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a b s t r a c t

Stable laws can be tempered bymodifying the Lévymeasure to cool the probability of large
jumps. Tempered stable laws retain their signature power law behavior at infinity, and
infinite divisibility. This paper develops randomwalk models that converge to a tempered
stable law under a triangular array scheme. Since tempered stable laws and processes are
useful in statistical physics, these randomwalk models can provide a basic physical model
for the underlying physical phenomena.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Tempered stable lawswere introduced in physics as amodel for turbulent velocity fluctuations (Koponen, 1995; Novikov,
1994). They have also been used in finance (Carr et al., 2002, 2003) and hydrology (Meerschaert et al., 2008) as a model of
transient anomalous diffusion (Baeumer and Meerschaert, 2010). The general class of tempered stable distributions for
random vectors was developed by Rosiński (2007). In short, the Lévymeasure of a stable law is modified in the tail to reduce
the probability of large jumps. Often this is done in such a way that all moments exist, but tempering by a power law of
a higher order is also useful (Sokolov et al., 2004). This paper develops random walk models that converge to a tempered
stable law. Starting with a randomwalk in the domain of attraction of a stable law, the basic idea is to modify the tails of the
jumps tomimic the tempering function of the limit. A triangular array scheme is essential, since the limit is no longer stable.
The results of this paper are intended to form a useful random walk model for natural processes that are well described by
a tempered stable. The main result of this paper is Theorem 4.3, which shows that the weak limit of the row sum of that
triangular array is a tempered stable distribution. In Theorem 4.8, we show that the random walk process converges to the
Lévy process generated by the tempered stable distribution in the sense of finite-dimensional distributions.

Section 2 gives a brief background of stable distributions and their domains of attraction. In Section 3,we define tempered
stable distributions and the triangular array model. In Section 4, we state and prove the results regarding the convergence
of the random walk to the tempered stable distribution.
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2. Stable limits for random walks

Recall that a random vector X on Rd is infinitely divisible if and only if its characteristic function E[ei⟨λ,X⟩
] = eψ(λ), where

ψ(λ) = i⟨a, λ⟩ −
1
2
⟨λ,Qλ⟩ +

∫
x≠0


ei⟨λ,x⟩ − 1 − i⟨λ, x⟩1(‖x‖ ≤ 1)


M(dx), (2.1)

where a ∈ Rd,Q is a nonnegative definite symmetric d × d matrix with entries in R, and M is a σ -finite Borel measure
on Rd

\ {0} such that

x≠0 min{1, ‖x‖2

}M(dx) < ∞. The triple [a,Q ,M] is called the Lévy representation, and it is unique
(Meerschaert and Scheffler, 2001, Theorem 3.1.11). The measureM is known as the Lévy measure of X .

A Rd valued random vector X is said to be stable if and only if for all n ≥ 1, there exist bn > 0 and an ∈ Rd so that
X1 + · · · + Xn

d
= bnX + an, where X1, X2, . . . are i.i.d. copies of X . Clearly, a stable random vector is infinitely divisible. It

is well known that given a stable random vector, either it is Gaussian, or the Gaussian part is completely absent, i.e., in the
Lévy representation (2.1), Q = 0. In this paper, ‘‘stable random vector’’ will refer to the latter case, i.e., non-Gaussian stable
random vectors. For such a random vector X, P(‖X‖ > ·) varies regularly with index−α for some 0 < α < 2. Sometimes, X
is also referred to as anα-stable randomvector. The Lévy representation of the randomvector X is [a, 0,M0] for some a ∈ Rd

whereM0(dr, ds) = r−α−1drσ(ds), and σ is a finite non-zero Borel measure on the unit sphere Sd−1
= {x ∈ Rd

: ‖x‖ = 1},
see for example (Meerschaert and Scheffler, 2001, Theorem 7.3.16). The measure σ is known as the spectral measure of X .
For more details on stable distributions, the reader is referred to Samorodnitsky and Taqqu (1994).

The domain of attraction of an α-stable random vector X consists of Rd valued random vectors H such that there exist a
sequence of positive numbers (bn) and a sequence (an) in Rd satisfying

b−1
n (H1 + · · · + Hn)− an ⇒ X (2.2)

as n → ∞, where ⇒ denotes weak convergence and H1,H2, . . . are i.i.d. copies of H . A necessary and sufficient condition
for (2.2) is that V (r) = P(‖H‖ > r) varies regularly with index −α, and

P


H
‖H‖

∈ D
 ‖H‖ > r


=

P

‖H‖ > r, H

‖H‖
∈ D


V (r)

→
σ(D)
σ (Sd−1)

(2.3)

as r → ∞ for all Borel subsets D of Sd−1 such that σ(∂D) = 0, see for example (Meerschaert and Scheffler, 2001, Theorem
7.3.16). When α > 1,m = E(H) exists, and we can center to zero expectation in (2.2) by setting an = nb−1

n m. Then the limit
X also has zero mean, and its log-characteristic function

ψ(λ) =

∫
x≠0


ei⟨λ,x⟩ − 1 − i⟨λ, x⟩


M(dx). (2.4)

