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a b s t r a c t

Confidence intervals (CIs) are common methods to characterize the uncertain output of experimental
measurements, process design calculations and simulations. Usually, probability distributions (pdfs) such
as Gaussian and t-Student are used to quantify them. There are situations where the pdfs have anomalous
behavior such as heavy tails, which can arise in uncertainty analysis of nonlinear computer models with
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eywords:
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input parameters subject to different sources of errors. We present a method for the estimation of CIs
by analyzing the tails of the pdfs regardless of their nature. We present case studies in which heavy tail
behavior appears due to the systematic errors in the input variables of the model. Taking into account the
probability distributions behavior to estimate appropriate CIs is a more realistic approach to characterize
and analyze the effect of random and systematic errors for uncertainty analysis of computer models.
eavy tails

rror propagation
onte Carlo

. Introduction

Confidence intervals are widely used to characterize random
ariables with a given probabilistic confidence. Typical meth-
ds of estimating confidence intervals are using standard normal
r Student-t quantiles. They are very common in many indus-
rial applications, experimentation, and product quality control.
n uncertainty and robustness analysis of computer models, con-
dence intervals are also important, but traditional methods may
ot be practical or applicable due to the probabilistic nature of
he output random variables. Sometimes these cannot be char-
cterized using standard normal or t-Student distributions. We
nd that in uncertainty analysis of process design and simu-

ation, the presence of uncertainty sources of different natures
uch as random and systematic errors can cause heavy tail
ehavior on the probability distributions of output random vari-

bles.

In this work, we present a simple method to estimate confi-
ence intervals when the probability distribution of output random
ariables tend to have heavy tail behavior caused by uncertainty
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in the input parameters of the model. We explore the effect that
systematic and random errors have on the inter-quantile range
estimation using Monte Carlo simulation with simple case studies.
We compare the confidence interval estimation using traditional
techniques and the proposed methodology. The results show that
the differences can be significant when the nature of the proba-
bility distributions deviates in the tails from standard normal or
Student-t.

In general, appropriate estimation of confidence intervals is very
important to evaluate the robustness of mathematical models and
experimental data. It is common to assume that errors are Gaus-
sian, particularly for experimental measurements. The presence of
systematic errors can have significant effects, but it is more dif-
ficult to evaluate and it is usually not reported even for highly
accurate measurements. One can find evidence of systematic errors
in measurements by examining experimental data for the same
system from different literature sources or by analysis of histori-
cal measurements (Henrion & Fischoff, 1986; Vasquez & Whiting,
1999).

Complex nonlinear computer models can induce heavy tail
behavior in the output variables. In addition to computer mod-
els, there are many other situations such as anomalous diffusion

(Sokolov & Klafter, 2005) where the presence of heavy tails are
common. Appropriate methods to analyze the probability distribu-
tions are necessary in order to capture the significance of unlikely
events. For example, in the analysis of process conditions and
design calculations where catastrophic events are likely, detecting

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:victor.vasquez@unr.edu
mailto:wwhiting@unr.edu
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hese become important for design and selection of safety factors
n equipment and operation conditions.

. Random and systematic errors

Random errors can be defined as the uncertainty detected by
epeating measuring procedures under the same conditions. On
he other hand, systematic errors are those that cannot be detected
his way and are usually associated with bias in experimental
ata. Experimental random errors can be caused by any random
vent occurring during the measuring procedure. These include
ny random variation in the environmental conditions where the
easurements are taken and inherent random variations of the
easuring instruments. Random errors are usually characterized

sing the statistics of the instrument or by replication. Under some
ircumstances obtaining a statistical number of replicates can be
ostly and often only conservative error quantification estimates
re reported using Gaussian or uniform probability distributions.

A classical example of systematic error is the effect that a bias in a
alibration procedure would have on experimental measurements.
or example, if during the calibration of a thermometer there is
calibration error of half of a degree, all the measurements per-

ormed with that instrument will be off by that amount. This is
ormally called a constant bias or calibration error, and it can be
ositive or negative. There are situations where the magnitude of
he systematic and random errors can be a function of one or more
f the measured variables involved (Vasquez & Whiting, 1999). In
eneral, systematic errors can be defined as those that cannot be
liminated through repeated experiments. The main problem when
ealing with systematic errors is their proper identification. There

s no standard procedure to identify and report them and subjective
udgment in their identification and quantification is common.

