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A particle tracking code is developed to solve a general time-fractional diffusion equation �FDE�, yielding a
Lagrangian framework that can track particle dynamics. Extensive simulations demonstrate the efficiency and
flexibility of this simple Langevin approach. Many real problems require a vector FDE with variable param-
eters and multiscaling spreading rates. For these problems, particle tracking is the only viable solution method.

DOI: 10.1103/PhysRevE.78.036705 PACS number�s�: 02.60.Cb, 05.40.Fb, 05.10.Gg

I. INTRODUCTION

Fractional diffusion equations extend the classical model,
substituting fractional derivatives for their integer-order ana-
log. Fractional derivatives in space model anomalous super-
diffusion, driven by large particle jumps. Fractional deriva-
tives in time can capture anomalous subdiffusion, related to
long waiting times between particle jumps �1� �see further
discussion in the next section�. In practice, a combination of
subdiffusive and superdiffusive effects can manifest in the
same problem. A contaminant undergoing natural gradient
flow through a porous medium may exhibit early arrival
downstream �superdiffusion� as well as slow concentration
decay at late times �subdiffusion�. In addition, a physically
realistic model requires consideration of multiple spatial di-
mensions, the possibility of correlation between motion in
each coordinate, and the likelihood of variations in the po-
rous medium structure �2,3�. All of these factors present se-
rious challenges for Eulerian simulation codes.

Numerical methods for fractional diffusion equations
�FDEs� have been the focus of many recent studies due to the
prevalence of anomalous diffusion processes in nature �4–6�
and the impossibility of exact analytical solutions for most
fractional partial differential equations. Many successful
methods are Eulerian: finite difference methods �7–17�; the
finite element method �18–22�; the method of lines �23–25�;
and the mixed Lagrangian-Eulerian method �26,27�.

Unlike Eulerian solvers, particle-tracking yields a grid-
free, fully Lagrangian solution by simulating sample paths of
the underlying stochastic process �28–32�. To simulate the
macroscopic transport, random walker �or particle� locations
are updated based on local velocity and/or dispersion
strength, combined with a random trapping time �see also the
excellent reviews of the particle tracking approach and the
extensive references cited by Delay et al. �28� and Salamon

et al. �32��. In particular, Dentz et al. �33� approximated the
generalized master equation with a temporal memory kernel
using a discrete particle tracking routine �expressed by their
equations �13� and �14��, where the spatial and temporal ran-
dom increments �which are independent� for each particle are
generated according to the predefined probability density
functions �PDFs� for jump size and waiting time, respec-
tively. A similar particle tracking routine was also described
briefly by Berkowitz and Scher �34�. Note the above two
references assume instantaneous particle jumps, which re-
quires more time steps than the Lagrangian scheme devel-
oped in this study �where the particle has a finite velocity
while motionless for extended periods of time�.

Particle tracking increases computational efficiency for
large-scale flow systems with fine mesh �35,36� and over-
comes the grid-average error for simulating a sharp density
front �37,38�. These advantages of the Lagrangian solver
have motivated the recent development of particle-based ap-
proximations for the FDE. Chechkin et al. �39� and Zhang et
al. �40� approximate the space-fractional FDE using a
Langevin approach. Marseguerra and Zoia �30,31,41� de-
velop a Monte Carlo approach to model subdiffusion across
a discontinuity of parameters. Heinsalu et al. �42� develop a
continuous time random walk scheme for the time fractional
Fokker-Planck equation �FFPE�. Magdziarz and Weron �43�
develop a robust Monte Carlo approach to solve the one-
dimensional �1D� spatiotemporal FFPE.

This study proposes a particle tracking method for the
time-fractional diffusion equation. It is a logical extension of
Zhang et al.’s �40� Lagrangian solver, which treats the space-
fractional FDE. The methodology is developed in the next
section. In Sec. III, we report on the results of extensive
simulation studies. This includes a comparison with other
numerical solutions, when available, and model fitting to
field data, for which no other simulation methods are avail-
able. Conclusions are drawn in Sec. IV.