When 0 < α < 1, no centering is required: Set an = 0 in (2.2); then X is a centered stable law with log-characteristic
function

ψ(λ) =

∫
x≠0


ei⟨λ,x⟩ − 1


M(dx). (2.5)

See for example Meerschaert and Scheffler (2001, Theorem 8.2.16).
Suppose that X is a stable random vector. Let {X(t)} denote the Lévy process associated with X , so that X(0) = 0 almost

surely, X(t) has stationary, independent increments, and X(1) = X in distribution. Suppose that (2.2) holds with an = 0,
let b(c) = b⌈c⌉, and S(c) =

∑⌈c⌉
j=1 Hj for c ≥ 0. Then, as c → ∞, we also have process convergence {b(c)−1S(ct)}t≥0 ⇒

{X(t)}t≥0 in the sense of finite dimensional distributions (Meerschaert and Scheffler, 2001, Example 11.2.18) as well as
convergence in the Skorokhod space D([0,∞),Rd) of right continuous functions with left hand limits, in the J1 topology
(Meerschaert and Scheffler, 2004, Theorem 4.1). The random vectors X(t) have smooth density functions P(x, t) that solve
a fractional differential equation ∂

∂t P(x, t) = D∇
α
σ P(x, t) for anomalous diffusion (Meerschaert et al., 1999). The fractional

derivative operator ∇
α
M f (x) is defined, for suitable functions f (x) with Fourier transform f̂ (λ) =


ei⟨λ,x⟩f (x) dx, as the

inverse Fourier transform of

‖s‖=1(−i⟨λ, s⟩)ασ(ds)f̂ (λ), and D > 0 is a positive constant that depends on the choice of

the norming sequence b(c). The random walk Sn provides a physical model for particle jumps, whose ensemble behavior is
approximated by the stable density functions P(x, t). For example, the randomwalk can be simulated to solve the fractional
diffusion equation, a numerical method known as particle tracking (Zhang et al., 2006). The purpose of this paper is to
develop analogous random walk models for tempered stables.
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3. Tempered random walks

This section develops random walk models that converge to a tempered stable, using a triangular array scheme. As in
Rosiński (2007), we define a d-dimensional proper tempered α-stable random vector to be an infinitely divisible random
vector with Lévy representation [a, 0,M] with

M(dr, ds) = r−α−1q(r, s)drσ(ds) (3.1)
for r > 0 and s ∈ Sd−1. Here α ∈ (0, 2), σ is a finite Borel measure on the unit sphere Sd−1

= {x ∈ Rd
: ‖x‖ = 1}, and

q : (0,∞) × Sd−1 is a Borel measurable function such that for all s ∈ Sd−1, q(·, s) is non-increasing, q(0+, s) = α and
q(∞, s) = 0. We also assume that q is continuous in the second variable, i.e., q(r, ·) is continuous for all r > 0. In Rosiński
(2007), the assumption is that q(0+, s) = 1. However, a simple reparametrization yields q(0+, s) = α. It is also assumed in
Rosiński (2007) that q(·, s) is completely monotone, but we do not need that assumption in this paper. Note that tempered
stable random vectors are full dimensional, since the Lévy measure is not concentrated on any lower dimensional subspace
(Meerschaert and Scheffler, 2001, Proposition 3.1.20). Let H be a random vector in the domain of attraction of X such that
(without loss of generality) P(H = 0) = 0. We will define a random walk that approximates the tempered stable using a
conditional tempering of the jumps. Define a function π : (0,∞)× Sd−1

→ R by

π(u, s) = uα
∫

∞

u
r−α−1q(r, s)dr. (3.2)

From the fact that the function q is bounded above by α, it is immediate that the integral on the right hand side is finite.
Clearly,

∂π(u, s)
∂u

= αuα−1
∫

∞

u
r−α−1q(r, s)dr − u−1q(u, s)

= αuα−1
∫

∞

u
r−α−1

{q(r, s)− q(u, s)} dr ≤ 0, (3.3)

the inequality following from the fact that q(·, s) is non-increasing. Thus π(·, s) is also non-increasing. A simple application
of L’Hôpital’s rule yields that π(0+, s) = 1 and π(∞, s) = 0.

Define a family of probability measures on (0,∞) by Π(du, s) = −
∂
∂uπ(u, s)du. Since q is a measurable function, for

every Borel set A ⊂ (0,∞),Π(A, ·) is a measurable function from Sd−1 to R. Hence there exists a random variable T > 0
whose conditional distribution given H isΠ (·,H/‖H‖).

