (u)|

|t − u|1+α
dt du
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=


R


{|z|<1}

| f (t) − f (z + t)|

|z|1+α
dz dt

≤


R


{|z|<1}

|z|−α

 1

0
| f ′(t + uz)| du dz dt =

2
1 − α

∥ f ′
∥L1(R) < ∞

and

I2 : =


R


R∩{|t−u|≥1}

| f (t) − f (u)|

|t − u|1+α
dt du

≤


R


{|z|≥1}

| f (t)| + | f (z + t)|

|z|1+α
dt dz =

2
α

∥ f ∥L1(R) < ∞.

Now it follows easily from (2.15) that Dα,λ
± f exists for all f, f ′

∈ L1(R). Define

F(t) :=
α

Γ (1 − α)

 t

−∞

f (t) − f (u)

(t − u)α+1 e−λ(t−u) du,

and apply the Fubini Theorem, along with the shift property F [ f (t − y)](k) = e−iky f̂ (k) of the
Fourier transform, to see that

F(k) =
α

Γ (1 − α)
√

2π


+∞

−∞

e−ikt


∞

0

f (t) − f (t − y)

yα+1 e−λy dy dt

=
α

Γ (1 − α)


+∞

0
y−α−1e−λy


1 − e−iky

 f (k) dy =
Iλ(α)

Γ (1 − α)
f (k) (2.16)

where

Iλ(α) =


+∞

0


e−λy

− e−(λ+ik)y


αy−α−1 dy.

Integrate by parts with u = e−λy
− e−(λ+ik)y to see that

Iλ(α) =


e−λy

− e−(λ+ik)y
 

−y−α
∞

0

+


∞

0
y−α


−λe−λy

+ (λ + ik)e−(λ+ik)y


dy

and note that the boundary terms vanish, since e−λy
− e−(λ+ik)y

= O(y) as y → 0. Use
the definition of the gamma function, and the formula for the Fourier transform of the gamma
probability density, to compute that

Iλ(α) = −λ


∞

0
y−αe−λy dy + (λ + ik)


∞

0
y−αe−(λ+ik)y dy

= −λαΓ (1 − α) + (λ + ik)
Γ (1 − α)

λ1−α


1 +

ik

λ

α−1

= Γ (1 − α)

(λ + ik)α − λα


.

Then F(k) = f (k) [(λ + ik)α − λα], and hence F [Dα,λ
+ f ](k) = (λ + ik)α f̂ (k). The proof for

F [Dα,λ
− f ](k) is similar. �
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Remark 2.10. Theorem 2.9 can also be proven, under somewhat stronger conditions, using the
generator formula for infinitely divisible semigroups [29, Theorems 3.17 and 3.23(b)].

Next we extend the definition of tempered fractional derivatives to a suitable class of functions
in L2(R). For any α > 0 and λ > 0 we may define the fractional Sobolev space

W α,2(R) :=


f ∈ L2(R) :


R
(λ2

+ k2)α| f̂ (k)|2 dk < ∞


, (2.17)

which is a Banach space with norm ∥ f ∥α,λ = ∥(λ2
+ k2)α/2 f̂ (k)∥2. The space W α,2(R) is the

same for any λ > 0 (typically we take λ = 1) and all the norms ∥ f ∥α,λ are equivalent, since
1 + k2

≤ λ2
+ k2

≤ λ2(1 + k2) for all λ ≥ 1, and λ2
+ k2

≤ 1 + k2
≤ λ−2(1 + k2) for all

0 < λ < 1.

Definition 2.11. The positive (resp., negative) tempered fractional derivative Dα,λ
± f (t) of a

function f ∈ W α,2(R) is defined as the unique element of L2(R) with Fourier transformf (k)(λ ± ik)α for any α > 0 and any λ > 0.

Remark 2.12. The pointwise definition of the tempered fractional derivative in real space is
more complicated when α > 1. For example, when 1 < α < 2 we have

Dα,λ
+ f (t) = λα f (t) + αλα−1 f ′(x)

+
α

Γ (1 − α)

 t

−∞

f (u) − f (t) + (t − u) f ′(t)

(t − u)α+1 e−λ(t−u)du,

for all f ∈ W 1,2(R), compare [29, Remark 7.11].

Lemma 2.13. For any α > 0, β > 0 and λ > 0 we have

Dα,λ
± Dβ,λ

± f (t) = Dα+β,λ
± f (t)

for any f ∈ W α+β,2(R).

Proof. It is obvious from (2.17) that W α,2(R) ⊂ W β,2(R) for α > β. It is clear from
Definition 2.11 that Dβ,λ

± f (t) exists and belongs to W α,2(R) for any f ∈ W α+β,2(R), and
likewise, Dα,λ

± f (t) exists and belongs to L2(R) for any f ∈ W α,2(R). �

Lemma 2.14. For any α > 0 and λ > 0, we have

Dα,λ
± Iα,λ

± f (t) = f (t) (2.18)

for any function f ∈ L2(R), and

Iα,λ
± Dα,λ

± f (t) = f (t) (2.19)

for any f ∈ W α,2(R).

Proof. Given f ∈ L2(R), note that g(t) = Iα,λ
± f (t) satisfies ĝ(k) = f̂ (k)(λ ± ik)−α by

Lemma 2.6, and then it follows easily that g ∈ W α,2(R). Definition 2.11 implies that

F [Dα,λ
± Iα,λ

± f ](k) = F [Dα,λ
± g](k) = g(k)(λ ± ik)α = f̂ (k), (2.20)

and then (2.18) follows using the uniqueness of the Fourier transform. The proof of (2.19) is
similar. �
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Lemma 2.15. Suppose f, g ∈ W α,2(R). Then

⟨ f, Dα,λ
+ g⟩2 = ⟨Dα,λ

− f, g⟩2 (2.21)

for any α > 0 and any λ > 0.

Proof. Apply the Plancherel Theorem along with Definition 2.11 to see that

⟨ f, Dα,λ
+ g⟩2 =


f (x)Dα,λ

+ g(x) dx = ⟨ f̂ , (λ + ik)α ĝ⟩2 = ⟨(λ − ik)α f̂ , ĝ⟩2

= ⟨Dα,λ
− f, g⟩2

and this completes the proof. �

Remark 2.16. One can also prove (2.21) for f, f ′, g, g′
∈ L1(R) ∩ L2(R) using integration by

parts, compare [44, Appendix A.1].

