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Summary

Materials accumulate energy around voids and defects under external loading,
causing the formation of micro-cracks. With increasing or repeated loads, those
micro-cracks eventually coalesce to form macro-cracks, which in a brittle material
can cause catastrophic failure without apparent permanent deformation. At the con-
tinuum level, a stochastic phase-field model is employed to simulate failure through
introducing damage and fatigue variables. The damage phase-field is introduced as a
continuous dynamical variable representing the volumetric portion of fracturedmate-
rial and fatigue is treated as a continuous internal field variable to model the effects
of micro-cracks arising from energy accumulation. We formulate a computational-
mathematical framework for quantifying the corresponding model uncertainties and
sensitivities in order to unfold and mitigate the salient sources of unpredictability
in the model, hence, leading to new possible modeling paradigms. Considering an
isothermal isotropic linear elastic material with viscous dissipation under the hypoth-
esis of small deformations, we employed Monte Carlo and Probabilistic Collocation
methods to perform the forward uncertainty propagation, in addition to local-to-
global sensitivity analysis. We demonstrate that the model parameters associated
with free-energy potentials contribute significantly more to the total model output
uncertainties, motivating further investigations for obtaining more predictable model
forms, representing the damage diffusion.

KEYWORDS:
Thermodynamically consistent fatigue modeling, probabilistic collocation method, complex-step differ-
entiation, global/local sensitivity analysis, crack propagation, model form/parameter uncertainty

1 INTRODUCTION

Companies want to deliver safe products to clients with a solid knowledge of the component’s life cycle within admissible
ranges of operation. With that objective, industry spends millions of dollars every year in manufacturing, instrumenting and
conducting validation tests. In order to reduce costs, manufacturers invest heavily in early stages of product design to reduce
final project cost and development time. Decisions made in design phase have an impact of 70% of final cost. In that sense,
numerical simulations have contributed to reduce the cost and time spent in product development through CAE applications in
solid and fluid mechanics, and failure analysis play an important role in saving costs and ensuring safety.



2 Barros de Moraes ET AL

The importance of reliable failure analysis motivates the development of trustworthy mathematical models and robust numer-
ical methods. Several researchers have developed models of damage initiation, propagation and fatigue life of materials, using
continuumdamagemodels and fracturemechanics1,2,3. The ad hoc characteristics of those classicalmodels prevent them to apply
to a wider range of problems, affecting their predictability. Some of the limitations appear when dealing with crack initiation or
branching, for example.
Recently, phase-fields have become a solid alternative to treat those difficulties in damage and fatigue modeling. Phase-field

models were first developed to solve fluid separation problems4. Its capability of modeling sharp interfaces through a smooth
continuous field extended its application to different multiphase problems with moving boundaries, including solidification5,
tumor growth6, two-phase complex fluid flow7 and fluid-structure interaction8. Over the last decade, phase-field models were
used in simulations of brittle9,10,11 and ductile fracture12,13. Phase-field damage models are able to capture many effects such as
crack initiation, propagation, branching and coalescence. Crack branching is typically observed in dynamic fracture14,15. Fatigue
effects were modeled using thermodynamically consistent approaches16 and fractional derivatives17. Boldrini et al (2016)18
developed a non-isothermal and thermodynamically consistent framework for damage and fatigue using phase-fields. Spatial
convergence and 2D results were presented by Chiarelli et al (2017)19. A comparison between semi and fully implicit time
integration schemes was analyzed by Haveroth et al (2018)20.
Despite the ability to describe crack geometry and incorporate naturally fatiguing mechanisms and different constitutive laws,

most examples of phase-field solutions studied so far include geometric characteristics that drive the crack path to determined
places. The presence of notches, indentations, regions of stress concentration, is recurrent and leads to controlled experiments
with a predictable crack path (always assuming a perfect material). In those models, there is no consideration of stochastic effects
to account for material and manufacturing imperfection, surface roughness, or even misalignment of loading conditions that, in
practice can drive failure to other locations.
Only a few works focused on studying stochastic nature of phase-field models. Uncertainty quantification and sensitivity

analysis in the context of phase-field models for polymeric composites was addressed by Hamdia et al (2015)21. Authors used
different methods to address the parametric sensitivity from a toughness test geometry with two notches. In that scenario, matrix
elasticity modulus, volume fraction of clay platelets and the fracture energy of the matrix were the most influential parameters.
In another application, sensitivity analysis was performed in a tumor growth phase-field model22. Using stochastic collocation,
authors identified two most sensitive parameters: the rate of cellular mitosis and nutrient mobility. In that case, nutrient transport
was governed by a traditional diffusion equation.
Besides the deterministic treatment of failure process, historically, phase-field models neglected nonlocal terms in the free

energy potentials. The question of how those assumptions affect the model predictability of failure motivates a systematic way to
evaluate model form uncertainty. Through determining the salient sources of uncertainty, educatedmodifications in themodeling
process can be proposed, informed by the model itself. This self-assessment procedure could be further extended to incorporate
stochasticity in space, and stochastic processes.
In this paper we develop a framework to assess model form uncertainty of a damage and fatigue phase-field model through

uncertainty propagation and sensitivity. We define parameters related to damage and fatigue, as well as viscous damping effects,
as random variables and solve a stochastic system of equations that model material damage using phase-fields. We compute the
expected solution and standard deviation fields in univariate and multivariate setups. We define local sensitivity expectation,
where we use complex-step differentiation23 to compute local sensitivity at each collocation point in the random space. A
variance-based method24 is used to compute each parameter’s Sobol indices in the global sensitivity analysis. These methods
establish a framework to systematically investigate model form uncertainty. An incorrect operator can be detected by looking
at the parameters that multiply them, which will be more sensitive and influential in the total output uncertainty. Assuming the
model form is correct transfers the salient uncertainty associated with the operator to its parameters. We identify the parameters
that most contribute to total output variance so that new models can be derived, mitigating model form uncertainty.
The paper is organized as follows. In Section 2 we present a stochastic version of the damage and fatigue phase-field model

derived in Boldrini et al (2016)18. We discuss the system of PDEs, the finite element spatial discretization, the semi-implicit
scheme for time integration and the stochastic discretization methods, namely Monte Carlo sampling and Probabilistic Collo-
cation. Then, we present methods used for local and global sensitivity analysis in Section 3. In Section 4 we show the results
of uncertainty and sensitivity for two representative numerical examples. Finally, we summarize and discuss the conclusions of
the paper in Section 5.
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2 A STOCHASTIC DAMAGE AND FATIGUE PHASE-FIELD FRAMEWORK