II. TIME-LANGEVIN APPROACH AND THE RESULTANT
LAGRANGIAN FRAMEWORK

The FDE considered in this study has a general form,
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p0�x� , �1�

where p�x , t� is a PDF representing the relative concentration
of moving particles with initial condition p�x , t=0�= p0�x�;
0���1 is the order of the Riemann-Liouville fractional
time derivative; b�0 and ��0 are arbitrary parameters; and
Ax denotes the advection-diffusion operator. If b=1, Eq. �1�
reduces to the fractal mobile and immobile transport model
proposed by Schumer et al. �44�. If b=0 and �=1, Eq. �1�
reduces to the fractional kinetic equation of Zaslavsky �45�.
The general equation �1� governs a subordinated process
W�Et�, where the transition density of W�t� is the Green’s
function solution of �u /�t=Axu, and �=Et is the inverse or
first passage time for the process t=b�+�D�, with D� a clas-
sical stable subordinator of index �, compare �46�. The outer
process W��� models the location of a moving particle, and
the subordinator adjusts for resting time that intervenes, due
to sticking or trapping. While the treatment here is com-
pletely general, in practical applications we take b=1 or b
=0.

It is also noteworthy that the time fractional derivative in
Eq. �1� does not produce pure subdiffusion if the motion
operator Ax includes an advective component. For example,
when b=0, �=1, and Ax=−v� /�x+D�2 /�x2 �where v and D
denote the velocity and dispersion coefficient, respectively�,
the corresponding mean squared displacement is �see Eqs.
�39� and �92� in Metzler and Klafter �4� and Eq. �2c� in
Zhang et al. �47��

�x2�t�� =
2

��� + 1�
Dt� + 	 2

��2� + 1�
−

1

��� + 1�2
v2t2�,

which spreads faster than the classical diffusion rate �x2�t��
=�2t if 0.5���1.

The function p in Eq. �1� is a density of random walkers
with decoupled jump sizes and waiting times. It can be cal-
culated by subordinating the jump process against the wait-
ing time process �see �1� or �46, Theorem 4.1��:

p�x,t� = �
0

�

u�x,��h��,t�d� , �2�

where t denotes clock time, and � denotes operational time.
The first density u�x ,�� on the right-hand side �rhs� models
particle motion in operational time �:

�

��
u�x,�� = Axu�x,�� �3�

with initial condition u�x ,�=0�= p0�x�. The second density
h�� , t� on the rhs of Eq. �2� adjusts the particle motion to
allow for long waiting times, and is governed by

�

��
h��,t� = − 	b

�h��,t�
�t

+ �
��h��,t�

�t� 
 �4�

with initial condition h��=0, t�=b	�t�+�t−� /��1−��. It con-
tains a drift term and a diffusion component in clock time t,
analogous to the advection and diffusion in space. The trans-
lation from operational to clock time accounts for the effect

of the fractional time derivative �1,48�. Note that fractional
dynamics is often understood in terms of Bochner’s subordi-
nation principle �49,50�, which links the operational time and
the physical clock time �for example, see applications by
Yuste and Lindenberg �51�, Sokolov and Metzler �52�,
Magdziarz and Weron �43�, Baeumer and Meerschaert �53�,
among many others�. The numerical transfer from opera-
tional time to clock time, as outlined in the following, is
much easier than its inverse subordination process.

The forward-in-time equation �4� needs to be converted to
its backward-in-time counterpart to build the Langevin equa-
tion. Let H�s , t� be the hitting time density of the backward
time s=�end−�, where �end is the final forward time ��end
���. Following the argument in �40�, we obtain the back-
ward equation

�

�s
H�s,t� = b

�H�s,t�
�t

− �
��H�s,t�
��− t�� �5�

for the Markov process

dT = bd� + dw , �6�

where the stable random noise

dw = 	�� cos

�

2
�d�
1/�

S���* = + 1,�* = 1,� = 0� ,

�7�

and S��+1,1 ,0� is a standard stable random variable in the
Samorodnitsky and Taqqu �54� parametrization �with �*, �*,
and � denoting the skewness, scale, and shift, respectively�.
Equation �7� provides the sample path of the hitting time
process �4�.