Now we construct the tempered random walk. For t > 0, define

H t
=

H
‖H‖

(‖H‖ ∧ tT ). (3.4)

Let {(Hj : Tj) : j ≥ 1} be i.i.d. copies of (H, T ). Suppose vn → ∞ is a sequence of positive numbers. Define Ynj :=
‖Hj‖ ∧ vnTj


Hj/‖Hj‖ for n, j ≥ 1, and let

Sn(k) := Yn1 + · · · + Ynk. (3.5)
The next section shows that, for suitably chosen truncation thresholds vn, the randomwalk (3.5) is asymptotically tempered
stable.

4. Limits of tempered random walks

The results in this section show that for suitable truncation thresholds vn and centering, the randomwalk (3.5) converges
to a tempered stable. The form of the centering is then related to the case with no tempering. We begin with a few technical
results. Recall that for sigma-finite Borel measures µn, µ on Γ = Rd \ {0}, µn

v
→ µ (vague convergence) means that

µn(D) → µ(D) for Borel sets D ⊂ Γ that are bounded away from zero, for which µ(∂D) = 0.

Lemma 4.1. Suppose that H t is defined by (3.4). Then

P(t−1H t
∈ ·)

P(‖H‖ > t)
v

→
1

σ(Sd−1)
M(·)

on Γ as t → ∞, where M is as in (3.1).

For the proof, we shall need the following result from weak convergence. This result is similar to Theorem 1.3.4 in van
der Vaart and Wellner (1996), which states the corresponding result for probability measures. Although the result is well
known, we include the proof here for completeness, since we could not locate a suitable reference.

Lemma 4.2. Suppose (µn) is a sequence of measures on some metric space S equipped with the Borel sigma-field,
converging weakly to some finite measure µ. Then, for all bounded non-negative upper semicontinuous functions f , we have
lim supn→∞


f dµn ≤


f dµ.
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Proof. Since f is bounded and non-negative, we can assume without loss of generality that 0 ≤ f < 1. For k ≥ 1, denote
fk :=

1
k

∑k
i=1 1


f −1

 i−1
k , 1


. It is easy to see that f ≤ fk ≤ f +

1
k . Thus, for fixed k ≥ 1,

lim sup
n→∞

∫
f dµn ≤ lim sup

n→∞

∫
fkdµn ≤

1
k

k−
i=1

lim sup
n→∞

µn


f −1

[
i − 1
k
, 1


≤
1
k

k−
i=1

µ


f −1

[
i − 1
k
, 1


≤

∫
f dµ+

1
k
µ(S),

by the Portmanteau Theorem (Billingsley, 1968, Theorem 2.1) and the observation that f −1
 i−1

k , 1

is a closed set because

f is upper semicontinuous. Since µ is a finite measure, this completes the proof. �
Proof of Lemma 4.1. Note that if q(r, ·) is continuous for all r > 0, then the same is true for π(u, ·) for all u > 0. To see
this, suppose that the former holds. Fix u > 0 and sn, s ∈ Sd−1 such that sn → s. By the assumption on q and the dominated
convergence theorem, it follows that limn→∞


∞

u r−α−1q(r, sn)dr =


∞

u r−α−1q(r, s)dr . Thenπ(u, sn) → π(u, s), soπ(u, ·)
is continuous for every u > 0. A similar argument shows that ∂π(u,·)

∂u is continuous for every u > 0.
For the proof, we shall use the fact that as t → ∞,

P(‖H‖ > t)−1P
[
t−1

‖H‖ ∈ dr,
H

‖H‖
∈ ds

]
v

→
α

σ(Sd−1)
r−α−1drσ(ds) (4.1)

which is a restatement of Theorem 8.2.18 in Meerschaert and Scheffler (2001). It suffices to show that for every closed set
A ⊂ Rd

\ {0},

lim sup
t→∞

P(t−1H t
∈ A)P(‖H‖ > t)−1

≤ σ(Sd−1)−1M(A), (4.2)

and that for every ε > 0,

lim
t→∞

P(t−1H t
∈ Bc

ε)P(‖H‖ > t)−1
= σ(Sd−1)−1M(Bc

ε), (4.3)

where Br is the closed ball of radius r centered at origin: Br := {x ∈ Rd
: ‖x‖ ≤ r}. Fix a closed set A ⊂ Rd

\ {0} and note
that

P(t−1H t
∈ A) =

∫
∞

0

∫
Sd−1

∫
∞

0
1A((r ∧ u)s)Π(du, s)P


t−1

‖H‖ ∈ dr,
H

‖H‖
∈ ds


.