A slightly different tempered fractional derivative

Dα,λ
+ f (t) =

α

Γ (1 − α)

 t

−∞

f (t) − f (u)

(t − u)α+1 e−λ(t−u)du

Dα,λ
− f (t) =

α

Γ (1 − α)


+∞

t

f (t) − f (u)

(u − t)α+1 e−λ(u−t)du

(2.22)

was proposed by Cartea and del-Castillo-Negrete [6] for a problem in physics, and studied further
by Baeumer and Meerschaert [2,29] using tools from probability theory and semigroups. When
0 < α < 1, F [Dα,λ

± f ](k) = f (k)[(λ ± ik)α − λα
] f̂ (k) for suitable functions f . The additional

λα term makes the evolution equation

∂

∂t
u(x, t) = [pDα,λ

+ + qDα,λ
− ]u(x, t) (2.23)

for p, q ≥ 0 mass preserving, which can easily be seen by considering the Fourier transform
û(k, t) = exp(t[(λ ± ik)α − λα

]) of point source solutions to the tempered fractional diffusion
equation (2.23). Now x → u(x, t) are the probability density functions of a tempered stable
Lévy process, as in Rosiński [36]. That process arises as the long-time scaling limit of a random
walk with exponentially tempered power law jumps, see Chakrabarty and Meerschaert [7].
The tempered fractional diffusion equation (2.23) has been applied to contaminant plumes in
underground aquifers, and sediment transport in rivers [30,45,46].

Remark 2.17. Tempered fractional derivatives are a natural analogues of integer (and fractional)
order derivatives. For suitable functions f (x), the Fourier transform of the derivative f ′(x) is
(ik) f̂ (k) (e.g., see [29, p. 8]), and one can define the fractional derivative Dα

± f (t) as the function
with Fourier transform (ik)α f̂ (k). Definition 2.11 extends to tempered fractional derivatives.

3. Stochastic integrals

In this section, we apply tempered fractional calculus to define stochastic integrals with
respect to tempered fractional Brownian motion (TFBM). First we recall the moving average
representation of TFBM as a stochastic integral with respect to Brownian motion, from [28].
Let {B(t)}t∈R be a real-valued Brownian motion on the real line, a process with stationary
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independent increments such that B(t) has a Gaussian distribution with mean zero and variance
|t | for all t ∈ R. Define an independently scattered Gaussian random measure B(dx) with control
measure m(dx) = dx by setting B[a, b] = B(b) − B(a) for any real numbers a < b, and then
extending to all Borel sets. Since Brownian motion sample paths are almost surely of unbounded
variation, the measure B(dx) is not almost surely σ -additive, but it is a σ -additive measure in
the sense of mean square convergence. Then the stochastic integrals I ( f ) :=


f (x)B(dx) are

defined for all functions f : R → R such that


f (x)2dx < ∞, as Gaussian random variables
with mean zero and covariance E[I ( f )I (g)] =


f (x)g(x)dx . See for example [38, Chapter 3]

or [29, Section 7.6].

Definition 3.1. Given an independently scattered Gaussian random measure B(dx) on R with
control measure m(dx) = dx , for any α < 1/2 and λ > 0, the stochastic integral

Bα,λ(t) =


+∞

−∞


e−λ(t−x)+(t − x)−α

+ − e−λ(−x)+(−x)−α
+


B(dx) (3.1)

where (x)+ = x I (x > 0), and 00
= 0, will be called a tempered fractional Brownian motion

(TFBM).

Tempered fractional Brownian motion has a pleasant scaling property
Bα,λ(ct)


t∈R

f.d.
=


cH Bα,cλ(t)


t∈R

for any c > 0, (3.2)

where H = 1/2 − α and
f.d.
= indicates equality of all finite dimensional distributions [28,

Proposition 2.2]. When λ = 0 and −1/2 < α < 1/2, the right-hand side of (3.1) is a fractional
Brownian motion (FBM), a self-similar Gaussian stochastic process with Hurst scaling index
H (e.g., see Embrechts and Maejima [13]). When λ = 0 and α < −1/2, the right-hand side
of (3.1) does not exist, since the integrand is not in L2(R). However, TFBM with λ > 0 and
α < −1/2 is well-defined, because the exponential tempering keeps the integrand in L2(R).
When 1/2 < H < 1, the increments of FBM exhibit long range dependence, see [38, Proposition
7.2.10]. Increments of TFBM with 1/2 < H < 1 exhibit semi-long range dependence, their
autocorrelation function falling off like | j |2H−2 over moderate lags, but then eventually falling
off faster as | j | → ∞. When 0 < H < 1/2 the increments of both FBM and TFBM exhibit
anti-persistence, also called negative dependence, since their autocorrelation function is negative
for all large lags. See [28, Remark 4.1] for more details.

Stochastic integration theory for FBM is complicated by the fact that FBM is not a semi-
martingale [34]. If α < −1/2 and λ > 0, or if α = 0 and λ > 0, we will now show that TFBM is
a semimartingale, and hence one can define stochastic integrals I ( f ) :=


f (x)Bα,λ(dx) in the

standard manner, via the Itô stochastic calculus (e.g., see Kallenberg [19, Chapter 15]).

Theorem 3.2. A tempered fractional Brownian motion {Bα,λ(t)}t≥0 with α < −1/2 and λ > 0
is a continuous semimartingale with the canonical decomposition

Bα,λ(t) = −λ

 t

0
Mα,λ(s) ds − α

 t

0
Mα+1,λ(s) ds (3.3)

where

Mα,λ(t) :=


+∞

−∞

e−λ(t−x)+(t − x)−α
+ B(dx). (3.4)
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Moreover, {Bα,λ(t)}t≥0 is a finite variation process. The same is true if α = 0 and λ > 0.