We show a stochastic version of the phase-field framework for structural damage and fatigue presented in Boldrini et al (2016)18,
which consists in a deterministic system of coupled differential equations for the evolution of displacement u, velocity v = u̇,
damage ' and fatigue  . Damage ' is a phase-field variable describing the volumetric fraction of degraded material, taking
values ' = 0 for virgin material, ' = 1 for fractured material, and can change between those states, 0 ≤ ' ≤ 1, as a damaged
material. The evolution equation for the damage field is an Allen-Cahn type, and is obtained along with the equations of motion
for u and v through the principle of virtual power and entropy inequalities. The fatigue field  is treated as an internal variable,
whose evolution equation is obtained through constitutive relations that must satisfy the entropy inequality for all admissible
processes. The geometry is defined over a spatial domain Ωd ⊂ ℝd , d = 1, 2, 3 at time t ∈ (0, T ].
The overall construction of the model gives origin to a general set of equations that can take different forms based on suitable

choices of free-energy potentials, boundary and initial conditions. The choice of free-energy potentials affects directly the final
model form, the specific coupling between the fields of interest and material behavior. The free-energy potential  (', ), related
to damage ' and fatigue  has the traditional form18

 (', ) = gc


2
|∇'|2 +(', ), (1)

where gc is the Griffith energy, 
 > 0 is the phase-field layer width parameter and (', ) is a function that relates the change
of damage to material fatigue. This general form for free-energy has been used since the first phase-field models, where the first
term corresponds to interfacial energy and originates the Laplacian operator in Allen-Cahn type equations. The second term is
called mixing energy in other disciplines, and may take different forms based on the application, even within damage models.
From the governing equations of the deterministic phase-field model we can identify many material parameters that are easily

obtained from experimental procedures, namely elasticity constants (E and �), and density �0. For that reason, and to reduce
the complexity of the analysis, we consider them to be deterministic. The remaining parameters, on the other hand, are either
not physically measurable, or their value is uncertain, and are considered to be stochastic. First, we have those parameters which
are proportionality constants due to mathematical modeling, such as rate of change of damage and fatigue, c and a, respectively.
Similarly, phase-field layer width 
 is a parameter that controls the diffusivity of damage field, therefore is a mathematical
artifact that should be as close to zero as possible to recover the sharp interface. Furthermore, the viscous damping coefficient b
is not promptly identifiable, and it would require a correlation with damping ratio to be obtained experimentally through modal
testing. Finally, the Griffith energy gc , although related to stress intensity factor, would require further experiments for each
specific material, since its range varies broadly for materials with the same elastic properties.
We define the parameters mentioned as random variables and derive the stochastic version of the damage and fagitue

phase-field model. Let (Ωs,,ℙ) be a complete probability space, where Ωs is the space of outcomes !,  is the �−algebra
and ℙ is a probability measure, ℙ ∶  → [0, 1]. We define the five-dimensional set of random parameters �(!) =
{
(!), gc(!), a(!), b(!), c(!)}. The random nature of � makes the operators and output fields to also be random. However, we
simplify the notation and only explicitly represent the random parameters as � = �(!), supressing the random variable indica-
tion elsewhere. Choosing appropriate free-energy potentials, we obtain the stochastic equations for a linear elastic and isotropic
material without temperature evolution defined over Ωd × (0, T ] × Ωs:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u̇ = v,

v̇ = div
(

(1 − ')2 
�0
E
)

+
b(!)
�0

div (D) −

(!)gc(!)

�0
div (∇'⊗ ∇') + f ,

'̇ =

(!)gc(!)

�
Δ' + 1

�
(1 − ')ETE − 1

�
(!)
[gc(!)′(') + ′

f (')],

̇ = − F̂

(!)

f ('),

(2)

subjected to appropriate initial and boundary contitions, which depend on the physical problem. For the equation of motion,
usually displacement or stress are known at the boundaries. For damage evolution, ∇' ⋅ n = 0 at the boundary, )Ωd .
The infinitesimal strain and the rate of strain tensors are represented by E = ∇Su and D = ∇Sv, respectively.  represents

the elasticity tensor, as a function of Young’s modulus E and Poisson coefficient �. Parameter b is the viscous damping of the
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material, �0 corresponds to the material’s density. Following an argument by Lemaitre and Desmorat (2005)1, � is constructed
such that the rate of change of damage should increase as damage increases, following the relation:

1
�
=

c(!)
(1 + � − ')&

, (3)

where c and & are positive parameters that should depend on the material. The relation includes �, a small positive constant, in
order to avoid numerical singularity.
The terms ′(') and ′

f (') are the derivatives of (') and f (') with respect to ' and play an important role in the
evolution of damage. Different choices for those potentials change the form of the transition of damage phase-field as fatigue
changes from zero to gc . Further details about the behavior of fatigue potentials can be found in Boldrini et al (2016)18. If we
choose the transition to be continuous and monotonically increasing, suitable choices for the potentials are:

(') =
⎧

⎪

⎨

⎪

⎩

0.5'2 for 0 ≤ ' ≤ 1,
0.5 + �(' − 1) for ' > 1,
−�' for ' < 0.

(4) f (') =

⎧

⎪

⎨

⎪

⎩

−' for 0 ≤ ' ≤ 1,
−1 for ' > 1,
0 for ' < 0.

(5)

The growth of the fatigue field  is controlled by the F̂ parameter, which is related to the formation of micro-cracks that
occur in cyclic loadings. Even in monotonic loadings there is growth of the fatigue variable, because a monotonic loading can
be considered as one portion of a complete cyclic load. The form of F̂ depends on the absolute value of the power related to
stress in the virgin material:

F̂ = a(!)(1 − ') |(E + bD) ∶ D| , (6)
where the parameter a in this case is chosen to give a linear dependence of the power of stress.
We construct a general framework to compute the stochastic solutions using three levels of discretization: in space, using finite

element method; in time, using a semi-implicit integration scheme; and in the random space, where we choose our realizations
randomly through Monte Carlo sampling, or by Probabilistic Collocation. Fundamentally, the finite element solver acts as a
black box for any nonintrusive stochastic method.

2.1 Spatial Discretization
We approximate a deterministic solution over its spatial domain Ωd with finite element method, where the semi-discrete form
of Equations (2) is obtained from the weak Galerkin form after multiplication by test functions and integration over the domain.
A more detailed derivation of the spatial discretization in 2D can be found in Chiarelli et al (2017)19. Denoting ̈̂u = ̇̂v we write
the semi-discrete form for an element k as

⎧

⎪

⎨

⎪

⎩

Mk ̈̂uk = Kk
u û

k +Kk
v v̂

k + wka +M
k f̂k,

Mk
'
̇̂'k =

(

Pk' +K
k
c

)

'̂k + wkb + w
k
c ,

Mk

̇̂k = wkd ,

(7)

where M, M' and M are mass matrices related to displacement, damage and fatigue. In the equation of motion, Ku is the
elasticity stiffness matrix degraded by damage, Kv is associated to viscous damping and wa is a term related to gradient of
damage that affects the displacement field. Term P' in the damage evolution equation includes the Laplacian and potential
′('). The influence of displacement in damage is represented by Kc and wb. Effect of potential ′

f (') is considered in term
wc . wd is the operator on the right-hand side of fatigue evolution equation. A detailed description of the finite element solution,
interpolation, and derivative matrices, along with the complete definition of all operators is available in Appendix A.
We apply the standard assembly operation to obtain the global form of the operator matrices and we will drop the superscript

k in the global sense.