Fix sequences rn and sn so that rn > 0, rn → r > 0, sn ∈ Sd−1 and sn → s. Then

lim sup
n→∞

∫
∞

0
1A((rn ∧ u)sn)Π(du, sn) ≤ 1 −

∫
∞

0
lim inf
n→∞

1Ac ((rn ∧ u)sn)


−
∂π(u, sn)
∂u


du

= 1 −

∫
∞

0


−
∂π(u, s)
∂u


lim inf
n→∞

1Ac ((rn ∧ u)sn)du

≤

∫
∞

0
1A((r ∧ u)s)Π(du, s)

by Fatou’s Lemma, continuity of ∂
∂uπ(u, ·), and the fact that Ac is open. Then (r, s) →


∞

0 1A((r ∧ u)s)Π(du, s) is upper
semicontinuous. From (4.1), it follows that for all ε > 0, the restriction of P(‖H‖ > t)−1P


t−1

‖H‖ ∈ dr,H/‖H‖ ∈ ds

to

Bc
ε converges weakly to that of αr−α−1drσ(ds)/σ (Sd−1). Thus, by Lemma 4.2 and the fact that A is bounded away from zero,

it follows that

lim sup
t→∞

P(t−1H t
∈ A)

P(‖H‖ > t)
≤

∫
∞

0

∫
Sd−1

∫
∞

0
1A((r ∧ u)s)Π(du, s)

α

σ(Sd−1)
r−α−1drσ(ds)

=

∫
∞

0

∫
Sd−1

∫ r

0
1A(us)Π(du, s)


α

σ(Sd−1)
r−α−1drσ(ds)

+

∫
∞

0

∫
Sd−1

∫
∞

r
1A(rs)Π(du, s)


α

σ(Sd−1)
r−α−1drσ(ds) =: I1 + I2.

Note that Lemma 4.2 applies sinceΠ(du, s) is a probability measure for each s.
A change of the order of integration yields that

I1 =
1

σ(Sd−1)

∫
∞

0

∫
Sd−1

1A(us)u−α


−
∂π(u, s)
∂u


σ(ds)du.
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It is immediate that I2 = σ(Sd−1)−1


∞

0


Sd−1 1A(rs)απ(r, s)r−α−1drσ(ds). Thus,

lim sup
t→∞

P(t−1H t
∈ A)

P(‖H‖ > t)
≤

1
σ(Sd−1)

∫
∞

0

∫
Sd−1

1A(rs)

απ(r, s)− r

∂π(r, s)
∂r


r−α−1drσ(ds). (4.4)

From (3.3), it follows that απ(r, s)− r ∂
∂rπ(r, s) = q(r, s). Plugging this in (4.4) yields that

lim sup
t→∞

P(t−1H t
∈ A)

P(‖H‖ > t)
≤

1
σ(Sd−1)

∫
∞

0

∫
Sd−1

1A(rs)q(r, s)r−α−1drσ(ds) =
M(A)
σ (Sd−1)

,

thus showing (4.2). For (4.3), note that as t → ∞,

P(t−1H t
∈ Bc

ε) =

∫
∞

ε

∫
Sd−1

π(ε, s)P

t−1

‖H‖ ∈ dr,
H

‖H‖
∈ ds


∼ P(‖H‖ > t)

∫
∞

ε

∫
Sd−1

π(ε, s)
α

σ(Sd−1)
r−α−1drσ(ds)

= P(‖H‖ > t)
1

σ(Sd−1)

∫
Sd−1

ε−απ(ε, s)σ (ds) =
P(‖H‖ > t)
σ (Sd−1)

M(Bc
ε),

by (4.1), the fact that π(ε, ·) is continuous, and the definition of π . �

The following theorem is the main result of this paper. It shows that the tempered random walk (3.5) converges weakly
to a tempered stable, for suitable tempering constants vn and suitable centering vectors an.

Theorem 4.3. For n ≥ 1 let bn := inf

x : P(‖H‖ > x) ≤ n−1


. If the sequence (vn) satisfies

lim
n→∞

v−1
n bn = σ(Sd−1)1/α, (4.5)

then,

v−1
n Sn(n)− an ⇒ ρ (4.6)

where ρ is an infinitely divisible probability measure on Rd with Lévy representation [0, 0,M], and (an) is defined by

an := n
∫

{‖x‖<1}
xP(v−1

n Yn1 ∈ dx). (4.7)

Proof. Note that nP(‖H‖ > bn) → 1 (Resnick, 2007, p. 24). Since P(‖H‖ > ·) varies regularly with index −α, (4.5) implies
P(‖H‖ > vn)/P(‖H‖ > bn) → σ(Sd−1). Then

lim
n→∞

nP(‖H‖ > vn) = σ(Sd−1). (4.8)

An appeal to Lemma 4.1 shows that

nP(v−1
n Yn1 ∈ ·)

v
→ M(·), (4.9)

and then it suffices to check (Meerschaert and Scheffler, 2001, Theorem 3.2.2):

lim
δ↓0

lim sup
n→∞

nv−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖

2
= 0. (4.10)

For this, note that ‖Yn1‖
21(‖Yn1‖ ≤ vnδ) ≤ ‖H1‖

21(‖H1‖ ≤ vnδ) + v2nT
2
1 1(vnT1 ≤ vnδ, ‖H1‖ > vnδ) ≤ ‖H1‖

21(‖H1‖ ≤

vnδ) + v2nδ
21(‖H1‖ > vnδ). Since P(‖H‖ > ·) is regularly varying with index −α and α < 2, by Karamata’s theorem