Proof. Let {F B
t }t≥0 be the σ -algebra generated by {Bs : 0 ≤ s ≤ t}. Given a function g : R → R

such that g(t) = 0 for all t < 0, and

g(t) = C +

 t

0
h(s) ds for all t > 0 (3.5)

for some C ∈ R and some h ∈ L2(R), a result of Cheridito [8, Theorem 3.9] shows that the
Gaussian stationary increment process

Y g
t :=


R
[g(t − u) − g(−u)] B(du), t ≥ 0 (3.6)

is a continuous {F B
t }t≥0 semimartingale with canonical decomposition

Y g
t = g(0)Bt +

 t

0

 s

−∞

h(s − u)B(du)ds, (3.7)

and conversely, that if (3.6) defines a semimartingale on [0, T ] for some T > 0, then g satisfies
these properties. Define g(t) = 0 for t ≤ 0 and

g(t) := e−λt t−α for t > 0. (3.8)

It is easy to check that the function g(t − u) − g(−u), which is the integrand in (3.1), is square
integrable over the entire real line for any α < 1/2 and λ > 0. Next observe that (3.5) holds with
C = 0, h(s) = 0 for s < 0 and

h(s) :=
d

ds
[e−λss−α

] = −λe−λss−α
− αe−λss−α−1

∈ L2(R) (3.9)

for any α < −1/2 and λ > 0. Then it follows from [8, Theorem 3.9] that TFBM is a continuous
semimartingale with canonical decomposition

Bα,λ =

 t

0

 s

−∞

−λe−λ(s−u)(s − u)−α
− αe−λ(s−u)(s − u)−α−1 B(du) ds (3.10)

which reduces to (3.3). Since C = 0, Theorem 3.9 in [8] implies that {Bα,λ(t)} is a finite variation
process. The proof for α = 0 is similar, using g(t) = e−λt for t > 0. �

Remark 3.3. When α = 0 and λ > 0, the Gaussian stochastic process (3.4) is an Ornstein–
Uhlenbeck process. When α < −1/2 and λ > 0, it is a one dimensional Matérn stochastic
process [3,14,16], also called a “fractional Ornstein–Uhlenbeck process” in the physics literature
[25]. It follows from Knight [21, Theorem 6.5] that Mα,λ(t) is a semimartingale in both cases.

Cheridito [8, Theorem 3.9] provides a necessary and sufficient condition for the process (3.6)
to be a semimartingale, and then it is not hard to check that TFBM is not a semimartingale in
the remaining cases when −1/2 < α < 0 or 0 < α < 1/2. Next we will investigate the problem
of stochastic integration with deterministic integrands in these two cases. Our approach follows
that of Pipiras and Taqqu [34].

Next we establish a link between TFBM and tempered fractional calculus.

Lemma 3.4. For a tempered fractional Brownian motion (3.1) with λ > 0, we have:
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(i) When −1/2 < α < 0, we can write

Bα,λ(t) = Γ (κ + 1)


+∞

−∞


Iκ,λ
− 1[0,t](x) − λIκ+1,λ

− 1[0,t](x)


B(dx) (3.11)

where κ = −α.
(ii) When 0 < α < 1/2, we can write

Bα,λ(t) = Γ (1 − α)


+∞

−∞


Dα,λ

− 1[0,t](x) − λI1−α,λ
− 1[0,t](x)


B(dx). (3.12)

Proof. To prove part (i), write the kernel function from (3.1) in the form

gt,λ(x) := e−λ(t−x)+(t − x)−α
+ − e−λ(−x)+(−x)−α

+

=

 t

0

d

e−λ(u−x)+(u − x)κ+


du

du

= −λ


+∞

−∞

1[0,t](u)e−λ(u−x)+(u − x)
(κ+1)−1
+ du

+ κ


+∞

−∞

1[0,t](u)e−λ(u−x)+(u − x)κ−1
+ du

and apply the definition (2.2) of the tempered fractional integral.
To prove part (ii), it suffices to show that the integrand

gt,λ(x) = e−λ(t−x)+(t − x)−α
+ − e−λ(0−x)+(0 − x)−α

+ =: φt (x) − φ0(x)

in (3.1) equals the integrand in (3.12). We will prove this using Fourier transforms. A substitution
u = t − x shows that

φt (k) =
1

√
2π

 t

−∞

e−ikx e−λ(t−x)(t − x)−α dx =
e−iktΓ (1 − α)

√
2π(λ − ik)1−α

using the formula for the Fourier transform of the gamma density, and hence

gt,λ(k) = φt (k) − φ0(k) = Γ (1 − α)
e−ikt

− 1
√

2π(λ − ik)1−α
. (3.13)

On the other hand, from Lemma 2.6 and Theorem 2.9 we obtain

F [Dα,λ
− 1[0,t] − λI1−α,λ

− 1[0,t]](k) = [(λ − ik)α − λ(λ − ik)α−1
] ·

e−ikt
− 1

(−ik)
√

2π

= (λ − ik)α−1
·

e−ikt
− 1

√
2π

(3.14)

where we have used the formula (which is easy to verify)

ĥ(k) = F [1[a,b)](k) =
e−ikb

− e−ika

(−ik)
√

2π
, (3.15)

and then the desired result follows by uniqueness of the Fourier transform. �
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Next we explain the connection between the fractional calculus representations (3.11) and
(3.12). Substitute κ = −α into (3.11) and note that the resulting formula differs from (3.12) only
in that the tempered fractional integral I−α,λ

− is replaced by the tempered fractional derivative
Dα,λ

− . Lemma 2.14 shows that Iα,λ
− and Dα,λ

− are inverse operators, and hence it makes sense to
define I−α,λ

± := Dα,λ
± when 0 < α < 1. Now Eqs. (3.11) and (3.12) are equivalent.

Next we discuss a general construction for stochastic integrals with respect to TFBM.
For a standard Brownian motion {B(t)}t∈R on (Ω , F , P), the stochastic integral I( f ) :=

f (x)B(dx) is defined for any f ∈ L2(R), and the mapping f → I( f ) defines an isometry
from L2(R) into L2(Ω), called the Itô isometry:

⟨I( f ), I(g)⟩L2(Ω) = Cov[I( f ), I(g)] =


f (x)g(x) dx = ⟨ f, g⟩L2(R). (3.16)

Since this isometry maps L2(R) onto the space Sp(B) = {I( f ) : f ∈ L2(R)}, we say that these
two spaces are isometric. For any elementary function (step function)

f (u) =

n
i=1

ai 1[ti ,ti+1)(u), (3.17)

where ai , ti are real numbers such that ti < t j for i < j , it is natural to define the stochastic
integral

I α,λ( f ) =


R

f (x)Bα,λ(dx) =

n
i=1

ai

Bα,λ(ti+1) − Bα,λ(ti )


, (3.18)

and then it follows immediately from (3.11) that for f ∈ E , the space of elementary functions,
the stochastic integral

I α,λ( f ) =


R

f (x)Bα,λ(dx) = Γ (κ + 1)


R


Iκ,λ
− f (x) − λIκ+1,λ

− f (x)


B(dx)

is a Gaussian random variable with mean zero, such that for any f, g ∈ E we have

⟨I α,λ( f ), I α,λ(g)⟩L2(Ω) = E


R
f (x)Bα,λ(dx)