As a consequence, procedures to quantify this type of uncer-
ainty and its effects are difficult to find and are restricted mostly
o the analysis of constant bias. The standard ANSI/ASME PTC 19.1
ANSI, 1998) and the Guide to the Expression of Uncertainty in
easurement (ISO, 1995) of the International Organization of Stan-

ardization (ISO) point out that uncertainty analyses should be able
o identify several sources of systematic or bias errors. Modeling
pproaches that take into account the effect of random and sys-
ematic errors on process design and simulation are important to
tudy the reliability of models and to the rational design of safety
actors.

According to ANSI/ASME PTC 19.1 (ANSI, 1998) and ISO (ISO,
995), the total uncertainty for an observable or measurable event
is expressed as

� = ˇ + ε� (1)

here ˇ is a fixed bias error and ε� is the random error. When
everal sources of systematic errors are identified, a representative
alue of ˇ is estimated as

˜ ≈
[

m∑
i=1

ˇ2
i

]1/2

(2)

here i defines the sources of bias errors, ˇi is the bias limit within
he error source i. Similarly, the same approach is used to define
he total random error based on individual standard deviation esti-

ates (ANSI, 1998; ISO, 1995),[
n

]1/2
˜� ≈
∑
i=1

s2
i (3)

As mentioned earlier, Vasquez and Whiting (1998) presented
vidence of systematic errors in experimental data that vary with
cal Engineering 34 (2010) 298–305 299

one or more of the measured quantities. Figs. 4 and 6 show
examples of this behavior for ternary liquid–liquid equilibria (LLE)
systems. We can see that there are systematic errors on the data
(see the systematic differences among the different laboratories)
that are function of the composition of one of the components.
Similar evidence was reported by Henrion and Fischoff (1986) for
fundamental physical constants. This suggests that methods for the
analysis of systematic uncertainty based upon the use of Eq. (1) may
not be appropriate under this type of situation.

Understanding how these errors propagate through computer
models is important for uncertainty analysis. Analytical approaches
are very limited because of the usual nonlinear complexity of engi-
neering models. Current analytical methods are based on error
propagation analysis using the Taylor’s series expansion (ANSI,
1998; ISO, 1995; Taylor, 1982). They consist of estimating the com-
bined uncertainty uc(y) on the estimate of y, where y is given
by the model y = f (x1, x2, . . . , xN) with uncertain input variables
x1, x2, . . . , xN . Then, the combined uncertainty uc(y) is estimated
as

u2
c (y) =

N∑
i=1

[
∂f

∂xi

]2

u2(xi) (4)

A more practical approach is to use Monte Carlo methods
(Helton, 1993). These can be used in highly complex nonlinear
models with many input and output variables. The main limita-
tion is the computing cost associated with the simulations and
post-processing the results.

3. Confidence intervals estimation

To estimate confidence intervals of random variables, we need
to take into account the probability distribution characteristics.
Once the probability density is known, upper confidence bounds
for the inter-quantile ranges are easily estimated by applying:∫ ∞

xo

f (x)dx = q (5)

where f (x) is the probability density, q the desired significance level,
and xo corresponds to the upper bound of the confidence interval
(CI). Estimation of lower confidence bounds can be obtained in a
similar manner. By looking at Eq. (5), we can see that information
about the probability tails is required in order to have good esti-
mates of the confidence intervals. This information is contained in
the extreme order statistics. Analysis of just the tails provides a
very robust model which can be applied without knowledge of the
underlying distribution (Leadbetter, Lindgren, & Rootz, 1980). In
fact, extreme value theory predicts that for an unbounded model,
the extreme order statistics will (at least approximately) follow one
of two general distributional forms (Leadbetter et al., 1980). These
are exponential f (x) = � exp(−�(x − d)) or Pareto f (x) = C˛x−˛−1,
where f (x) is the probability density (Leadbetter, Lingreen, &
Rootzén, 1983) (Fig. 1). This fact will affect clearly the estima-
tion of confidence intervals for probability distributions presenting
this type of behavior. As shown later, random and systematic
uncertainty can cause heavy character on the tails of probability
distributions for output variables of computer models. Thus, appro-
priate methods to compute confidence intervals involving the tails
are required under these circumstances. The nature of the model
can also be the cause of heavy or exponential tails.