(Resnick, 2007, Theorem 2.1) it follows that E

‖H‖

21(‖H‖ ≤ vnδ)


∼ (vnδ)
2P(‖H‖ > vnδ)α/(2 − α) ∼ δ2−αv2nP(‖H‖ >

vn)α/(2−α) as n → ∞. Using the regular variation of P(‖H‖ > ·) once again, it is immediate that E

v2nδ

21(‖H‖ > vnδ)


=

v2nδ
2P(‖H‖ > vnδ) ∼ δ2−αv2nP(‖H‖ > vn). To complete the proof, use (4.8) to obtain C < ∞ such that for all δ > 0,

lim sup
n→∞

nv−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖

2
≤ Cδ2−α. � (4.11)

The next two results show that the centering constants in (4.6) can be chosen in the same way as for (2.2) when α ≠ 1.
We say that a tempered stable law with index 0 < α < 1 is centered if its log-characteristic function can be written in the
form (2.5) where M is given by (3.1).

Theorem 4.4. If 0 < α < 1 and vn satisfies (4.5), then v−1
n Sn(n) ⇒ ρ1 where ρ1 is centered tempered stable.
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Proof. In view of Theorem 4.3 and (2.1), it suffices to show that, if an is defined by (4.7), then an →

{‖x‖<1} xM(dx). Fix

0 < ε < 1 and note that

an = n
∫

{ε<‖x‖<1}
xP(v−1

n Yn1 ∈ dx)+ n
∫

{‖x‖≤ε}
xP(v−1

n Yn1 ∈ dx) =: I1 + I2.

Clearly, by (4.9), limn→∞ I1 =

{ε<‖x‖<1} xM(dx). Thus, it suffices to show

lim
ε↓0

lim sup
n→∞

‖I2‖ = 0. (4.12)

Note ‖I2‖ ≤ nv−1
n E[‖Yn1‖1(‖Yn1‖ ≤ vnε)] ≤ nv−1

n [E(‖H‖1(‖H‖ ≤ vnε)) + vnεP(‖H‖ > vnε)]. Since α < 1, Karamata
along with regular variation yields E (‖H‖1(‖H‖ ≤ vnε)) ∼ vnε

1−αP(‖H‖ > vn)α/(1 − α). Then (4.12) follows, using (4.8)
and regular variation. �

Theorem 4.5. Suppose α > 1 and that for some β > α,

lim sup
u↓0

sup
s∈Sd−1

u1−β
[α − q(u, s)] < ∞ (4.13)

where vn satisfies (4.5). Then, v−1
n [Sn(n) − nE(H)] ⇒ ρ2 where ρ2 is an infinitely divisible law with no Gaussian component,

Lévy measure M and mean

m = −α

∫
∞

0

∫
Sd−1

∫ r

0
(r − u)sΠ(du, s)


r−α−1drσ(ds). (4.14)

Proof. Let

θ := α

∫
∞

0

∫
Sd−1

∫ r

0
(r − u)sΠ(du, s)


r−α−1drσ(ds)+

∫
{‖x‖≥1}

xM(dx). (4.15)

We start with showing that the integrals on the right hand side of (4.15) are well defined. Let g(r, s) :=
 r
0 (r − u)sΠ(du, s).

It is easy to see that ‖g(r, s)‖ ≤
 r
0 (r − u)Π(du, s) =: ḡ(r, s). Clearly,

ḡ(r, s) = r[1 − π(r, s)] +

∫ r

0
u
∂π(u, s)
∂u

du, (4.16)

and hence, ∂
∂r ḡ(r, s) = 1 − π(r, s) = rα


∞

r u−α−2+βu1−β
[α − q(u, s)]du = rα

 1
r u−α−2+βu1−β

[α − q(u, s)]du + O(rα).
Clearly (4.13) holds with β replaced by β ∧ 2. Thus, without loss of generality, we can assume that β ≤ 2. Define
K = sup{u1−β

[α − q(u, s)] : s ∈ Sd−1, 0 < u ≤ 1}. By hypothesis, K < ∞. Thus,

rα
∫ 1

r
u−α−2+β α − q(u, s)

uβ−1
du ≤ Krα

∫ 1

r
u−α−2+βdu ≤ K ′rβ−1,

where K ′
= K/(α + 1 − β) > 0 since β ≤ 2 and α > 1. Thus, as r ↓ 0, ∂

∂r ḡ(r, s) = O(rβ−1) uniformly in s, and hence for
some C < ∞,

ḡ(r, s) ≤ Crβ , r ≤ 1, s ∈ Sd−1. (4.17)

It follows that
 1
0


Sd−1 ḡ(r, s)r−α−1drσ(ds) < ∞. It is easy to see that ḡ(r, s) ≤ r . Since α > 1,


∞

1


Sd−1 ḡ(r, s)r−α−1dr

σ(ds) < ∞. Thus, the first integral in (4.15) is well defined. Since α > 1, it is easy to check that the second integral is
also well defined. Then it follows, using Theorem 3.1.14 and Remark 3.1.15 in Meerschaert and Scheffler (2001), that any
tempered stable law with index α > 1 has a finite mean.