R

g(x)Bα,λ(dx)


= Γ (κ + 1)2


R


Iκ,λ
− f (x) − λIκ+1,λ

− f (x)
 

Iκ,λ
− g(x) − λIκ+1,λ

− g(x)


dx, (3.19)

in view of (3.11) and the Itô isometry (3.16). The linear space of Gaussian random variables
I α,λ( f ), f ∈ E


is contained in the larger linear space

Sp(Bα,λ) =


X : I α,λ( fn) → X in L2(Ω) for some sequence ( fn) in E


. (3.20)

An element X ∈ Sp(Bα,λ) is mean zero Gaussian with variance

Var(X) = lim
n→∞

Var[I α,λ( fn)],

and X can be associated with an equivalence class of sequences of elementary functions ( fn)

such that I α,λ( fn) → X in L2(R). If [ fX ] denotes this class, then X can be written in an integral
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form as

X =


R
[ fX ]d Bα,λ (3.21)

and the right hand side of (3.21) is called the stochastic integral with respect to TFBM on the real
line (see, for example, Huang and Cambanis [17], page 587). In the special case of a Brownian
motion λ = α = 0, I α,λ( fn) → X along with the Itô isometry (3.16) implies that ( fn) is
a Cauchy sequence, and then since L2(R) is a (complete) Hilbert space, there exists a unique
f ∈ L2(R) such that fn → f in L2(R), and we can write X =


R f (x)B(dx). However, if the

space of integrands is not complete, then the situation is more complicated. We begin with the
case −1/2 < α < 0, where the corresponding FBM is long range dependent.

3.1. Case 1: semi-long range dependence

Here we investigate stochastic integrals with respect to TFBM in the case −1/2 < α < 0, so
that 1/2 < H < 1 in (3.2). Eq. (3.19) suggests the appropriate space of integrands for TFBM, in
order to obtain a nice isometry that maps into the space Sp(Bα,λ) of stochastic integrals.

Theorem 3.5. Given −1/2 < α < 0 and λ > 0, let κ = −α. Then the class of functions

A1 :=


f ∈ L2(R) :


R

Iκ,λ
− f (x) − λIκ+1,λ

− f (x)

2
dx < ∞


, (3.22)

is a linear space with inner product

⟨ f, g⟩A1 := ⟨F, G⟩L2(R) (3.23)

where

F(x) = Γ (κ + 1)[Iκ,λ
− f (x) − λIκ+1,λ

− f (x)]

G(x) = Γ (κ + 1)[Iκ,λ
− g(x) − λIκ+1,λ

− g(x)].
(3.24)

The set of elementary functions E is dense in the space A1. The space A1 is not complete.

The proof of Theorem 3.5 requires one simple lemma, which shows that Iκ,λ
− − λIκ+1,λ

− is a
bounded linear operator on L p(R) for any 1 ≤ p < ∞.

Lemma 3.6. Under the assumptions of Theorem 3.5, suppose 1 ≤ p < ∞. Then for any
f ∈ L p(R) we have

∥Iκ,λ
− f (x) − λIκ+1,λ

− f (x)∥p ≤ C∥ f ∥p (3.25)

where C is a constant depending only on α and λ.

Proof. It follows from Lemma 2.2 that Iκ,λ
− f (x) − λIκ+1,λ

− f (x) ∈ L p(R) and that

∥Iκ,λ
− f (x) − λIκ+1,λ

− f (x)∥p ≤ ∥Iκ,λ
− f (x)∥p + λ∥Iκ+1,λ

− f (x)∥p ≤ 2λ−κ
∥ f ∥p

for any f ∈ L p(R). �

Remark 3.7. It follows from Lemma 3.6 that A1 contains every function in L2(R), and hence
they are the same set, but endowed with a different inner product. The inner product on the space
A1 is required to obtain a nice isometry.
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Proof of Theorem 3.5. The proof is similar to [34, Theorem 3.2]. To show that A1 is an
inner product space, we will check that ⟨ f, f ⟩A1 = 0 implies f = 0 almost everywhere.
If ⟨ f, f ⟩A1 = 0, then in view of (3.23) and (3.24) we have ⟨F, F⟩2 = 0, so F(x) =

Γ (1 + κ)[Iκ,λ
− f (x) − λIκ+1,λ

− f (x)] = 0 for almost every x ∈ R. Then

Iκ,λ
− f (x) = λIκ+1,λ

− f (x) for almost every x ∈ R. (3.26)

Apply Dκ,λ
− to both sides of Eq. (3.26) and use Lemma 2.4 along with Lemma 2.14 to get

f (x) = Dκ,λ
− Iκ,λ

− f (x) = Dκ,λ
− λIκ+1,λ

− f (x) = λ

Dκ,λ

− Iκ,λ
−


I1,λ
− f (x) = λI1,λ

− f (x)

for almost every x ∈ R, and in view of the definition (2.1) this is equivalent to

f (x) = λ


+∞

x
f (u)e−λ(u−x)du = λeλx


+∞

x
f (u)e−λudu (3.27)

for almost every x ∈ R. Observe that the functions f (u) and e−λu are in L2
[x, ∞) for any

x ∈ R and then, by the Cauchy–Schwarz inequality, the function f (u)e−λu is in L1
[x, ∞). It

follows that


+∞

x f (u)e−λudu is absolutely continuous, and so the function f (x) in (3.27) is
also absolutely continuous. Taking the derivative on both sides of (3.27) using the Lebesgue
Differentiation Theorem (e.g., see [42, Theorem 7.16]) we get

f ′(x) = λ f (x) − λeλx f (x)e−λx
= 0 for almost every x ∈ R.

Then for any a, b ∈ R we have

f (b) = f (a) +

 b

a
f ′(x) dx = f (a)

and so f (x) is a constant function. Since f ∈ L2(R), it follows that f (x) = 0 for all x ∈ R, and
hence A1 is an inner product space.

Next, we want to show that the set of elementary functions E is dense in A1. For any f ∈ A1,
we also have f ∈ L2(R), and hence there exists a sequence of elementary functions ( fn) in
L2(R) such that ∥ f − fn∥2 → 0. But

∥ f − fn∥A1 = ⟨ f − fn, f − fn⟩A1 = ⟨F − Fn, F − Fn⟩2 = ∥F − Fn∥2,

where Fn(x) = Iκ,λ
− fn(x) − λIκ+1,λ

− fn(x) and F(x) is given by (3.24). Lemma 3.6 implies that

∥ f − fn∥A1 = ∥F − Fn∥2 = ∥Iκ,λ
− ( f − fn) − λIκ+1,λ

− ( f − fn)∥2 ≤ C∥ f − fn∥2

for some C > 0, and since ∥ f − fn∥2 → 0, it follows that the set of elementary functions is
dense in A1.