The Lagrangian framework to approximate �1� requires
three steps �46,55,56�.

Step 1. Transform operational time � to the corresponding
clock time t, based on Eq. �6�. d� is the predefined opera-
tional time step, and the noise dw is then calculated using
Eq. �7�.

Step 2. Simulate the particle jump dX during operational
time step d�. Note that the particle motion process X��� is
Markovian. Examples will be shown in the next section.

Step 3. Calculate the particle location at each clock time
grid ti using

Y�ti� = X��i� = X�
j=1

i

�d�� j� , �8�

where �i is the operational time corresponding to clock time
ti.

By repeating these three steps until the modeling time
exceeds the target clock time Tend �i.e., dt�Tend�, we obtain
the solution p�x , t� of Eq. �1� up to time Tend. The algorithm
outputs the solution p at irregular time grids ti due to the
random noise dw. It is straightforward to interpolate t to get
a regular output, as in �43�.

III. NUMERICAL EXAMPLES

The Lagrangian solver developed in Sec. II is tested
against other numerical solutions and fit to field measure-
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ments in cases where no other solution is available. To check
the full capability of the Lagrangian solver, different
advection-diffusion operators Ax are selected. The three-step
Lagrangian framework is used for all examples. In the sec-

ond step, the particle jump size dX depends on the form of
Ax.

A. Spatiotemporal fractional diffusion equation

If the advection-diffusion operator Ax in Eq. �1� is

Ax = −
�

�x
v�x� +

��−1

�x�−1	D�x�
�

�x

 , �9�

then Eq. �1� is a space and time FDE with variable velocity v
and diffusion coefficient D. Here 1��2 is the order of the
space fractional derivative.

The jump size dX at each time step d� is approximated by
the space-Langevin equation �40�

dX = vd� + B1S��+ 1,1,0� + B2S
�−1
* �+ 1,1,0� , �10�

where

B1 = 	�− cos

�

2
�Dd�
1/�

,

B2 = sign� �D

�x
��cos�
�� − 1�

2
� �D

�x
d��1/��−1�

,

and the two random noises S and S* are independent. If D�x�
is a constant, then B2=0, and Eq. �10� is similar to the time
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FIG. 1. �Color online� Lagrangian approximation �symbols� of
Eq. �1� with b=1 and operator �9� vs the semianalytical solution
�lines� developed by Schumer et al. �44�. The time scale index �
varies from 0 to 1, while the space scale index � is limited to 2. The
classical second-order advection-diffusion equation �p /�t=
−v�c /�x+D�2C /�x2 is also shown �dashed line� for comparison. �a�
The spatial distribution of p�x , t�, with parameters v=1, D=0.1, t
=30, �=0.1–0.9, �=0.1, and the instantaneous source at x=0. �c�
The temporal evolution of p�x , t�, with v=1, D=0.1, �=0.2–0.95,
�=0.2, the initial source at x=0, and the control plane at distance 5.
�b� The semilog plot of �a�, and �d� the log-log plot of �c�.
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FIG. 2. �Color online� Lagrangian approximations �symbols� of
Eq. �1� with b=1 and operator �9� vs the implicit Eulerian solutions
after time-subordination operation �lines�, for four different cases.
Some parameters are the same in all cases, including: v�x�=2
+0.04x, D�x�=8+0.15x, �=0.5, an instantaneous source at x=50,
and the control plane at distance 80. �b� The log-log plot of �a�.
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Langevin equation �6�.
Extensive tests of this Lagrangian framework have been

performed, with a few examples shown in Fig. 1 and 2. The
Lagrangian results generally match the semianalytical solu-
tions for various � �Fig. 1�. When parameters v and D vary
in space, there is no semianalytical solution, and we then
check the Lagrangian solution using the implicit Eulerian
solution �40� with numerical time-subordination transform.
Note the implicit Eulerian scheme developed by Zhang et al.
�40� is unconditionally stable. The Lagrangian solutions gen-
erally match the Eulerian solutions �Fig. 2�.