Next we want to show that

lim
n→∞

[
n
vn

E(H)− an

]
= θ. (4.18)

Write nv−1
n E(H)− an = nE


v−1
n (H1 − Yn1)


+ nv−1

n E [Yn11(‖Yn1‖ ≥ vn)] = I1 + I2. Fix 1 < N < ∞ and write

I2 = n
∫

{1≤‖x‖<N}

xP

v−1
n Yn1 ∈ dx


+ n

∫
{‖x‖≥N}

xP

v−1
n Yn1 ∈ dx


:= I21 + I22.

By (4.9), it follows that

lim
n→∞

I21 =

∫
{1≤‖x‖<N}

xM(dx). (4.19)
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Using Karamata’s Theorem we get ‖I22‖ ≤ nv−1
n E [‖Yn1‖1(‖Yn1‖ ≥ vnN)] ≤ nv−1

n E [‖H‖1(‖H‖ ≥ vnN)] ∼ N1−αnP(‖H‖ >
vn)α/(α − 1) as n → ∞. This, in view of (4.8) show that limN→∞ lim supn→∞ ‖I22‖ = 0. In conjunction with (4.19), this
shows that

lim
n→∞

I2 =

∫
{‖x‖≥1}

xM(dx). (4.20)

It remains to show that

lim
n→∞

I1 = α

∫
∞

0

∫
Sd−1

∫ r

0
(r − u)sΠ(du, s)


r−α−1drσ(ds). (4.21)

To that end, fix 0 < ε < 1 < N < ∞ and note that

I1 = nE
[

H
‖H‖


v−1
n ‖H‖ − T


1

v−1
n ‖H‖ > T

]
= n

∫ ε

0

∫
Sd−1

g(r, s)P

v−1
n ‖H‖ ∈ dr,

H
‖H‖

∈ ds


+ n
∫ N

ε

∫
Sd−1

g(r, s)P

v−1
n ‖H‖ ∈ dr,

H
‖H‖

∈ ds


+ n
∫

∞

N

∫
Sd−1

g(r, s)P

v−1
n ‖H‖ ∈ dr,

H
‖H‖

∈ ds


=: I11 + I12 + I13.

We shall now show that g is jointly continuous. Clearly, g(r, s) = ḡ(r, s)s. Thus, it suffices to show that ḡ is jointly
continuous. Since q is assumed to be continuous in the second variable, an appeal to the dominated convergence theorem
shows thatπ is jointly continuous. By (3.3), it follows that ∂

∂uπ(u, ·) is continuous for every u > 0. In viewof (4.16), it suffices
to show that the function (r, s) →

 r
0 u ∂

∂uπ(u, s)du is jointly continuous. For that, fix a sequence rn → r and sn → s. Note
that ∫ rn

0
u
∂π(u, sn)
∂u

du =

∫ rn

0
u
∂π(u, s)
∂u

du +

∫ rn

0
u
[
∂π(u, sn)
∂u

−
∂π(u, s)
∂u

]
du =: J1 + J2.

Clearly, as n → ∞, J1 →
 r
0 u ∂

∂uπ(u, s)du. Let R = supn≥1 rn and note that,

|J2| ≤

∫ R

0
u
∂π(u, sn)∂u

−
∂π(u, s)
∂u

 du ≤ R
∫

∞

0

∂π(u, sn)∂u
−
∂π(u, s)
∂u

 du
= R

[
2
∫

∞

0


∂π(u, sn)
∂u

∨
∂π(u, s)
∂u


du + 2

]
,

the second equality following from the identity |a − b| = 2(a ∨ b) − (a + b). Since,
 ∂
∂uπ(u, sn) ∨

∂
∂uπ(u, s)

 ≤

−
∂
∂uπ(u, s), an appeal to the dominated convergence theorem along with the fact that ∂

∂uπ(u, ·) is continuous shows that
limn→∞


∞

0


∂
∂uπ(u, sn) ∨

∂
∂uπ(u, s)


du = −1, which in turn shows that J2 → 0 as n → ∞. This shows that g is jointly

continuous.
By (4.1), (4.8) and the fact that g is jointly continuous, it follows that limn→∞ I12 = α

 N
ε


Sd−1 g(r, s)r−α−1drσ(ds). Note

that

‖I11‖ ≤ n
∫ ε

0

∫
Sd−1

ḡ(r, s)P

v−1
n ‖H‖ ∈ dr,

H
‖H‖

∈ ds


≤ Cn
∫ ε

0

∫
Sd−1

rβP

v−1
n ‖H‖ ∈ dr,

H
‖H‖

∈ ds


= Cnv−β
n

∫ εvn

0
rβP(‖H‖ ∈ dr) → C

α

β − α
εβ−ασ(Sd−1)

as n → ∞, using (4.17), Karamata’s Theorem, and (4.8). This shows that limε↓0 lim supn→∞ ‖I11‖ = 0. Finally, by similar
calculations and the fact that ‖g(r, s)‖ ≤ r , it follows that

‖I13‖ ≤ nv−1
n

∫
∞

Nvn
rP(‖H‖ ∈ dr) →

α

α − 1
σ(Sd−1)N1−α.