2.2 Time Discretization
We adopt a semi-implicit time integration scheme, where we solve each equation separately using a suitable implicit method,
treating nonlinear terms and other variable fields explicitly. The methodology is based on the work by Haveroth et al (2018)20,
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where a detailed derivation can be found. We split the solution time interval [0, T ] in discrete time steps tn with time increments
given by Δt = tn+1 − tn > 0, n = 0, 1,… . We denote the global approximations for the variables at tn+1 as

un+1 = û(tn+1), (8) vn+1 = ̇̂u(tn+1), (9) 'n+1 = '̂(tn+1), (10) n+1 = ̂ (tn+1). (11)

We first discuss damage time integration. We use a backward Euler scheme to compute 'n+1 from Equation (7). Parameter �,
displacement and fatigue are treated explicitly using values from time step tn. This simplifies the solution and avoids the use of
iterative methods to treat the nonlinearity. Evolution of damage is then obtained by solving the linear system

[

M' − Δt
(

P' +Kc
)]

'n+1 =M''n + Δt
(

wb + wc
)

. (12)
With the updated damage field, we use Newmark method to solve displacement and velocity in the equation of motion using

the discrete form

[

�1M −Ku − �4Kv
]

un+1 =M
[

�3ün + �2u̇n + �1un
]

+Kv
[

�6ün + �5u̇n − �4un
]

+ wa +Mfn+1. (13)
with coefficients �i, i = 1, 2, … , 6. Definition of coefficients and further details on Newmark scheme can be found in Appendix
B.
After the solution of Equation (13) we update the current acceleration and velocity fields using Equations (B31) and (B32),

respectively. When imposing prescribed displacement ū(tn+1) we should also prescribe appropriate velocity and acceleration at
the boundaries using

̄̈un+1 =
d2

dt2
ū(tn+1) and ̄̇un+1 =

d
dt
ū(tn+1), (14-15)

where the bar symbol represents the prescribed degrees of freedom.
Finally, we update the fatigue variable using a Trapezoidal method given by

n+1 = n +
Δt
2
M−1


[

wd
(

un+1, vn+1,'n+1
)

+ wd
(

un, vn,'n
)]

. (16)
Algorithm 1 presents the final semi-implicit time integration scheme.

2.3 Stochastic Discretization
Displacement, velocity, damage and fatigue from the phase-field framework solution are functions of random parameters; there-
fore, they are random fields. In order to obtain the statistical moments of those outputs we will solve the deterministic system of
equations over an ensemble of different realizations, each of them with distinct parameter values. The inputs for each realization
depends on the sampling method. In this work we employ Monte Carlo (MC) and Probabilistic Collocation Method (PCM).
Since those methods are non-intrusive, the finite element solver acts as a black box, where the choice of parameter values and
computation of statistical quantities are simply pre- and post-processing tasks, respectively.

2.3.1 Probabilistic collocation method
The Probabilistic CollocationMethod (PCM) poses a great advantage over theMCmethod, since PCM uses polynomial interpo-
lation to approximate the solution in the random space. The mapping between the random and physical space is made through the
probability density function of the uncertain parameters. Using orthogonal polynomials, such as Lagrange, the computation of
expectation and variance reduces to running the simulation at the collocation points, reducing computational cost significantly,
while improving convergence rates. In one dimension, the polynomial approximation of the solution Ui(x, y, t; �) is given by:

Û (x, y, t; �) =
I
∑

i=1
U (x, y, t; �i)Li(�), (17)

where I is the number of realizations and Li(�) is the i-tℎ Lagrange polynomial, with the orthogonality property, �ij being the
Kronecker delta:

Li(�j) = �ij . (18)
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Algorithm 1 Semi-implicit time integration scheme
1: for n = 0→ N − 1 do
2: Given un, vn and �n, solve Eq. (12) for 'n+1.
3: Solve Eq. (13) for un+1.
4: Update acceleration an+1 and velocity vn+1 using Eq. (B31) and (B32).
5: Update the fatigue n+1.
6: Update the time step by adding the time increment Δt.
7: end for

Having approximated the solution in the random space, the expectation E in a one dimensional random space can be written
as:

E [U (x, y, t; �)] =

b

∫
a

Û (x, y, t; �)�(�)d�, (19)

where �(�) is the probability distribution function of �. In order to use Gauss quadrature, we must map the domains of the
distribution to the interval [−1, 1] in the standard domain of a variable �. The integral should then be written as:

E [U (x, y, t; �)] =

1

∫
−1

Û (x, y, t; �(�))�(�(�))Jd�(�), (20)

where J = d�∕d� represents the Jacobian of the transformation. To perform the integration, we must choose the number of
integration points and find the points �q and weights wq for each integration point q = 1, 2, … , Q.
Substituting Equation (17) in (20) we obtain

E [U (x, y, t; �)] =

b

∫
a

�(�(�))J
I
∑

i=1
U (x, y, t; �(�))Li(�(�))d�(�)

≈
Q
∑

q=1
wq�(�(�))J

I
∑

i=1
U (x, y, t; �(�))Li(�(�)). (21)

Evaluating the realizations at the integration points q and using the orthogonality property of the Lagrange polynomials (18)
the approximation (21) is simplified as a single summation in the collocation points:

E [U (x, y, t; �)] =
Q
∑

q=1
wq�(�q(�q))JU (x, y, t; �q(�q)). (22)

We use a linear affine mapping from the standard to the real domain: �q(�q) = a + (b−a)
2
(�q + 1). This mapping gives us the

Jacobian (for a one-dimensional integration) simply as J = (b − a)∕2. In practice, after we find the quadrature points in the
standard domain, we use the mapping to find the respective values of the random variable in our interval.
We can now approximate the integral and rewrite it as a summation over the collocation points, again assuming a uniform

distribution for the parameters over the interval [a, b], which gives us a constant value of �(�) = 1∕(b − a). The expec-
tation becomes E [U (x, y, t; �)] = 1

2

∑Q
q=1wqU (x, y, t; �q). Similarly to the Monte Carlo method, the standard deviation is

� [U (x, y, t; �)] =
√

1
2

∑Q
q=1wq

(

U (x, y, t; �q) − E [U (x, y, t; �)]
)2.