Note the first step of the Lagrangian framework, ex-
pressed by Eq. �6�, efficiently converts operational time to
clock time �see Fig. 3 for examples� using the inverse pro-
cess of h�� , t�. In this case b=1, one can interpret operational
time as the mobile time of a particle undergoing advection
and dispersion while simultaneously transitioning between
two phases: mobile and immobile. The first term of Eq. �6� is
the mobile time d�, and the second term is the random im-
mobile waiting time dw that accumulates during mobile time
d�, so that dt=d�+dw is the clock time �48�.

Other forms of the space fractional diffusion in Eq. �9� are
possible, resulting in a jump size dX different from Eq. �10�,
while the time-Langevin equation �6� remains unchanged.
For example, if the net diffusive flux in Eq. �9� is replaced by
�
�x �D�x� ��−1

�x�−1 � and D�x� varies linearly, then the parameter B2

in Eq. �10� needs to be rescaled by ��−1�1/��−1� �40�. If the
net diffusive flux in Eq. �9� takes the form of ��

�x� D�x�, then
the FDE �1� reduces to the FFPE with position-dependent
parameters proposed by Srokowski and Kaminska �57� �see
their Eq. �14��, and the corresponding Markov process con-

tains only the first two terms on the rhs of Eq. �10�. Numeri-
cal examples �not shown here� validate these conclusions.

B. FDE with direction-dependent spreading rate in
space

If the time FDE contains direction-dependent scaling
rates, the model �1� extends to
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FIG. 4. The 2D density described by Eq. �11� with b=1 at time
t=1 with v=0, D1=D2=1, �1=1.3, and �2=1.7. The mixing mea-
sure is assigned along two discrete directions: M1=M�30° �=0.4,
M2=M�−35° �=0.6. �a� Semianalytical solution with �=0. �b� La-
grangian solution with �=0.98 and �=0.5. �c� Lagrangian solution
with �=0.3 and �=0.2. The circle �exaggerated for display� in �a�
denotes the particle source location �0,0� at time 0.
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b
�

�t
�p�x�,t�� + �

��

�t� �p�x�,t�� = − �M
H−1−I�v�x��p�x�,t�

− D�x�� � p�x�,t��

+ �
t−�

��1 − ��
p0�x�� , �11�

with initial condition p�x� , t=0�= p0�x��, where H−1 is the in-
verse of the scaling matrix providing the order and direction
of the fractional derivatives, and M =M�d�� is the mixing
measure �2,58�. The mixing measure defines the shape and
skewness of the density in multidimensions by assigning the
probability of particle jumps in the angular sector d� �de-

noted as �� i in the following equation, and can be either con-
tinuous or discrete� �see Fig. 5�b� for a space-dependent mix-
ing measure�. The eigenvalues of matrix H are the Hurst
index coefficients 1 /� of the growth process. For a 3D case,
if the primary directions of growth are perpendicular, the
scaling terms in each of the principal directions 1 /� j are the
eigenvalues of matrix H, which is of the form

H0 = �1/�x 0 0

0 1/�y 0

0 0 1/�z
�

�see also Schumer et al. �44��.
Particle jumps follow a multiscaling compound Poisson

process �58�

Z� ��� = 
i=1

N

X� i = 
i=1

N

Ri
H�� i, �12�

where Z� ��� represents the particle location at operational
time �, N is the number of random jumps by time �, and the