The main idea is to characterize the probability distribution tails

by using either an exponential or Pareto model. To find out which
model is more appropriate one can plot the information on the tails
using log–log and semi-log plots (see the densities f (x) for the expo-
nential and Pareto models defined above). The empirical probability
distribution is obtained from an independent random sample of
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ity distribution tail characteristics.

To analyze random and systematic error effects using Monte
Carlo simulation, the approach proposed by Vasquez and Whiting
(1999) is used, which consists of, first, defining appropriate prob-
00 V.R. Vásquez et al. / Computers and

ize n using the order statistics X(1) ≥ X(2) ≥ · · · ≥ X(n), where the
andom variable X follows an exponential probability distribution.
ince the fraction of the data at or above X(i) is (i/n) we estimate
[X ≥ X(i)] = i/n. This simple idea can be used to investigate the
ature of the extreme order statistics or tail, to determine which
robability model is more appropriate for the tail. For exponential
ails q = P[X > x] = exp(−�(x − d)) so ln q = −�x + �d. Substituting
he empirical distribution function values, we see that a plot of
og(i/n) versus X(i) should appear linear with slope −�/ ln(10). For

random variable Y following a Pareto distribution q = P[Y > y]
Cy−˛ and log q = log C − ˛ log y so that a plot of log(i/n) versus

og Y(i) would appear linear with slope −˛. In other words, a semi-
og plot of the empirical tail distribution function will appear linear
or exponential tails, and a log–log plot will appear linear for heavy
ails. This reflects the fact that if Y is Pareto then ln Y is shifted
xponential. For many practical problems there is no prior indica-
ion to guide our choice of probability tail model, and in this case
e recommend examining both plots to determine the best fit.

Once a tail probability model has been chosen, simple linear
egression can be used to obtain approximate parameter estimates.

more accurate method is to employ the conditional maximum
ikelihood estimates developed by Hill (1975). For a heavy tail
areto model

ˆ r =
[

− ln Y(r+1) + r−1
r∑

i=1

ln Y(i)

]−1

(6)

ˆr =
(

r + 1
n

)
(Y(r+1))

ˆ̨ r (7)

re the conditional maximum likelihood estimators for ˛ > 0 and
> 0 based on the r + 1 largest order statistics. For data which are

pproximately Pareto in the tail, one should choose r small enough
o that only the Pareto-like tail is represented. Inspection of the tail
mpirical distribution function will give some idea about an appro-
riate value of r. Choose r as large as possible but small enough so
hat the log–log plot remains linear. Another method is to plot the
arameter estimates versus r (some authors call this a Hill plot) and
ake r large enough that the plot stabilizes. A typical application of
ill’s estimator in the literature involves 1000–3000 observations
nd estimates ˛ using the upper 10 percent of the data or less (Aban
Meerschaert, 2004; Anderson & Meerschaert, 1998; Hill, 1975;

ansen & de Vries, 1991; Loretan & Phillips, 1994; Meerschaert &
cheffler, 1998; Resnick & Stărică, 1995).