If we want to generalize PCM for higher dimensions, it is just a matter of having additional integrals to Equation (19). In
discrete form, this reduces to

E
[

U (x, y, t; �1, … , �k)
]

= EPCM
[

U (x, y, t; �1, … , �k)
]

≈
Q
∑

q=1
⋯

L
∑

l=1
wq…wl �(�q)… �(�l) Jq… Jl U (x, y, t; �1q , … , �kl ) (23)
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where we have k summations, one for each dimension in the random space. In �kl the superscript indicates the dimension
in the random space, and the subscript specifies the collocation point in that dimension. Simplifying the notation using
E
[

U (x, y, t; �1, … , �k)
]

= E [U ], the standard deviation becomes

�
[

U (x, y, t; �1, … , �k)
]

= �PCM
[

U (x, y, t; �1, … , �k)
]

≈

√

√

√

√

Q
∑

q=1
⋯

L
∑

l=1
wq…wl �(�q)… �(�l) Jq… Jl

(

U (x, y, t; �1q , … , �kl ) − E [U ]
)2
. (24)

Here, we are required to perform a tensor product to obtain the set of parameters for each realization. On one side, we have
the flexibility to introduce anisotropy on the sample space by using different number of integration points in each dimension,
depending on the parameter. Moreover, once we have simulated all multidimensional tensor product simulations, obtaining first
and total-order sensitivity indices is just a matter of post-processing. On the other hand, if we want to have accurate results
in higher dimensions (more than the 5 dimensions considered here) the tensor product increases the number of simulations
exponentially. In that case, we could use Smolyak sparse grids to reduce the number of realizations25. In all examples showed in
this work we assume the random variables to be mutually independent. That assumption may not always hold true for a specific
scenario, in which case a proper treatment should be given due to correlation between parameters.

3 SENSITIVITY ANALYSIS

The stochastic methods presented give us the ability to propagate parametric uncertainty through the model and obtain statis-
tical information from the solution. We can take a step further and use the stochastic information to systematically study the
importance of each parameter to solution uncertainty. Using a univariate PCM framework we can compute local sensitivity in
a probabilistic way. Through multivariate PCM uncertainty propagation we can analyze the influence of each parameter in the
total variance, by calculating sensitivity indices. In this Section, we derive the local and global sensitivity frameworks from the
phase-field model stochastic discretization.

3.1 Stochastic Sensitivity Analysis
In local sensitivity analysis, we study the effect of only one parameter while keeping all others at their expected values. The
sensitivity of the output U (�j) with respect to input parameter �j , j = 1, 2, 3, 4, 5 being one of the parameters in �(!) =
{
(!), gc(!), a(!), b(!), c(!)}, is also a random variable, so we compute its expected value as

SU,�j = NfE(SU,�j ) (25)
whereNf is a normalization factor defined as

Nf =
�̄j

Ū
(26)

In Equation (26), �̄j is the expected value of the input parameter under consideration and Ū is the volume average of the
expected solution U . In Equation (25) we consider the expectation of sensitivities over all the parameter intervals, computed
using PCM as

E
[

(SU,�j )
]

≈ 1
2

Q
∑

q=1
wqSUq ,�jq (27)

with SUq ,�jq being the sensitivity at collocation point q for parameter j. The sensitivity around each integration point is computed
using complex-step differentiation23. Unlike traditional finite-difference approximations, in complex-step differentiation we
perturb the imaginary part of the parameter. Let �j = p + iℎ and ℎ ∈ ℝ. Expanding U (�) in Taylor series about the real part p
we obtain

U (�j) = U (p + iℎ) = U (p) + iℎU ′(p) − ℎ2U ′′(p) + (ℎ2). (28)
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We then take the imaginary part on both sides to obtain the derivative of U around the real part of �:

U ′(p) = SU,�j ≈
Im(U (p + iℎ))

ℎ
(29)

We can also take the real part of U (p + iℎ) to recover the unperturbed solution and compute the expectation used in the
normalization factor, Equation (26).
The complex-step differentiation is second-order accurate and allows for small perturbations without incurring round-off and

cancellation errors. Using complex-step differentiation has another enormous advantage over finite-difference schemes. We only
need to evaluate one solution at each point, instead of two. We take the imaginary part of the solution to compute the derivative,
and use the real part to calculate the volume average of the expected solution in Equation (26).

Remark 1. Using MATLAB, this method can be applied almost immediatly by running the simulation with an imaginary per-
turbation. However, in the derivation of complex-step differentiation, we have to assume that U (�) is analytic, implying the
Cauchy-Riemman equations must hold. We must also assure all operators in the implementations to be analytic23 . Most of oper-
ators in MATLAB are compatible with complex numbers. Operations like maximum, minimum, greater or less than, should
always compare only the real part. Moreover, when transposing vectors and matrices, we should use the dot-apostrophe trans-
pose, that do not take conjugate of the elements. The only operation that we must redefine to be analytic is the absolute value,
implemented as

abs(x + iy) =

{

−x − iy, if x < 0
+x + iy, if x ≥ 0

(30)

3.2 Global sensitivity analysis
In a global analysis we are interested in how sensitive is the output when we perturb all input parameters. We use a variance-
based method based on Sobol indices26, where we compute the relative importance of input parameters to total output variance.
To derive the algorithms for variance-based sensitivity analysis we refer to Saltelli et al (2010)24. For simplicity, we now denote
our solution vector only as U (�) = f (�1, �2,… , �k), a random variable function of random parameters �j , j = 1, 2,… , k, k
being the total dimension of the random space (the number of random parameters). The effect of parameter �j on variance V is

V�j
(

E�∼j (U |�j)
)

(31)
where �∼j denotes the combination of all possible values for random parameters with the exception of �j , which is fixed at some
value. We interpret Equation (31) as taking the expected value of U having fixed a value for �j , and then taking the variance
over all possible values of �j . From the Law of Total Variance, we have

V�j
(

E�∼j (U |�j)
)

+ E�j
(

V�∼j (U |�j)
)

= V (U ) (32)
The second term on the left-hand side is called the residual and V (U ) is the total variance. Normalizing Equation (32) we

obtain the sensitivity index that measures the effect on total variance by random variable �j as:

Sj =
V�j

(

E�∼j (U |�j)
)

V (U )
(33)

The sensitivity indices Sj only measure the first-order effect on variance from �j , and disregards the interactions between �j
and other parameters. The total sum of Sj should be less than 1, the remainder being the high-order interactions between the
parameters.
If we would like to compute any second, third, or higher-order indices, we would have to repeat this procedure for all com-

binations of interactions. An alternative is to compute the sensitivity index related to a given parameter and all its possible
interactions with all parameters. In order to obtain the total effect index SjT we start from the total normalized variance and
subtract the contribution of all first and high-order effects that do not include �j . We write

SjT = 1 −
V�∼j

(

E�j (U |�∼j)
)

V (U )
(34)

In practical terms, for every combination of parameters that do not include �j we compute the expectation with respect to
�j . That means performing different combinations of univariate expected solutions with respect to �j . Then, all these different
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Algorithm 2 Stochastic Sensitivity Analysis
1: for Random parameters �j = 1→ k do
2: Choose a perturbation ℎ, and define the random parameter as U (�j) = U (p + iℎ).
3: Solve the stochastic problem in one dimension with perturbed inputs �j = p + iℎ.
4: Compute the sensitivity of the solution at every collocation point following Eq. (29).
5: Compute the expectation of sensitivities E