Finally, we provide an example to show that A1 is not complete. The functionsfn(k) = |k|
−p1{1<|k|<n}(k), p > 0,

are in L2(R), fn(k) = fn(−k), and hence they are the Fourier transforms of functions fn ∈

L2(R). Apply Lemma 2.6 to see that the corresponding functions Fn(x) = Γ (κ +1)[Iκ,λ
− fn(x)−

λIκ+1,λ
− fn(x)] from (3.24) have Fourier transform

F [Fn](k) = Γ (1 − α)[(λ − ik)α − λ(λ − ik)α−1
] f̂n(k) =

−ikΓ (1 − α)

(λ − ik)1−α
f̂n(k). (3.28)
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Since α < 0, it follows that

∥Fn∥
2
2 = ∥F̂n∥

2
2 = Γ (1 − α)2


∞

−∞

fn(k)
2 k2

(λ2 + k2)1−α
< ∞

for each n, which shows that fn ∈ A1. Now it is easy to check that fn − fm → 0 in A1, as
n, m → ∞, whenever p > 1/2+α, so that ( fn) is a Cauchy sequence. Choose p ∈ (1/2+α, 1/2)

and suppose that there exists some f ∈ A1 such that ∥ fn − f ∥A1 → 0 as n → ∞. Then
∞

−∞

fn(k) − f (k)
2 k2

(λ2 + k2)1−α
→ 0 (3.29)

as n → ∞, and since, for any given m ≥ 1, the value of fn(k) does not vary with n > m
whenever k ∈ [−m, m], it follows that f̂ (k) = |k|

−p1{|k|>1} on any such interval. Since m is
arbitrary, it follows that f̂ (k) = |k|

−p1{|k|>1}, but this function is not in L2(R), so f̂ (k) ∉ A1,
which is a contradiction. Hence A1 is not complete, and this completes the proof. �

We now define the stochastic integral with respect to TFBM for any function in A1 in the case
where 1/2 < H < 1 in (3.2).

Definition 3.8. For any −1/2 < α < 0 and λ > 0, we define
R

f (x)Bα,λ(dx) := Γ (κ + 1)


R


Iκ,λ
− f (x) − λIκ+1,λ

− f (x)


B(dx) (3.30)

for any f ∈ A1, where κ = −α.

Theorem 3.9. For any −1/2 < α < 0 and λ > 0, the stochastic integral I α,λ in (3.30) is an
isometry from A1 into Sp(Bα,λ). Since A1 is not complete, these two spaces are not isometric.

Proof. It follows from Lemma 3.6 that the stochastic integral (3.30) is well-defined for any
f ∈ A1. Proposition 2.1 in Pipiras and Taqqu [34] implies that, if D is an inner product space
such that ( f, g)D = ⟨I α,λ( f ), I α,λ(g)⟩L2(Ω) for all f, g ∈ E , and if E is dense D, then there is
an isometry between D and a linear subspace of Sp(Bα,λ) that extends the map f → I α,λ( f )

for f ∈ E , and furthermore, D is isometric to Sp(Bα,λ) itself if and only if D is complete. Using
the Itô isometry and the definition (3.30), it follows from (3.23) that for any f, g ∈ A1 we have

⟨ f, g⟩A1 = ⟨F, G⟩L2(R) = ⟨I α,λ( f ), I α,λ(g)⟩L2(Ω),

and then the result follows from Theorem 3.5. �

3.2. Case 2: anti-persistence

Next we investigate stochastic integrals with respect to TFBM in the case 0 < α < 1/2, so
that 0 < H < 1/2 in (3.2). It follows from (3.12) that the stochastic integral (3.18) can be written
in the form

I α,λ( f ) =


R

f (x)Bα,λ(dx) = Γ (1 − α)


∞

−∞


Dα,λ

− f (x) − λI1−α,λ
− f (x)


B(dx)



2378 M.M. Meerschaert, F. Sabzikar / Stochastic Processes and their Applications 124 (2014) 2363–2387

for any f ∈ E , the space of elementary functions. Then I α,λ( f ) is a Gaussian random variable
with mean zero, such that

⟨I α,λ( f ), I α,λ(g)⟩L2(Ω) = E


R
f (x)Bα,λ(dx)


R

g(x)Bα,λ(dx)


= Γ (1 − α)2


R


Dα,λ

− f (x) − λI1−α,λ
− f (x)

 
Dα,λ

− g(x) − λI1−α,λ
− g(x)


dx (3.31)

for any f, g ∈ E , using (3.12) and the Itô isometry (3.16). Eq. (3.31) suggests the following space
of integrands for TFBM in the case 0 < H < 1/2. Recall that W α,2(R) is the fractional Sobolev
space (2.17).

Theorem 3.10. For any 0 < α < 1/2 and λ > 0, the class of functions

A2 :=


f ∈ W α,2(R) : ϕ f = Dα,λ

− f − λI1−α,λ
− f for some ϕ f ∈ L2(R).


(3.32)

is a linear space with inner product

⟨ f, g⟩A2 := ⟨F, G⟩L2(R) (3.33)

where

F(x) = Γ (1 − α)

Dα,λ

− f (x) − λI1−α,λ
− f (x)


G(x) = Γ (1 − α)


Dα,λ

− g(x) − λI1−α,λ
− g(x)


.

(3.34)

The set of elementary functions E is dense in the space A2. The space A2 is not complete.

We begin with two lemmas. The first lemma shows that the set A2 contains every function in
W α,2(R), and hence they are the same set, but different spaces, since they have different inner
products.

Lemma 3.11. Under the assumptions of Theorem 3.10, every f ∈ W α,2(R) is an element of
A2.