For an exponential tail model, it is permissible to apply the above
ethods along with the relations X = ln Y, � = ˛, and d = ln C/�.

quivalently, it is possible to show directly by an extension of the
rguments used by Hill (1975) that

ˆ r =
[

−X(r+1) + r−1
r∑

i=1

X(i)

]−1

(8)

ˆr = X(r+1) + �̂−1
r ln

(
r + 1

n

)
(9)

re the conditional maximum likelihood estimators for � > 0 and
based on the r + 1 largest order statistics. As with the heavy tail
odel, r is typically chosen by graphical methods.
Upper confidence bounds are easily obtained from the tail prob-

bility model once the parameters have been estimated. For Pareto

ails the 100(1 − q)% upper confidence bound is just the 1 − q per-
entile yq defined by q = P[Y > yq] = C(yq)−˛. Solving this equation
ields

q = (C/q)1/˛ (10)
cal Engineering 34 (2010) 298–305

For the exponential model the 100(1 − q)% upper confidence
bound is

xq = d + ln q/� (11)

which is the solution of the equation q = P[X > xq] = exp(−�(xq −
d)).

It is important to point out that the estimators for ˛ and �
defined by Eqs. (6) and (8) can be used for upper tails or largest
values (also called maxima). The application of these estimators to
smallest values or lower tails (also called minima) can be achieved
similarly by taking the inverse of the data or by multiplying by −1
for cases where the lower tail has negative values.

4. Methodology

The methodology used in this work consists of three general
steps:

1. Monte Carlo simulation of random and systematic error effects.
2. Characterization of tails for the cumulative probability distribu-

tion of output variables.
3. Estimation of confidence intervals taking into account probabil-
Fig. 1. Symmetric ˛-stable densities showing heavy tailed character. (a) Probability
density and (b) cumulative probability.
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Table 1
Parameter definitions for the ILCR model.

Variable Definition Type Mean � Standard deviation �

Cs Benzene concentration (mg/kg) Log-normal 0.84 0.77
Sr Soil ingestion rate (mg/day) Log-normal 3.44 0.80
RBA Relative bio-availability Parameter 1.00 –
Ew Exposure days per week Parameter 1.00 –
Ey Exposure weeks per year Parameter 20.0 –
ELf Exposure years per life Parameter 10.0 –
cf Conversion factor (kg/�g) Parameter 10−6 –
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the heavier the tails of the probability distributions become, so that
the lower and upper bounds estimation using the normal distribu-
tions becomes too narrow. This observation is expected due to the
fact that the Pareto model produces a better representation of the
distribution tails than the normal model does.

Fig. 2. Monte Carlo simulations of the Incremental Lifetime Cancer Risk (ILCR) for
children caused by ingestion of benzene in soil (Thompson et al., 1992). Cumulative
bw Body weight (kg)
dy Days per year
ylf Years per lifetime
CPF Cancer potency factor (kg day/�g)

bility distributions for the random and systematic errors based
n evidence found from different data sources. Then bias limits
re defined for the systematic errors of the input variables of the
odel. Samples are drawn using an appropriate probability distri-

ution for the systematic errors if a priori information is available.
therwise, a uniform distribution is used. For the random errors,

amples are taken from each of the probability distributions char-
cterizing the random error component of the input variables and
hen the samples are passed through the computer model. Gaussian
robability distributions are usually used to characterize variables
ith random errors. The characterization of the output probabil-

ty distribution tails is accomplished using the Hill’s estimator for
he thickness of heavy and exponential tails (i.e. determination of
ither ˛ or � using Eq. (6) or Eq. (8)). The last step is the estimation
f the confidence intervals. We use Eqs. (10) and (11) to compute
he 100(1 − q)% upper confidence bound for heavy and exponential
ails, respectively.

.1. Case study: effect of random and systematic errors on
ncremental Lifetime Cancer Risk (ILCR) calculations

An example adapted from Shlyakhter (1994) is used to illustrate
he proposed approach for confidence intervals estimation under
he presence of random and systematic errors. The model is sim-
le and easy to understand and it consists of Incremental Lifetime
ancer Risk (ILCR) calculations for children, produced by benzene

ngestion with soil. This problem was first addressed by Thompson,
urmaster, and Crouch (1992) in public health risk assessments.
he model for the ILCR is of the form:

LCR = Cs × Sr × RBA × Ew × Ey × ELf × cf

bw × dy × ylf
× CPF (12)