[

(SU,�j )
]

, following Eq. (27).
6: Compute the normalization factorNf using the volume average of expected solution, Eq. (26).
7: Given E

[

(SU,�j )
]

andNf compute the local sensitivity SU,�j using Eq. (25).
8: end for

Algorithm 3 Global Sensitivity Analysis
1: For all k random parameters, solve the k−dimensional stochastic problem employing PCM.
2: for Random parameters �j = 1→ k do
3: Given the tensor product results in all collocation points, compute first-order sensitivity index Sj using Eq. (33).
4: Given the tensor product results in all collocation points, compute total-order sensitivity index SjT using Eq. (34).
5: end for

expectations compose a k − 1 dimensional random space, from which we compute the variance. From 5-D PCM full tensor
product we already possess all possible combinations between the parameters, so the computation of Sj and SjT are just a matter
of postprocessing the realizations.

3.3 Integrated Sensitivity-Uncertainty Quantification Framework
Given the stochastic discretization methods from Section 2.3 as integrating building blocks, we formulate a framework to
quantify model-form uncertainty through a parametric uncertainty/sensitivity propagation. The stochastic and global sensi-
tivity analyses are naturally integrated to the framework using PCM. The stochastic sensitivity procedure is summarized in
Algorithm 2, where the solution sensitivity with respect to a given parameter is obtained through the complex-step differentia-
tion. The participation of each parameter in total uncertainty given by sensitivity indices is outlined in Algorithm 3. We further
elaborate on the integrated framework’s development and capabilities via two canonical examples in the next Section.

4 NUMERICAL RESULTS

We now present two representative numerical examples to show the capabilities of the proposed methodology to assess uncer-
tainty and sensitivity of damage phase-field models. The first example is the single-edge notched tensile test case, a traditional
benchmark test with mode I crack propagation. With the notched geometry, we first investigate the convergence of MC and
PCMmethods in the univariate and multivariate uncertainty propagation. Then, we show the expectation and standard deviation
of damage evolution for each parameter and compare that with 5-D parametric uncertainty propagation. Next, we show local
sensitivity expectation results for each parameter in the univariate framework. Last, we compute Sobol indices in the global
sensitivity analysis and comment on the different influence of each parameter.
The second example is a standard tensile test specimen, symmetric and with no notches or existing cracks. We run the

stochastic framework and show the expected crack path and its uncertainty. We also run local and global sensitivity analyzes to
understand how the lack of pre-existing crack or notch affects the output uncertainty.

4.1 Single-Edge Notched Tensile Test
The notched geometry is a benchmark test, consisting in a square of material with a pre-existing crack in the middle of the
specimen, see Figure 1. We constrain the body at the top and apply a prescribed displacement at the bottom, at a rate of 3 ×
10−3 m∕s. The finite element mesh has 3395 nodes, composing 6498 linear triangle elements with smallest element size being
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FIGURE 1 Left: Geometry and boundary conditions for single-edge notched tensile test. Right: Finite element mesh.

TABLE 1 Expected value of stochastic parameters for single-edge notched tensile test.

Parameter Value
a (rate of change of fatigue) 5 × 10−7 m2

b (viscous damping) 1 × 108 Ns∕m2

c (rate of change of damage) 1 × 10−5 m∕Ns
gc (Griffith energy) 2700N∕m

 (phase-field layer width) 1 × 10−3 m
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FIGURE 2 Univariate simulations: expectation (a) and standard deviation (b) error between MC results with 104 samples and solutions from PCM with different number of collocation points. We observe that with 4 points we obtain comparable accuracy
in PCM. Expectation (c) and standard deviation (d) PCM convergence, where the reference for error computation is a solution with 100 collocation points in the univariate case. The convergence rate is close to linear.

0.404 mm. The final time is T = 0.5 s and we integrate the solution over time-steps of Δt = 1 × 10−3 s. We consider a material
with E = 160 GPa, � = 0.3 and �0 = 7800 kg∕m3 under plane stress conditions with thickness of ℎ = 5 mm. As stated in
Section 2.3, we assume a uniform distribution for the random variables, with a range of ±10% from their expected values, which
are given in Tables 1.

4.1.1 Convergence
We compare MC and PCM solutions at final time, and compute the error between them underL1,L2 andL∞ norms for different
number of PCM collocation points in Figure 2(a) and (b). Moreover, we investigate the convergence of PCM using a 100-point
solution as reference, since we do not know the exact solution, and plot the results in Figure 2(c) and (d). For all univariate
convergence analysis we consider 
 as the random parameter.
Figure 3(a) and (b) show the error between MC and PCM in the multivariate case, considering the parameters from Table 1,

thus defining a 5-D random space. Again, we compare the error between expectation and standard deviation of 104 MC real-
izations and PCM with different number of collocation points. On Figure 3(c) and (d), we see the convergence of PCM in 5
dimensions, where we use a solution with 6 points in each dimension as reference (of total 65 PCM points). The plots on Figure
show a slope of 5 for expectation and 6 for standard deviation, an increased convergence rate when compared to the univariate
case.

4.1.2 Uncertainty and sensitivity analyses
We first investigate the univariate uncertainty propagation, where we assume that each random parameter has a uniform distri-
bution centered at the values on Table 1 with 10% variation to left and right. In this 1-D parametric setting, we assume that the
other parameters are deterministically known at their expected values. Figure 4 shows the damage field expectation and stan-
dard deviation when we consider the phase-field layer width 
 as uncertain, while keeping the other parameters fixed in PCM
simulations with 4 integration points. The expected crack propagates to the right, as we could expect from a tensile load, and
the uncertainty follows the crack tip. In Figure 5 we plot the damage field from random 
 over the crack propagation line (at
y = 50 mm, from 50 mm ≤ x ≤ 100 mm). Looking at the damage field profiles from the expected solution we see the crack tip
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FIGURE 3 (a) and (b): Comparison between MC results with 104 samples, and solutions from PCMwith different number of points in each dimension in the multivariate case. With higher dimensions the advantage of PCM over MC becomes more evident,
with only 3 points needed in each dimension to stabilize the error in both expectation (a) and standard deviation (b). (c) and (d): Convergence of damage field on multivariate PCM simulations of notched geometry, where the reference for error computation
is a solution with 6 collocation points in each dimension. We obtain slope 3.3 for expectation (c) and 3.14 for standard deviation (d).

(a) Time t = 0.3 s. (b) Time t = 0.4 s. (c) Time t = 0.5 s.

(d) Time t = 0.3 s. (e) Time t = 0.4 s. (f) Time t = 0.5 s.