Proof. Given f ∈ W α,2(R), we need to show that

ϕ f = Dα,λ
− f − λI1−α,λ

− f (3.35)

for some ϕ f ∈ L2(R). From the definition (2.17) we see that

(λ2

+k2)α| f̂ (k)|2 dk < ∞. Define
h1(k) = (λ − ik)α f̂ (k) and note that h1 is the Fourier transform of some function ϕ1 ∈ L2(R).
Define h2(k) := (λ − ik)α−1 f (k), and observe that

|h2(k)|2 dk =


| f (k)|2(λ2

+ k2)α−1 dk

=


|h1(k)|2

λ2 + k2 dk < ∞,

since h1 ∈ L2(R) and 1/(λ2
+ k2) is bounded. Hence there is another function ϕ2 ∈ L2(R) such

that h2 = ϕ̂2. Define ϕ f := ϕ1 − λϕ2 so that

ϕ f (k) = ϕ1(k) − λϕ2(k) = f (k)(λ − ik)α − f (k)λ(λ − ik)α−1. (3.36)
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Since f ∈ W α,2(R) ⊂ L2(R), we can apply Definition 2.11 and Lemma 2.6 to see that (3.35)
holds. �

Lemma 3.12. Under the assumptions of Theorem 3.10, if f ∈ W α,2(R), then there exists a
sequence of elementary functions ( fn) such that fn → f in L2(R), and also

+∞

−∞

| fn(k) − f (k)|2|k|
2αdk → 0 as n → ∞. (3.37)

Proof. Eq. (3.37) is proven in [34, Lemma 5.1]. For any L > 0, that proof constructs a sequence
of elementary functions fn such that f̂n(k) → 1[−1,1](k) almost everywhere on −L ≤ x ≤ L ,
and shows that | f̂n(k)| ≤ C min{1, |k|

−1
} for all k ∈ R and all n ≥ 1. In the notation of that

paper, we have f̂n(k) = k−1Un(k). Apply the dominated convergence theorem to see that
+L

−L
| f̂n(k) − 1[−1,1](k)|2dk → 0

and note that
|k|>L

| f̂n(k) − 1[−1,1](k)|2dk ≤ 2C2


∞

L

dk

k2 ≤
2C2

L
.

Since L is arbitrary, it follows that f̂n(k) → 1[−1,1](k) in L2(R), and then the result follows as
in [34, Lemma 5.1]. �

Proof of Theorem 3.10. For f ∈ A2 we define

∥ f ∥A2 =


⟨ f, f ⟩A2 =


⟨ϕ f , ϕ f ⟩2 = ∥ϕ f ∥2 (3.38)

where ϕ f is given by (3.35). Next, use (3.36) to see that

ϕ f (k) = (−ik)(λ − ik)α−1 f (k). (3.39)

To verify that (3.33) is an inner product, note that if ⟨ f, f ⟩A2 = 0 then

∥ f ∥
2
A2

= ∥ϕ f ∥
2
2 = ∥ϕ f ∥

2
2 =


∞

−∞

| f (k)|2
k2

(λ2 + k2)1−α
dk (3.40)

equals zero, which implies that | f (k)| = 0 almost everywhere, and then f = 0 almost
everywhere. This proves that (3.35) is an inner product.

Next we show that E is dense in A2. Apply Lemma 3.12 to obtain a sequence ( fn) in E such
that ∥ fn− f ∥2 → 0 and (3.37) holds. It is easy to check using (3.15) that any elementary function
is an element of W α,2(R), and then Lemma 3.11 implies that it is also an element of A2. Now
use (3.40) to write

∥ fn − f ∥
2
A2

=


+∞

−∞

fn(k) − f (k)
2

(k2
+ λ2)α dk

− λ2


+∞

−∞

fn(k) − f (k)
2 1

(λ2 + k2)1−α
dk.

Since 1/(λ2
+ k2)1−α is bounded, it follows easily using (3.37) and ∥ fn − f ∥2 → 0 that

∥ fn − f ∥A2 → 0, and hence E is dense in A2.
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Finally, we want to show that A2 is not complete. The proof is similar to that of Theorem 3.5.
The functionsfn(k) = |k|

−p1{1/n<|k|<1}(k)

are the Fourier transforms of some functions fn ∈ L2(R). Clearly fn ∈ W α,2(R), and
then it follows from Lemma 2.6 and Theorem 2.9 that the corresponding functions Fn(x) =

Γ (1 − α)[Dα,λ
− fn(x) − λI1−α,λ

− fn(x)] from (3.34) have Fourier transform (3.28), that is,

F [Fn](k) = Γ (1 − α)
−ik

(λ − ik)1−α
f̂n(k).

Then

∥ fn∥
2
A2

= ∥Fn∥
2
2 = ∥Fn∥

2
2 = Γ (1 − α)2


∞

−∞

fn(k)
2 k2

(λ2 + k2)1−α
dk < ∞

for any p < 3/2, so that fn ∈ A2. Now it is easy to check that fn − fm → 0 in A2, as n, m → ∞,
so that ( fn) is a Cauchy sequence. Suppose 1/2 < p < 3/2 and that ∥ fn − f ∥A2 → 0 for some
f ∈ A2. Then f̂ (k) = |k|

−p1{0<|k|<1}, but this f̂ is not in L2(R), so f̂ ∉ A2, and hence A2 is
not complete. �

We now define the stochastic integral with respect to TFBM for any function in A2 in the case
where 0 < H < 1/2 in (3.2).

Definition 3.13. For any 0 < α < 1/2 and λ > 0, we define

I α,λ( f ) =


R

f (x)Bα,λ(dx) := Γ (1 − α)


R


Dα,λ

− f (x) − λI1−α,λ
− f (x)


B(dx) (3.41)

for any f ∈ A2.

Theorem 3.14. For any 0 < α < 1/2 and λ > 0, the stochastic integral I α,λ is an isometry
from A2 into Sp(Bα,λ). Since A2 is not complete, these two spaces are not isometric.

Proof. The proof is similar to that of Theorem 3.9. It follows from Lemma 3.11 that the
stochastic integral (3.41) is well-defined for any f ∈ A2. Use Proposition 2.1 in Pipiras and
Taqqu [34], and note that the Itô isometry, the definition (3.41), and Eq. (3.33) imply that for any
f, g ∈ A2 we have

⟨ f, g⟩A2 = ⟨F, G⟩L2(R) = ⟨I α,λ( f ), I α,λ(g)⟩L2(Ω).

Then the result follows from Theorem 3.10. �

3.3. Harmonizable representation

By now it should be clear that the Fourier transform plays an important role in the theory of
stochastic integration for TFBM. Here we apply the harmonizable representation of TFBM to
unify the two cases −1/2 < α < 0 and 0 < α < 1/2.