The parameters definitions and their values for the ILCR model
re given in Table 1. Random error effects were studied by perform-
ng 1000 Monte Carlo simulations using the provided probability
istributions for the input variables. The effect of systematic errors
as studied by adding systematic changes to the statistical means

f the stochastic input variables involved. The systematic errors are
ssigned in every trial by drawing pseudo-mean values for the input
ariables from a uniform distribution defined as U[�(1 − p), �(1 +
)], where p is the maximum fractional change allowed in � due
o systematic errors. Once the new pseudo-mean (�new) is defined
hen a normal random sample is chosen from N[�new, �]. Six levels
f systematic error were analyzed: 10%, 30%, 50%, 70%, 85%, and
0%. The higher levels of systematic error may not be realistic for
his situation, but are included to demonstrate the possible range
f behavior for simple nonlinear models.
Fig. 2 shows the cumulative probability curves of the Monte
arlo simulations for the ILCR model outputs involving both ran-
om and systematic error effects for different levels of systematic
rror. We can see that the random error is mainly controlling the
rror propagation. Only for significant levels of systematic error the
rmal 47.0 8.3
rameter 364 –
rameter 70 –
g-normal −4.33 0.67

cumulative probability distributions tend to be different from the
one for the random error only. Notice that all the cumulative proba-
bility distributions seem Gaussian. Fig. 3 show the upper tails using
a log–log plot. We can see the heavy character of the tails (i.e. linear
trends). The lower tails present a similar behavior. The character-
ization of the tails was performed using the Pareto model for the
upper tail of the cumulative probability distributions of Fig. 2 and
the results are presented in Table 2.

Table 3 summarizes the 99% confidence interval calculations
using Gaussian, log-normal, and Pareto probability distributions.
It is clearly observed that the use of Gaussian distributions is not
appropriate in this case. On the other hand, the log-normal distri-
bution is a good representation for the ILCR values, which is in very
close agreement with the bounds estimated using the Pareto distri-
bution. Also, it is observed that the higher the level of uncertainty
probability curves are presented for different combined error effects (random and
systematic) of the random variables in Eq. (12). The percentage values indicated
correspond to the systematic error used on the statistical mean of the input variables.
For comparison purposes, the Monte Carlo simulation produced from having only
random error effects (sampling performed using Gaussian distributions N[�, �]) is
included (“Random error only”).
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Fig. 3. Monte Carlo simulations of the Incremental Lifetime Cancer Risk (ILCR) for
children caused by ingestion of benzene in soil (Thompson et al., 1992). Upper 10%
tails of the cumulative probability curves are plotted (semi-log scales) for combined
effects of systematic and random errors in the random variables of Eq. (12). The per-
centage values indicated correspond to the systematic error used in the statistical
mean characterizing the input variables. For instance, for a given random variable
with mean �, its new mean after a systematic error of 10% is introduced is defined
by a random value chosen from the distribution U[0.9�, 1.1�]. Then a normal ran-
dom sample is chosen from N[�new, �]. For comparison purposes, the Monte Carlo
simulation produced from having only random error effects is included (“Random
error only”). See Fig. 2 for more details.

Table 2
Parameters ˛ and C for different levels of systematic uncertainty in the estimation of
ILCR. The parameters are for the lower and upper tails of the probability distributions
presented in Fig. 2, respectively. The parameter r represents the order statistics at
which ˛ and C were determined for the lower and upper 10% of the distributions.
For the lower tails, the data were transformed by taking the inverse and then the
Hill estimator was used.

S&R ˆ̨ r Ĉr

Level r Lower r Upper Lower Upper

10% 50 1.86 50 2.16 66.16 0.1540
20% 50 1.60 50 1.82 32.36 0.0857
50% 50 1.63 50 2.10 42.26 0.1209
70% 70 1.28 50 1.15 20.80 0.0916
85% 50 1.52 40 1.34 115.5 0.1308
90% 50 1.17 50 1.04 23.70 0.1585
Random 50 1.97 50 1.92 148.2 0.1054

Table 3
Lower and upper bounds for the 99% confidence intervals of the ILCR calculations
under the influence of both random and systematic errors. Confidence intervals are
compared with Gaussian normal and log-normal estimates.