FIGURE 4 Damage phase-field expectation (top) and standard deviation (bottom) after crack propagation taking 
 as random input. From tensile load the crack propagates in Mode-I as expected. 
 has influence around the crack path, because it controls
the diffusion of damage. Once the crack propagates and the expected value is 1 in the crack path, the uncertainty vanishes in the cracked region. However, the deviation around the crack tip grows with time.

as a moving interface. The standard deviation’s peak follows the interface and grows in time. Since 
 controls the diffusivity we
see that with increasing uncertainty the interface profile of the expected solution becomes less sharp with time.
For the other parameters, the damage field expectation is similar to the ones shown in Figure 4. The major difference lies in

the deviation field, as shown in Figure 6, where we see that for the other variables the uncertainty is more concentrated around
the crack tip. This example has a known crack path, so most of uncertainty is related to the speed of crack growth through the
Griffith fracture energy gc that controls how fast damage grows with intermediate values of fatigue, and the rate of change of
damage c, directly affecting damage time evolution.
Still in the univariate framework, we use complex-step differentiation to evaluate the stochastic sensitivity of every random

parameter, where the perturbation is chosen to be ℎ = 0.001(�jmax − �
j
min). Figure 7 shows expectation of damage sensitivity

fields at final time T = 0.5 s. We make two observations here. First, the sensitivity fields show that damage increases at the
crack tip when we increase 
 , a and c. By increasing b we damp vibrations, thus, reducing damage. Again, the effect of gc is
visible, where increasing its value we require higher levels of fatigue to drive damage towards 1, thus the sensitivity around the
crack tip is negative. Second, if we order sensitivity and standard deviation by their maximum absolute values, we obtain the
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(a) Damage expectation profile.
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(b) Damage standard deviation profile.

FIGURE 5 Time evolution of damage phase-field expectation and standard deviation profiles at the crack path line taking 
 as random input. From damage expectation we observe the crack tip as a moving interface. The standard deviation peak follows
the advecting boundary and grows in time, which makes the expected interface less sharp.

(a) Rate of change of fatigue a. (b) Viscous damping b. (c) Rate of change of damage c. (d) Griffith fracture energy gc .

FIGURE 6 Damage phase-field standard deviation after crack propagation in univariate uncertainty quantification. Fatigue parameter a and viscous damping b do not propagate uncertainty as much as Griffith energy gc and rate of change of damage
parameter c. Since the crack path is defined by geometry, the majority of uncertainty is related to the speed of crack propagation, controlled mostly by gc and c.

same decreasing order for both: c, gc , b, 
 , a, with similar proportionality between them in the two cases. Both results evidence
that with a clear crack location and path, speed of propagation drives uncertainty and sensitivity.
From the univariate uncertainty propagation and the stochastic sensitivity analysis, we identify the most influential parameters

when we assume all others to be known. Now we show results of a 5-D PCM simulation, where we consider all parameter
combinations through tensor product, using 6 points in each dimension. Figure 8 shows the evolution of damage phase-field
profiles at the crack path over time. The maximum standard deviation at final time (0.257) is comparable to peak uncertainty of
gc (0.201) and c (0.214).
In order to quantify the relative participation of each parameter in 5-D uncertainty, we compute the Sobol indices Sj and SjT

from Eq. (33) and (34), respectively. Figure 9 shows the total deviation field, as a reference, and sensitivity index fields Sj at
final time for all parameters. Despite 
 having high maximum value of its sensitivity index, we point out that most of its influence
is around the crack, where the uncertainty is small. Ahead of the crack, 
 has no influence in uncertainty in this case where the
path is defined. We see again that at the region of high uncertainty gc and c play an important role when we only consider their
sole effects. We plot the total sensitivity index fields SjT in Figure 10. We see that high order interactions between the parameters
have great impact over the sensitivity indices. In the majority of the geometry, the fields are uniform with base value around 0.4,
except for 
 . The influence of gc and c is carried over the other parameters in the region ahead of the crack, with gc still being
the parameter that has most impact ahead of the crack.
From single-edge notched tensile test uncertainty and sensitivity analyses it is clear that the load conditions and geometric

singularity define the position of crack initiation and its path. Parameters that control rate of change of damage, such as gc or
c, are more sensitive and contribute more to solution uncertainty. For general geometries and load situations, we may expect a
shift in the relative contribution of total uncertainty. Take the sensitivity indices from Figure 9, for example. Uncertainty that
is not around the crack tip in the direction of crack propagation is dominated almost entirely by 
 and gc . In cases where the
uncertainty is not concentrated around a specific region of the geometry, we can expect 
 and gc to have stronger influence. Not
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(a) Phase-field layer width 
 . (b) Griffith fracture energy gc .

(c) Rate of change of fatigue a. (d) Viscous damping b. (e) Rate of change of damage c.

FIGURE 7 Expected sensitivity fields with respect to each input parameter. Similarly to standard deviation fields, local sensitivity results also point to c and gc , related to propagation speed, as parameters with more sensitive output, since we have a specific
crack initiation location and path.
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(a) Damage expectation profile.
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(b) Damage standard deviation profile.

FIGURE 8 Time evolution of damage phase-field expectation and standard deviation profiles at the crack path line when propagating the uncertainty of all 5 random parameters. We observe that the combined effect of all parameters results in a larger
standard deviation around the crack tip at final time, comparable to peak values of c and gc uncertainties.

surprisingly, both parameters are multiplying the Laplacian in damage equation, which arises from the squared gradient, a local
interaction term in the free-energy potential.

4.2 Tensile Test Specimen
The tensile test geometry without notch from Figure 11 is the standard design with a mesh of 3912 nodes and 7236 linear triangle
elements, where we also constrain one of its ends and apply a prescribed displacement of 1.5 × 10−3 m∕s until T = 0.5 s, with
time increments ofΔt = 5×10−4 s. The smallest element size in the mesh is 0.614mm. We consider the samematerial properties
and thickness from the notched case, with expected values for the stochastic parameters shown on Table 2.
We investigate the multivariate uncertainty propagation in the tensile test case. Figure 12 shows the convergence of 5D PCM

using the solution of 6 points in each dimension as a reference. Due to the absence of an initial crack, the convergence of the
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(a) Total deviation field. (b) Phase-field layer width 
 . (c) Griffith fracture energy gc .

(d) Rate of change of fatigue a. (e) Viscous damping b. (f) Rate of change of damage c.

FIGURE 9 Notched tensile total damage deviation field and sensitivity indices (Sj ) fields for all parameters using 6 points in each dimension at final time T = 0.5 s. Ahead of the crack, gc and c are the most influential parameters to total damage field
variance. The remaining parameters have little participation at the most uncertain region of the geometry.

(a) Total deviation field. (b) Phase-field layer width 
 . (c) Griffith fracture energy gc .

(d) Rate of change of fatigue a. (e) Viscous damping b. (f) Rate of change of damage c.