This shows that limN→∞ lim supn→∞ ‖I13‖ = 0. Thus, (4.21) follows. By (4.20) and (4.21), (4.18) follows.
From Theorem 4.3 and (4.18) it follows that

v−1
n Sn(n)−

n
vn

E(H) = v−1
n Sn(n)− an + an −

n
vn

E(H) ⇒ ρ − θ := ρ2 (4.22)
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so that ρ2 has Lévy representation [−θ, 0,M]. Using (Meerschaert and Scheffler, 2001, Remark 3.1.15), we can write the
log-characteristic function of a tempered stable law with mean zero in the form (2.4). Then it follows easily that (4.14)
holds. �

Remark 4.6. As noted in Section 2, we can center to zero expectation in (2.2) when α > 1, or dispense with the centering
when α < 1. Theorems 4.4 and 4.5 shows that the same centering can be used for the tempered randomwalk. If α < 1, the
limit is centered tempered stable, analogous to a centered stable law. If α > 1, and we center to zero expectation for the
untempered random walk jumps, the limit contains a shift depending on the spectral measure and the tempering function.
The shift comes from the fact that I1 = nv−1

n E [H1 − Yn1] → −m in (4.21).

Remark 4.7. The special case d = 1 is also important in applications (Meerschaert et al., 2008). Suppose d = 1, and
that H and π(·, ·) are as before. In this case, the conditional distribution of T given H can be written in a simpler form:
P(T > u|H > 0) = π(u, 1) and P(T > u|H < 0) = π(u,−1). Let (vn), (an) and ρ be as in Theorem 4.3. For n ≥ 1, suppose
that Yn1, . . . , Ynn are i.i.d. with

Yn1
d
= sgn(H)(|H| ∧ vnT ).

Let Sn(k) :=
∑k

j=1 Ynj. As a restatement of Theorem 4.3, we obtain that

v−1
n Sn(n)− an ⇒ ρ.

If α < 1, we can set an = 0. If α > 1, we can take an = nv−1
n E(H), provided

lim sup
u↓0

2α − q(u, 1)− q(u,−1)
uβ−1

< ∞

for some β > α.

Let {X(t)} be the Lévy process generated by the tempered stable random vector X with distribution ρ, so that X(0) = 0
almost surely, {X(t)} has stationary, independent increments, and X(1) = X in distribution. The next result shows that the
tempered random walk (3.5) faithfully approximates the tempered stable process.

Theorem 4.8. Suppose that (4.6) holds as in Theorem 4.3. Then

{vnSn([nt])− tan}t≥0 ⇒ {X(t)}t≥0 (4.23)

as n → ∞ in the sense of finite dimensional distributions.

Proof. The Lévy representation of the limit ρ in (4.6) is [0, 0,M]. Use (4.9) to get [nt] P(v−1
n Yn1 ∈ ·) ∼ ntP(v−1

n Yn1 ∈ ·)
v

→

tM(·) and (4.10) to get limδ↓0 lim supn→∞ [nt] v−2
n E ‖Yn11(‖Yn1‖ ≤ vnδ)‖

2
= 0. Then v−1

n Sn ([nt]) − ant ⇒ ρt follows by
the general convergence criteria for triangular arrays (Meerschaert and Scheffler, 2001, Theorem 3.2.2), where ρt has Lévy
representation [0, 0, tM], sinceant − [nt]

∫
{‖x‖<1}

xP(v−1
n Yn1 ∈ dx)

 ≤

∫
{‖x‖<1}

‖x‖P(v−1
n Yn1 ∈ dx)

≤

v−2
n E ‖Yn11(‖Yn1‖ ≤ vn)‖

21/2
→ 0

using (4.11). To prove convergence of finite dimensional distributions, use the fact that increments of the random walk are
independent. �

Remark 4.9. Take the exponential tempering function q(r, s) = e−λr for s = ±1. Then the random vectors X(t) have
smooth density functions p(x, t) that solve a tempered fractional diffusion equation ∂tp = cq∂α,λ−x p + c(1 − q) ∂α,λx p, where
P(H < −r)/P(|H| > r) ∼ q as r → ∞. The operator on the right hand side is the negative generator of the continuous
convolution semigroup associated with X . Some properties of the tempered fractional diffusion equation are developed in
Baeumer andMeerschaert (2010). Theorem4.8 shows that the tempered randomwalk (3.5) provides a useful approximation
to the process {X(t)}. In this case, the distribution of Ti is given by P(Ti > u) = π(u, s) = uα


∞

u r−α−1e−λrdr , which involves
the incomplete gamma function. The tempering thresholds vn do not depend on q. For example, if H belongs to the domain
of normal attraction of some stable law, then we can take vn = cn1/α for some c > 0. Any random walk in the domain of
attraction of a stable law can be modified using this tempering, to approximate an exponentially tempered stable.