S&R Normal Log-normal Pareto

Lower Upper Lower Upper Lower Upper

10% −1.44 2.25 0.0057 5.07 0.0061 4.88
20% −15.2 2.26 0.0051 5.64 0.0043 4.78
50% −2.63 3.44 0.0040 5.61 0.0039 4.56
70% −3.75 4.79 0.0019 9.14 0.0014 12.44
85% −6.06 7.30 0.0011 12.88 0.0013 11.52
90% −9.12 11.05 0.0008 22.08 0.0007 28.17
Random −1.97 2.76 0.0053 4.94 0.0054 4.89
cal Engineering 34 (2010) 298–305

5. Engineering computational studies

To illustrate the application of the confidence interval estima-
tion method proposed, two liquid–liquid extraction cases using the
UNIQUAC activity coefficient model (Abrams & Prausnitz, 1975)
are studied involving liquid–liquid equilibria predictions for the
ternary systems diisopropyl ether + acetic acid + water and chloro-
form + acetone + water.

The binary interaction parameters of the UNIQUAC model were
regressed using an objective function based on the minimization of
the distances between experimental and estimated mole fractions,
using an inside–variance estimation regression method proposed
by Vasquez and Whiting (1998).

5.1. Liquid–liquid extraction of acetic acid

This is an example selected from Treybal (1981), and it con-
sists of 8000 kg/h of an acetic acid–water solution, containing 30%
(mass) acid, which is to be countercurrently extracted with diiso-
propyl ether to reduce the acid concentration in the solvent-free
raffinate product. The solvent flowrate is 12,500 kg/h, and the col-
umn has 8 equilibrium stages. The column operates at 25 ◦C. The
output variable is the percentage of acetic acid extracted at steady
state conditions in the extractor. The experimental data for this sys-
tem were taken from Treybal (1981), Othmer, White, and Trueger
(1941), and Hlavaty and Linek (1973). The last two data sets are
also reported by Sørensen and Arlt (1980). Fig. 5 presents the
experimental tie lines for the different data sets mentioned. Clear
systematic trends are observed in the left phase of the system, as
well as systematic variations on the tie-line slopes.

To simulate both random and systematic errors, the first step
consists of setting approximate bias limits based on experimental
evidence. To do this, we plotted the different experimental data

sets describing the equilibrium of the system in Fig. 4. If we look at
the left side of the plot (the left phase), we note substantial varia-
tion between the experimental data. Thermodynamically, the data
should all fall on one well defined curve, like the right phase on

Fig. 4. Systematic error limits defined for the left phase in the liquid–liquid equi-
libria experimental of the diisopropyl ether(1) + acetic acid(2) + water(3) ternary
system at 25 ◦ C based on evidence of systematic uncertainty found using experi-
mental data from different sources. The experimental data are from Treybal (1981),
Othmer et al. (1941), and Hlavaty and Linek (1973).
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Table 4
Parameters � and d for different levels of systematic uncertainty in the percentage
of acetic acid extracted. The parameters are for the lower and upper tails of the
probability distributions presented in Fig. 5, respectively. The parameter r represents
the order statistics at which � and d were determined for the lower and upper 5%
of the distributions. For the lower tails, the data were transformed by taking the
inverse and then the Hill-like estimator was used. Notice from Eq. (8) that � and d
are unit dependent. Therefore, the inverse of the percentage of acetic acid extracted
was re-scaled by a factor of 1000.

Bias limits �̂r d̂r

Level r Lower r Upper Lower Upper

60% 70 2.53 50 3.43 12.71 74.41
80% 50 11.09 50 2.12 13.53 74.07

including the effects of random and systematic errors as explained
in the previous case study. The reference experimental data set
used to define the systematic errors is the one provided by Reinders
and De Minjer (1947). Then, with the binary interaction parame-

Table 5
Lower and upper bounds for the 99% confidence intervals of the percentage of acetic
acid extracted under the influence of both random and systematic errors. Confidence
intervals are compared with Gaussian normal estimates.