FIGURE 10 Notched tensile total damage deviation field and total effect sensitivity indices (SjT ) fields for all parameters using 6 points in each dimension at final time T = 0.5 s. When we combine parameter effects and include their interactions the
dominant sensitivity at the crack tip gets carried out to all parameter indices. In the remaining regions, the sensitivity index is uniform except for 
: the diffusion coefficient is more influential throughout the specimen.

expected solution and deviation has a lower rate when compared to the single-edge notched test. Figures 13 and 14 show the
expectation and standard deviation of the damage field when we consider 5-dimensional PCM simulations with 6 integration
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FIGURE 11 Top: Geometry and boundary conditions for tensile test specimen. Bottom: finite element mesh.

TABLE 2 Expected value of stochastic parameters for tensile test specimen.

Parameter Value
a (rate of change of fatigue) 5 × 10−7 m2

b (viscous damping) 1 × 108 Ns∕m2

c (rate of change of damage) 2 × 10−6 m∕Ns
gc (Griffith energy) 2700N∕m

 (phase-field layer width) 3 × 10−4 m
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(b) Standard deviation.

FIGURE 12 Convergence of damage field in multivariate PCM simulations for tensile test specimen, where the reference for error computation is a solution with 6 collocation points in each dimension. We have lower convergence rates when compared to
notched geometry due to due to more uncertainty of crack location.

(a) t = 0.46 s.

(b) t = 0.48 s.

(c) t = 0.5 s.

FIGURE 13 Damage phase-field expectation taking all parameters in � as random inputs. From tensile load we see the
appearance of 4 possible crack initiation points, based on the stress concentration profile from the geometry. The expected
solution at final time gives a curved crack path at both sides of the geometry.

(a) t = 0.46 s.

(b) t = 0.48 s.

(c) t = 0.5 s.

FIGURE 14Damage phase-field deviation taking taking all parameters in � as random inputs. We have regions of uncertainty
around all 4 points of possible crack initiation. At final time, the the uncertainty vanished where the crack propagated, and the
maximum deviation around the crack is more than 30% of maximum damage.

points in each dimension. Unlike the notched case, here we have different expected locations for crack initiation that propagate
from the surface to the interior of the body following the stress field concentration. Moreover, the final uncertainty in this case
is more than 30% of the maximum damage, higher than any value from the notched case.
Figure 15 shows the stochastic sensitivity fields for all parameters on the tensile test case using 8 PCM points to compute

the expected sensitivity. We can observe that 3 parameters are more sensitive, namely 
 , gc and a, and their absolute range are
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(a) Phase-field layer width 
 . (b) Griffith fracture energy gc .

(c) Rate of change of fatigue a. (d) Viscous damping b. (e) Rate of change of damage c.

FIGURE 15 Local sensitivity expectation fields with respect to each input parameter.
 , gc and a are the most sensitive parameters, with the same absolute range. b is not sensitive in the range considered and c is less sensitive than in the notched case.

equivalent, going from 5 to 30, approximately. We can argue that, since we do not have a preferential crack path nor a specific
crack initiation position, all the uncertain parameters have the same sensitivity. The c parameter in this case is not as sensitive
compared to the notched geometry, since here the crack location and path are not defined, so damage increase rate becomes less
important compared to crack position. Last, we can see that b has little sensitivity on damage field in this case.
Another observation is that, contrary to the notched case, here the sensitivity of 
 around the crack is negative, being positive

elsewhere. Since we do not have a defined crack path, the increase of diffusion coefficient should smoothen the field. In other
words, this case makes the 
 associated with the Laplacian in the damage equation more sensitive than 
 parameters in the
remaining terms.
We present the total uncertainty field and sensitivity indices Sj for the tensile test specimen in Figure 16. Similarly to the

notched case, here we see that the order of most influential parameters to the uncertainty regions are equivalent to the most
sensitive parameters from Figure 15. In the regions of high uncertainty around the possible crack paths, the deviation field is
influenced most by 
 and gc . Fatigue parameter a comes next, with relatively less importance than what was found in the local
sensitivity analysis. Viscous damping b has little participation in total variance, while damage rate c has less importance when
compared to the notched case. In summary, participation in regions of high uncertainty is dominated by 
 and gc .
Total sensitivity indices SjT for tensile specimen are presented in Figure 17. We can observe that when we include interactions

between the parameters, a, b and c present sensitivity fields that are almost uniform between 0.44 and 0.5. The other 2 parameters,

 and gc also present uniform fields, except for the regions around the crack where the total sensitivity indices are higher than 0.6.
From these examples it is clear that geometry and the existence of initial cracks, notches or singularities in the geometry plays

an important role on sensitivity and uncertainty. In the notched case, the existence of a crack and the application of tensile stress
makes the crack propagate straight to the right. The only uncertainty remains with the speed of damage increase ahead of the
crack path, hence the sensitivities of gc and c.
In the tensile specimen without notch on singularity, the uncertainty is driven by 
 , gc and a. From Equation 1, 
 and gc are

multiplying the local interaction term, namely gc


2
|∇'|2 which later becomes the Laplacian in damage evolution, 
(!)gc (!)

�
Δ'.

Moreover, they are also associated with the tensor product on the equation of motion, also originated from the local interaction,
and are associated to fatigue potentials andf , arbitrarily chosen. The complete symmetry of the tensile specimen geometry
with no surface roughness or material imperfections, associated with the local operators and ad hocmodeling, leads to potential
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(a) Total deviation field. (b) Phase-field layer width 
 . (c) Griffith fracture energy gc .

(d) Rate of change of fatigue a. (e) Viscous damping b. (f) Rate of change of damage c.

FIGURE 16 Tensile test specimen total damage deviation field and sensitivity indices (Sj ) fields for all parameters using 6 points in each dimension at final time T = 0.5 s. Differently than in the notched case, here 
 and gc are the most influential
parameters in the region of higher uncertainty.

crack appearances in the 4 stress concentration regions around the fillets. Any numerical effect such as artificial damping or
residuals may lead to perturbation in the solution and crack initiation at any corner.
Furthermore, the traditional disregard of nonlocal interactions in phase-field models excludes the possibility of modeling

many phenomena experimentally observed, such as intermittent dislocation avalanches27,28,29,30 and fractal characteristics of
fracture31,32, which show scale-free distributions and power-law scaling, that can be successfully modeled through fractional
calculus33. Recent works have addressed fractional-order Cahn-Hilliard equation34,35. Phase-field models derived from free-
energy potentials with nonlocal effects were first discussed by Giacomin and Lebowitz36,37 with recent contributions from Abels
et al38, and Ainsworth and Mao35. Fractional-order models for structural analysis have been developed39, to which correspond-
ing fractional uncertainty/sensitivity analyses can be formulated via operator-based uncertainty quantification40 and Fractional
Sensitivity Equation Method (FSEM)41.