jump direction �� i is a random unit vector drawn from the
CDF of the mixing measure M =M�d��. Eigenvalues of the
matrix H control the jump sizes in each eigenvector coordi-
nate. The jump component of RH along the eigenvector be-
longing to the kth eigenvalue 1 /�k of H depends on the
space-dependent parameters v and D �58�:
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FIG. 5. �Color online� The measured Bromide plumes at days 503 �a� and 126 �e� vs the simulated plumes ��c�–�e�� using the FDE �11�.
The parameters �either predicted or fitted� are the space scale index �x=1.1, �y =1.5, time index �=0.35, coefficient �=0.08 days−0.65,
vx=0.30 m /day, vy =0, and Dy =0.30 m1.5 /day. �a� The measured plume at day 503. �b� The best-fit three-zone mixing measure with seven
discrete directions and weights. �c� The simulated plume at day 503 using constant Dx �Dx=0.30 m1.1 /day�. �d� The simulated plume at day
503 using space-dependent Dx �Dx=0.30+0.0017x m1.1 /day�. �e� The measured plume at day 126 vs the simulated plumes using constant or
linear Dx. In �e�, the simulated plume using the constant Dx is similar to that with linear Dx, due to the truncation of plumes. The diamonds
in �a� and �e� denote the locations of samplers at the MADE site.
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Ri
1/�k = v�Xk�d� + B1�Xk�S� + B2�Xk�S�−1

* ,

where k represents the direction of the kth eigenvector of H.
One example is shown in Fig. 4. A 2D density described

by Eq. �11� with �=0 is solved using the semianalytical
approach �44� �Fig. 4�a��. Zhang et al. �58� showed that the
model �11� with �=0 �i.e., the space-only fractional diffu-
sion model� can be approximated successfully using Eq.
�12�. For the case of combined sub- and super-diffusion, the
semi-analytical approach is no longer efficient, while the
Langevin-based Lagrangian solver developed in this study is
even more computationally efficient �since fewer jumps are
required�. With an increased coefficient � �Fig. 4�b�� and/or a
decreased index � �Fig. 4�c��, the leading edge of density p
shrinks, as expected.

Field applications, such as the prediction of contaminant
transport in natural heterogeneous media, require a multiple
dimensional model beyond any 1D simplification. For ex-
ample, the Bromide plumes observed at the MADE site in
Columbus, MS, which perhaps is the best-studied and most
representative heterogeneous site in North America �59–62�,
are anomalous with direction-dependent �superdiffusive�
spreading rates, irregular channeling of the plume front along
preferential flow paths, solute retention �subdiffusion� by a
relatively immobile phase, and local variation of transport
speed possibly due to nonstationary heterogeneity. These
Bromide plumes have attracted continuing interest and mo-
tivated the development of transport theories in the hydrol-
ogy community in the last 15 years, but a reliable numerical
model has never been built �see the recent review of Molz et
al. �63��. Our preliminary tests show that the FDE �11� with
a space-dependent mixing measure and constant v and D can
capture the fan shape of the measured plume, but misses the
heavy leading edge at late-time sampling cycles. We then
allow D to vary in space �see parameters in Fig. 5� to repre-
sent successfully the observed spatial variation of deposits
and to get a better fit of the observed leading plume front.
Figures 5�d� and 5�e� show the high-dimensional, numerical

simulation that can capture all anomalous behaviors of
MADE-site Bromide plumes. It is noteworthy that the mul-
tidimensional Lagrangian solver developed in this section is
not only efficient, but also the only available tool for the
applicable FDE model �11�.

IV. CONCLUSIONS

The stochastic model underlying the time-fractional diffu-
sion equation can be separated into a motion process and an
independent operational time process. The operational time
process embedded in the FDE model contains a linear mo-
tion portion and a stable random noise with index �. The
Langevin equation can be constructed for each process to
track particle evolution in space and time. A Lagrangian
scheme with independent particle jumps and waiting times
can then be developed by combining the two Langevin equa-
tions to solve the space-time fractional FDE in one or mul-
tiple dimensions. The core of the particle tracking model is
the numerical conversion of operational time to clock time
using a time-domain Langevin approach, which greatly sim-
plifies simulation of the non-Markovian particle motion.

Particle tracking solutions of the space-time fractional
FDE generally match solutions obtained from semianalytical
or Eulerian methods. The space-time FDE model in multiple
dimensions with variable coefficients yields a reasonable
model for the complex and well-studied MADE-site Bro-
mide plumes. Numerical examples and field application
show the applicability, efficiency, and flexibility of the La-
grangian solver developed in this study.
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