Bias limits Normal Exponential

Level Lower Upper Lower Upper
ig. 5. Uncertainty of percentage of acetic acid extracted in the liquid–liquid extrac-
or under the effect of systematic and random errors. The percent values indicate
ow much of the bias limits defined in this figure were used to perform the analysis.

he same plot. Next we choose boundaries (dashed lines) that we
elieve bracket the true values of the left boundary of the system.
ince we are choosing these limits purely on a visual inspection of
he experimental data, we will also perform a sensitivity analysis,
arying the range of these bias limits. The dashed lines in Fig. 4
efine what we call the 100% bias limits. For uncertainty analysis
urposes, we proportionally expand or contract these limits. For

nstance, the horizontal distances within the 100% bias limits (x-
xis) can be expanded away from center by a factor of 1.20. This
rocedure will produce a new set of dashed lines, which we call
he 120% bias limits. Similarly, we can contract the 100% base case
o produce other sets of bias limits that are smaller than the one
resented in the figure.

The data set of Hlavaty and Linek (1973) was used as the basis
or the simulations. For each tie line pair from that data set, for
ach set of bias limits, we simulate a systematic error in the left
hase by choosing a pseudo-random point uniformly distributed
etween the bias limits along the corresponding tie line. Then we
dd a random experimental error following a normal distribution
ith mean zero and standard deviation equal to 0.3236%, which

ields a maximum error of 1%, typical of measurement techniques
o quantify concentration. Both the systematic and random error
re drawn again for each replication of the simulation. The final step
s to use these data sets to regress the binary interaction parameters
nd evaluate the performance of the liquid–liquid extraction unit
peration.

All 1000 random pseudo-data sets were generated including
oth types of errors following the procedure described above,
hich are then used to regress all 1000 sets of binary interaction
arameters, which are passed through the ASPEN Plus process sim-
lator to calculate the performance of the extraction operation. All
000 performance evaluations were carried out for each level of
ystematic error considered. In this case study, 5 levels of system-
tic uncertainty were analyzed. They are 60%, 80%, 100%, 120%, and
40% of the bias limits defined in Fig. 4. The results of the simula-
ions are presented in Fig. 5 as cumulative probability distributions
or the percentage of acetic acid extracted. We can see clearly that
hen the error level increases there is a tendency on the tails of

he probability distributions to become heavier. The upper 5% tails

f these distributions were used to characterize the tails using the
arameter � (i.e. exponential tails) and the results are presented in
able 4.

Then 99% confidence intervals were calculated for the per-
entage of acetic acid extracted using the Gaussian normal and
100% 50 2.56 60 2.50 12.66 74.32
120% 50 0.815 50 2.02 10.29 74.39
140% 50 0.865 50 1.33 10.49 73.82

exponential models. The results are presented in Table 5. By look-
ing at Fig. 5, we can observe that the confidence intervals estimated
using the exponential model for the tails is significantly more
reasonable than the ones obtained from Gaussian normal esti-
mates. This behavior is of particular importance when the level
of uncertainty increases. This can be easily explained by the fact
that Gaussian estimates are based on the assumption of perfect
symmetry in the empirical probability distributions and the tail
exponential model does not use such assumption (i.e. each tail
is analyzed independently), but just looking at the shape of the
distributions in Fig. 5 such conclusion is not obvious. One way of
overcoming this problem is to find a suitable probability density to
fit the empirical distribution, but it can be a cumbersome task and
unnecessary in this case.