For any −1/2 < α < 1/2 and any λ > 0, Proposition 3.1 in [28] shows that TFBM has the
harmonizable representation

Bα,λ(t) =
Γ (1 − α)

√
2π


∞

−∞

e−i tk
− 1

(λ − ik)1−α
B̂(dk)
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where B̂ = B̂1 + i B̂2 is a complex-valued Gaussian random measure constructed as follows. Let
B̂1 and B̂2 be two independent Brownian motions on the positive real line with E[(B̂i (t))2

] = t/2
for i = 1, 2, and define two independently scattered Gaussian random measures by setting
B̂i [a, b] = B̂i (b) − B̂i (a), extend to Borel subsets of the positive real line, and then extend
to the entire real line by setting B̂1(A) = B̂1(−A), B̂2(A) = −B̂2(−A).

Apply the formula (3.15) for the Fourier transform of an indicator function to write this
harmonizable representation in the form

Bα,λ(t) = Γ (1 − α)


+∞

−∞

1[0,t](k)
(−ik)

(λ − ik)1−α
B̂(dk).

It follows easily that for any elementary function (3.17) we may write

I α,λ( f ) = Γ (1 − α)


∞

−∞

f (k)
(−ik)

(λ − ik)1−α
B̂(dk), (3.42)

and then for any elementary functions f and g we have

⟨I α,λ( f ), I α,λ(g)⟩L2(Ω) = Γ (1 − α)2


∞

−∞

f (k)g(k)
k2

(λ2 + k2)1−α
dk. (3.43)

Theorem 3.15. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, the class of functions

A3 :=


f ∈ L2(R) :

  f (k)
2 k2

(λ2 + k2)1−α
dk < ∞


(3.44)

is a linear space with the inner product

⟨ f, g⟩A3 = Γ (1 − α)2


+∞

−∞

f (k)g(k)
k2

(λ2 + k2)1−α
dk. (3.45)

The set of elementary functions E is dense in the space A3. The space A3 is not complete.

Proof. The proof combines Theorems 3.5 and 3.10 using the Plancherel Theorem. First suppose
that 0 < α < 1/2 and recall that ϕ f = Dα,λ

− f − λI1−α,λ
− f is a function with Fourier transform

ϕ̂ f = [(λ − ik)α − λ(λ − ik)α−1
] f̂ = [λ − ik − λ](λ − ik)α−1 f̂

= (−ik)(λ − ik)α−1 f̂ .

Then it follows from the Plancherel Theorem that

⟨ f, g⟩A2 = Γ (1 − α)2
⟨ϕ f , ϕg⟩2 = Γ (1 − α)2

⟨ϕ̂ f , ϕ̂g⟩2

= Γ (1 − α)2


+∞

−∞

f (k)g(k)
k2

(λ2 + k2)1−α
dk = ⟨ f, g⟩A3

and hence the two inner products are identical. If f ∈ A3, then
+∞

−∞

| f̂ (k)|2(λ2
+ k2)α dk =


+∞

−∞

| f̂ (k)|2
k2

(λ2 + k2)1−α
dk

+ λ2


+∞

−∞

| f̂ (k)|2
1

(λ2 + k2)1−α
dk. (3.46)



2382 M.M. Meerschaert, F. Sabzikar / Stochastic Processes and their Applications 124 (2014) 2363–2387

The first integral on the right-hand side is finite by (3.44), and the second is finite since
1/(λ2

+ k2)1−α is bounded. Then it follows from the definition (2.17) that f ∈ W α,2(R).
Conversely, if f ∈ W α,2(R) then since

k2

(λ2 + k2)1−α
=

k2

λ2 + k2 (λ2
+ k2)α ≤ (λ2

+ k2)α

it follows immediately that f ∈ A3, and hence W α,2(R) and A3 are the same set of functions.
Then it follows from Lemma 3.11 that A2 and A3 are identical when 0 < α < 1/2, and the
conclusions of Theorem 3.15 follow from Theorem 3.10 in this case.

If −1/2 < α < 0, then the function k2/(λ2
+ k2)1−α is bounded by a constant C(α, λ) that

depends only on α and λ, so for any f ∈ L2(R) we have
R

 f (k)
2 k2

(λ2 + k2)1−α
dk ≤ C(α, λ)


R

 f (k)
2

dk < ∞ (3.47)

and hence f ∈ A3. Since A3 ⊂ L2(R) by definition, this proves that L2(R) and A3 are the
same set of functions, and then it follows from Lemma 3.6 that A1 and A3 are the same set of
functions in this case. Let κ = −α and note that ϕ f = Iκ,λ

− f −λIκ+1,λ
− f is again a function with

Fourier transform

ϕ̂ f = [(λ − ik)α − λ(λ − ik)α−1
] f̂ = (−ik)(λ − ik)α−1 f̂ .

Then it follows from the Plancherel Theorem that

⟨ f, g⟩A1 = Γ (κ + 1)2
⟨ϕ f , ϕg⟩2 = Γ (1 − α)2

⟨ϕ̂ f , ϕ̂g⟩2

= Γ (1 − α)2


+∞

−∞

f (k)g(k)
k2

(λ2 + k2)1−α
dk = ⟨ f, g⟩A3

and hence the two inner products are identical. Then the conclusions of Theorem 3.15 follow
from Theorem 3.5 in this case as well. �

Definition 3.16. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, we define

I α,λ( f ) = Γ (1 − α)


∞

−∞

f (k)
(−ik)

(λ − ik)1−α
B̂(dk) (3.48)

for any f ∈ A3.

Theorem 3.17. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, the stochastic integral I α,λ

in (3.48) is an isometry from A3 into Sp(Bα,λ). Since A3 is not complete, these two spaces
are not isometric.

Proof. The proof of Theorem 3.15 shows that A1 and A3 are identical when −1/2 < α < 0,
and A2 and A3 are identical when 0 < α < 1/2. Then the result follows immediately from
Theorems 3.9 and 3.14. �

4. Discussion

In this section, we collect some remarks and extensions.
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4.1. General TFBM

For any p, q ≥ 0 with p + q > 0, we can extend Definition 3.1 and write

B p,q
α,λ (t) = p


+∞

−∞


e−λ(t−x)+(t − x)−α

+ − e−λ(−x)+(−x)−α
+


B(dx)

+ q


+∞

−∞


e−λ(x−t)+(x − t)−α

+ − e−λ(x)+(x)−α
+


B(dx). (4.1)

When q = 0, the process is causal, and hence appropriate for typical applications in time series
analysis. The case q > 0 is useful in spatial statistics. For FBM (the case λ = 0), the right-hand
side of (3.1) with q > 0 is the same process (with the same finite dimensional distributions) as
another FBM with q = 0 [38, p. 322 and Exercise 7.2]. However, this is not true for TFBM. In
fact, the stochastic process B p,q

α,λ given by (4.1) has covariance function

E


B p,q
α,λ (t)B p,q

α,λ (s)


=
1
2


C2

t |t |1−2α
+ C2

s |s|1−2α
− C2

t−s |t − s|1−2α


(4.2)

where

C2
t = (p2

+ q2)


2Γ (1 − 2α)

(2λt)1−2α
−

2Γ (1 − α)
√

π2λt (
1
2 −α)

K 1
2 −α

(λt)


− 2pqe−λt Γ (1 − α)2

Γ (2 − 2α)
,

and Kν(x) is modified Bessel function of the second kind. In this paper, to ease notation, we have
only considered the causal TFBM (3.1). However, all of the results developed here extend easily
to the more general case (4.1).