5 CONCLUSIONS

We developed an uncertainty quantification and sensitivity analysis framework for stochastic damage and fatigue phase-field
equations. We used Monte Carlo sampling and Probabilistic Collocation to compute expectation and standard deviation of dam-
age field, and expected local sensitivity. To compute the local sensitivity at each collocation point, complex-step differentiation
was used. Probabilistic Collocation method poses a great advantage over random sampling methods such as MC, reducing
significant computational costs with a simple implementation.
We presented two representative examples to study the uncertainty propagation in the model. We detected two different

behaviors of the model based on geometry:

• In the single-edge notched tensile test case, where we already know the crack location and direction, the uncertainty
is reduced to the speed of crack propagation. Interestingly, that is not only controlled by the rate of change of damage
parameter c, but also indirectly by the Griffith energy gc . Uncertainty can be inferred by local sensitivity analysis, which
shows the same order of parameter influence. When we compute the global sensitivity indices, uncertainty around the
crack tip is also controlled by gc and c;
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(a) Total deviation field. (b) Phase-field layer width 
 . (c) Griffith fracture energy gc .

(d) Rate of change of fatigue a. (e) Viscous damping b. (f) Rate of change of damage c.

FIGURE 17 Tensile test specimen total damage deviation field and total effect sensitivity indices (SjT ) fields for all parameters using 6 points in each dimension at final time T = 0.5 s. With the combined effect of all parameters, we still have 
 and gc as
having most influence in the uncertainty regions.

• In a geometry with no unique crack initiation location nor a determined crack path, such as the tensile test specimen,
fatigue coefficient a, and most importantly gc and 
 are the most sensitive parameters. High uncertainty is dominated by
influence of gc and 
 , which help determine speed and mostly direction of damage transport, due to the lack of unique
and well-known crack path.

The framework has shown that in undefined crack path or location, uncertainty is concentrated around parameters involved
with local interactions. Specifically, 
 and gc are multiplying the local interaction term in the free-energy potential, and affect
the equation of motion, the Laplacian in damage evolution and are also related to fatigue potentials, which are chosen arbitrarily.
The higher sensitivity and uncertainty of those parameters related to local terms motivate the use of different operators that
include nonlocal interactions as a way to mitigate model form uncertainty.
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APPENDIX

A FINITE ELEMENT OPERATORS

From the semi-discrete system of equations (7), the solution at each element is written as a linear combination of local nodal
basis functions such that
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uk = Nk ûk, (A1) vk = Nk v̂k, (A2) 'k = Nk' '̂
k, (A3) k = Nk ̂k, (A4)

Constructing a mesh of linear triangles, the nodal solutions are defined as:

ûk =
[

uk1x u
k
1y u

k
2x u

k
2y u

k
3x u

k
3y

]T
, (A5)

v̂k =
[

vk1x v
k
1y v

k
2x v

k
2y v

k
3x v

k
3y

]T
, (A6)

'̂k =
[

'k1 '
k
2 '

k
3

]T , (A7)

̂k =
[

k
1 k

2 k
3

]T (A8)
(A9)

with interpolation matrices

Nk =
[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]

, (A10)

Nk' = N
k
 =

[

N1 N2 N3
]

, (A11)
(A12)

Gradients of displacement, velocity and damage are approximated by linear combinations of shape function derivatives

Ek = Bku û
k, (A13) Dk = Bkv v̂

k, (A14) ∇'k = Bk' '̂
k, (A15)

Derivative matrices are defined as:

Bku =
⎡

⎢

⎢

⎣

N1,x 0 N2,x 0 N3,x 0
0 N1,y 0 N2,y 0 N3,y
N1,y N1,x N2,y N2,x N3,y N3,x

⎤

⎥

⎥

⎦

, (A16)

Bkv =
⎡

⎢

⎢

⎢

⎣

N1,x 0 N2,x 0 N3,x 0
0 N1,y 0 N2,y 0 N3,y

1
√

2
N1,y

1
√

2
N1,x

1
√

2
N2,y

1
√

2
N2,x

1
√

2
N3,y

1
√

2
N3,x

⎤

⎥

⎥

⎥

⎦

, (A17)

Bk' =
[

N1,x N2,x N3,x
N1,y N2,y N3,y

]

. (A18)

From those definitions, we can express the mass, stiffness and remaining operator matrices from Equation (7) as



20 Barros de Moraes ET AL

Mk = ∫

k

NTNd
k ; (A19)

Mk
' = ∫


k

NT'N' d

k ; (A20)

Mk
 = ∫


k

NTN d

k ; (A21)

Kk
u = −∫


k

1
�0

(

1 − Nk' '̂
k
)2

(

Bku
)TBku d


k ; (A22)

Kk
v = −∫


k

b
�0

(

Bkv
)TBkv d


k ; (A23)

Pk' = −∫

k


gc
�

(

Bk'
)T
Bk' d


k − ∫

k

gc
�


(

Nk'
)T
Nk' d


k ; (A24)

Kk
c = −∫


k

1
�
(

Bku û
k)T 

(

Bku û
k)

(

Nk'
)T
Nk' d


k ; (A25)

wka = ∫

k


gc
�0

(

Bk' '̂
k ⊗ Bk' '̂

k
)

∶Bku d

k ; (A26)

wkb = ∫

k

1
�
(

Bku û
k)T 

(

Bku û
k) Nk' d


k ; (A27)

wkc = ∫

k

−1
�


(

Nk
)TNk ̂k d
k ; (A28)

wkd = ∫

k

a



(

1 − Nk' '̂
k
) (

Nk' '̂
k
)

|

|

|

[


(

Bku û
k) + b

(

Bkv v̂
k)] ∶

(

Bkv v̂
k)|
|

|

d
k . (A29)

We consider the plane stress elasticity matrix  given by

 = E
1 − �2

⎡

⎢

⎢

⎣

1 � 0
� 1 0
0 0 (1−�)

2

⎤

⎥

⎥

⎦

(A30)

We express the second-order tensor in Equation A26 as a vector using Voigt notation.

B NEWMARK INTEGRATION METHOD

From Equation (7) we consider the semi-discrete equation of motion with suitable initial and boundary conditions for dis-
placement u, velocity u̇ and acceleration ü. In Newmark scheme, acceleration and velocity at time tn+1 are approximated
by

ün+1 = �1
(

un+1 − un
)

− �2u̇n − �3ün (B31)
u̇n+1 = �4

(

un+1 − un
)

+ �5u̇n + �6ün, (B32)

with �i, i = 1, 2,… , 6 written in terms of standard Newmark coefficients 
̃ and �̃:

�1 =
1

�̃Δt2
, �2 =

1
�̃Δt

, �3 =
1 − 2�̃
2�̃

, �4 =

̃
�̃Δt

, �5 = 1 −

̃
�̃

and �6 =
(

1 −

̃
2�̃

)

Δt. (B33-B38)
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