Remark 4.10. Suppose that the tempering variable is conditionally exponential with P

Ti > t

 H
‖H‖

= s


:= π(t, s) =

e−λst for some continuous s → λs > 0. Let h(r, s) = r−α−1q(r, s) and use (3.2) to get u−αe−λsu =


∞

u h(r, s) dr . Take
derivatives with respect to u on both sides to obtain −αu−α−1e−λsu − λsu−αe−λsu = −h(u) and write

q(u, s) = uα+1h(u) = (α + λsu)e−λsu. (4.24)
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Using this tempering function for the Lévymeasure (3.1) yields a tempered stable law X with a particularly simple tempering
variable Ti. If 1 < α < 2, then the form of the Lévy measure shows that X is the sum of two independent exponentially
tempered stable laws, one with index α, and the other with index α − 1.

Remark 4.11. The goal of this paper is to construct randomwalkmodels that lead to a tempered stable limit. To conclude this
paper, we provide a practical, heuristic interpretation of those results. A stable process serves to approximate a randomwalk
with power-law jumps. A tempered stable approximates the same random walk, once the largest jumps are reduced. The
tempering process represents an external force applied independently to each jump, the exact nature of which determines
the tempered stable limit. Any randomwalk in the domain of attraction of a stable, and subjected to this type of independent
tempering, can be faithfully approximated by a tempered stable. A few concrete examples are provided inMeerschaert et al.
(in press): Precipitation data can be tempered due to atmospheric water content; measurements of hydraulic conductivity
can be tempered by volume averaging; daily stock returns could be tempered by automatic trading limits. See also Aban
et al. (2006) for additional discussion.

Acknowledgements

The authors are grateful to an anonymous referee for some comments that helped improve the paper. Arijit Chakrabarty
was partially supported by the Centenary Postdoctoral Fellowship at the Indian Institute of Science, and a fellowship from
the National Board of Higher Mathematics. Mark M. Meerschaert was partially supported by NSF grants DMS-0125486,
DMS-0803360, EAR-0823965 and NIH grant R01-EB012079-01.

References

Aban, I., Meerschaert, M., Panorska, A., 2006. Parameter estimation for the truncated Pareto distribution. Journal of the American Statistical Association
101 (473), 270–277.

Baeumer, B., Meerschaert, M.M., 2010. Tempered stable Lévy motion and transient super-diffusion. Journal of Computational and Applied Mathematics
233, 2438–2448.

Billingsley, P., 1968. Convergence of Probability Measures. Wiley, New York.
Carr, P., Geman, H., Madan, D.B., Yor, M., 2002. The fine structure of asset returns: an empirical investigation. Journal of Business 75, 303–325.
Carr, P., Geman, H., Madan, D.B., Yor, M., 2003. Stochastic volatility for Lévy processes. Mathematical Finance 13, 345–382.
Koponen, I., 1995. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E

52, 1197–1199.
Meerschaert, M.M., Benson, D.A., Baeumer, B., 1999. Multidimensional advection and fractional dispersion. Physical Review E 59, 5026–5028.
Meerschaert,M.M., Roy, P., Shao, Q., 2010. Parameter estimation for tempered power law distributions. Communications in Statistics—Theory andMethods,

Preprint (in press). Available at: www.stt.msu.edu/~mcubed/TempPareto.pdf.
Meerschaert, M.M., Scheffler, H.-P., 2001. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, New

York.
Meerschaert,M.M., Scheffler, H.-P., 2004. Limit theorems for continuous time randomwalkswith infinitemeanwaiting times. Journal of Applied Probability

41, 623–638.
Meerschaert, M.M., Zhang, Y., Baeumer, B., 2008. Tempered anomalous diffusions in heterogeneous systems. Geophysical Research Letters 35,

L17403–L17407.
Novikov, E.A., 1994. Infinitely divisible distributions in turbulence. Physical Review E 50, R3303–R3305.
Resnick, S., 2007. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.
Rosiński, J., 2007. Tempering stable processes. Stochastic Processes and their Applications 117 (6), 677–707.
Samorodnitsky, G., Taqqu, M., 1994. Stable Non-Gaussian Random Processes. Chapman and Hall, New York.
Sokolov, I.M., Chechkin, A.V., Klafter, J., 2004. Fractional diffusion equation for a power-law-truncated Lévy process. Physica A 336, 245–251.
van der Vaart, A.W., Wellner, J.A., 1996. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer-Verlag, New York.
Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M., Scheffler, H.-P., 2006. Random walk approximation of fractional-order multiscaling anomalous

diffusion. Physical Review E 74, 026706.