4.2. White noise approach

Heuristically, the TFBM (3.11) with 1/2 < H < 1 in (3.2) can be written in terms of tempered
fractional integrals of the white noise W (x)dx = B(dx), since in view of (2.8) we can write

Bα,λ(t) = Γ (κ + 1)


+∞

−∞


Iκ,λ
+ W (x) − λIκ+1,λ

+ W (x)


1[0,t](x) dx .

In the same way, when 0 < H < 1/2 we can write

Bα,λ(t) = Γ (1 − α)


+∞

−∞


Dα,λ

+ W (x) − λI1−α,λ
+ W (x)


1[0,t](x) dx,

using Lemma 2.15. These ideas could be made rigorous using white noise theory [23].
Setting λ = 0, we recover the fact that FBM is the fractional integral or derivative of a
Brownian motion [34, p. 261]. The white noise approach is preferred in engineering applications
(e.g., see [4]).

4.3. Reproducing kernel Hilbert space

The reproducing kernel Hilbert space (RKHS) of TFBM provides another approach to
stochastic integration that produces an isometric space of deterministic integrands. The RKHS
for FBM was computed in [4,34]. For any mean zero Gaussian process {X t }t∈R with covariance
function R(s, t) = E[Xs X t ], the RKHS of X is the unique Hilbert space H(X) of measurable
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functions f : R → R such that R(·, t) ∈ H(X) for all t ∈ R, and ⟨ f, R(·, t)⟩H(X) = f (t) for all
t ∈ R and f ∈ H(X) [15,41]. As noted in [15], if there exists a measure space (Λ, B, ν) and a
set of functions { ft } ⊂ L2(R, ν) such that

R(s, t) =


Λ

fs(x) ft (x)ν(dx) for all s, t ∈ R. (4.3)

Then H(X) consists of the functions g(t) =


ft (x)g∗(x)ν(dx) for g∗
∈ Sp{ ft }, the closure in

L2(R, ν) of the set of linear combinations of functions ft . Then H(X) is a Hilbert space with the
inner product

⟨g, h⟩H(X) =


Λ

g∗(x)h∗(x)ν(dx).

Let Sp(X) denote the closure of the set of linear combinations of random variables {X t } in
the space L2(Ω). The mapping J that sends

J
j=1

a j R(·, t j ) →

J
j=1

a j X t j

is an isometry that maps H(X) onto Sp(X), and hence these two Hilbert spaces are isometric.
Then J ( f ) is the stochastic integral of any f ∈ H(X).

For TFBM with −1/2 < α < 0, let κ = −α. Since Bα,λ(t) =


R 1[0,t](x)Bα,λ(dx), it follows
immediately from the definition (3.30) that TFBM has covariance function

R(s, t) = Γ (κ + 1)2


R


Iκ,λ
− 1[0,s](x) − λIκ+1,λ

− 1[0,s]

 
Iκ,λ
− 1[0,t](x) − λIκ+1,λ

− 1[0,t]


dx,

and hence the RKHS H(Bα,λ) consists of functions

g(t) = Γ (k + 1)


R


Ik,λ
− − λIk+1,λ

−


1[0,t](x)g∗(x)dx

for g∗
∈ L2(R), with the inner product

⟨g, h⟩H(X) =


R

g∗(x)h∗(x)dx = ⟨g∗, h∗
⟩L2(R). (4.4)

For TFBM with 0 < α < 1/2 and λ > 0, the RKHS H(Bα,λ) consists of functions

g(t) = Γ (1 − α)2


R


Dα,λ

− − λI1−α,λ
−


1[0,t](x)g∗(x)dx

for g∗
∈ L2(R), with the same inner product (4.4). The proof is similar to [34, Section 6].

Complete details will be provided in the forthcoming paper [27]. Here we take Λ = L2(R), with
ν the Lebesgue measure on R. The main technical difficulty is to show that L2(R) = Sp{ ft },
where ft (x) = Γ (k + 1)[Ik,λ

− − λIk+1,λ
− ]1[0,t](x) in the case −1/2 < α < 0, and ft (x) =

Γ (1 − α)[Dα,λ
− − λI1−α,λ

− ]1[0,t](x) for 0 < α < 1/2.
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4.4. Tempered distributions as integrands

Jolis [18] proved that the exact domain of the Wiener integral for a fractional Brownian motion
BH (t) is given by

ΛH
=


f ∈ S ′(R) =


R

| f (k)|2 |k|
1−2H dk < ∞


where S ′(R) is the space of tempered distributions. This gives an isometry using the inner product
(for a standard FBM)

⟨ f, g⟩ =
Γ (2H + 1) sin(π H)

2π


f̂ (k)ĝ(k)|k|

1−2H dk,

that makes ΛH isometric to Sp(BH ). She also proved that this space contains distributions that
cannot be represented by locally integrable functions in the case of long range dependence
(1/2 < H < 1). Tudor [39] extended this result to subfractional Brownian motion. The
distributional approach is useful in the study of partial differential equations with a Gaussian
forcing term [5,9,40].

Following along these lines, we conjecture that the exact domain of the Wiener integral with
respect to TFBM is given by the distributional fractional Sobolev space

Λα,λ
=


f ∈ S ′(R) :


R

| f (k)|2 (λ2
+ k2)α dk < ∞


with the inner product

⟨ f, g⟩ = Cα,λ


f̂ (k)ĝ(k)(λ2

+ k2)αdk.

Proving this using [18, Theorem 3.5] would require computing the second derivative of the
variance function (4.2) and taking the (inverse) Fourier transform of the result. This computation
seems difficult, due to the Bessel function term.
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[6] Á. Cartea, D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump
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