5.2. Liquid–liquid extraction of acetone

For this system, an example of a liquid–liquid extraction oper-
ation reported by Smith (1963) is used. Water is used to separate
a chloroform–acetone mixture in a simple countercurrent extrac-
tion column with two stages. The feed contains equal amounts of
chloroform and acetone on a weight basis. The column operates at
25 ◦ C and 1 atm. A solvent/feed mass ratio of 1.565 is used. The
output variable for this case is the percentage of acetone extracted.
The experimental data used in this example are from Bancroft and
Hubard (1942), Brancker, Hunter, and Nash (1940), Reinders and De
Minjer (1947), and Ruiz and Prats (1983), all of them also reported
by Sørensen and Arlt (1980). Fig. 6 presents experimental LLE data
sets showing evidence of systematic errors on the left phase of
the system. For this case study, 4 levels of systematic uncertainty
were studied. The 100% bias limits corresponds to the systematic
limits presented in Fig. 6, then levels at 60%, 80%, and 120% were
also analyzed. All 1000 pseudo-data sets were generated randomly
60% 63.33 84.48 67.56 75.95
80% 72.98 75.02 71.37 76.57
100% 64.45 83.33 67.94 76.43
120% 56.65 90.70 59.58 77.01
140% 56.41 91.87 60.26 77.81
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Fig. 6. Systematic error limits defined for the left phase in the liquid–liquid equi-
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Table 6
Parameters � and d for different levels of systematic uncertainty in the percentage of
acetone extracted. The parameters are for the lower and upper tails of the probability
distributions presented in Fig. 7, respectively. The parameter r represents the order
statistics at which � and d were determined for the lower and upper 10% of the
distributions. For the lower tails, the data were transformed by taking the inverse
and then the Hill-like estimator was used. Notice from Eq. (8) that � and d are unit
dependent. Therefore, the inverse of the percentage acetone extracted was re-scaled
by a factor of 10,000.

Bias limits �̂r d̂r

Level r Lower r Upper Lower Upper

60% 70 1.44 60 1.72 129.89 76.69
80% 60 1.83 60 2.25 130.25 76.95
100% 60 2.03 50 2.25 130.50 76.97
120% 50 2.21 50 2.56 130.65 77.10

Table 7
Lower and upper bounds for the 99% confidence intervals of the percentage of
acetone extracted under the influence of both random and systematic errors. Con-
fidence intervals are compared with Gaussian normal estimates.

Bias limits Normal Exponential

Level Lower Upper Lower Upper

60% 76.11 77.81 74.87 79.74
ibria of the chloroform(1) + acetone(2) + water(3) ternary system at 25 ◦ C based on
vidence of systematic uncertainty found using experimental data from different
ources. The data are from Reinders and De Minjer (1947), Bancroft and Hubard
1942), Brancker et al. (1940), and Ruiz and Prats (1983).

ers regressed, all 1000 extraction performance evaluations were
arried out using the ASPEN Plus process simulator.

The cumulative probability distributions obtained for the per-
entage of acetone extracted are presented in Fig. 7. We can see
hat in this case it is more difficult to distinguish among the dis-
ributions. The parameter � (exponential tails represented a better
ption than Pareto) using the Hill-like (see Eq. (8)) estimator was
omputed for the different levels of systematic error for the lower
nd upper 10% of the tails. The results are presented in Table 6.

The 99% confidence intervals were calculated for the percentage
f acetone extracted using the Gaussian normal and exponential
odels. The results are presented in Table 7. In this case, the

aussian-based confidence intervals are more narrow than the
nes calculated using the exponential model. Basically, this hap-
ens because the Gaussian probability density does not reproduce
ell the long flat tails present in the empirical distribution of Fig. 7.

ig. 7. Uncertainty of percentage of acetone extracted in the extractor under the
ffect of systematic and random errors.
80% 76.24 77.61 75.05 79.31
100% 76.32 77.55 75.17 79.32
120% 76.30 77.61 75.16 79.17

The exponential model takes into account the extension of the tails
and therefore produces more accurate estimates of the confidence
intervals.

6. Concluding remarks

An approach based on Monte Carlo simulation coupled with
heavy and exponential probability tail analysis was presented to
estimate confidence intervals under the effect of systematic and
random errors on computer models. From the results it is observed
that the cumulative probability distribution characteristics can be
significantly affected by the error source or type. This suggests that
traditional methods for estimating confidence intervals may not be
appropriate under the presence of systematic and random errors.
It was shown that the use of distribution tail analysis is a robust
approach to estimate confidence intervals.

For the thermodynamics case studies presented, the approach
for confidence intervals estimation is able to resolve problems such
as under and over-estimation of inter-quantile ranges present in
the Gaussian approach. This is particularly important for cases
where the empirical distributions seem very Gaussian (see the
liquid–liquid extraction of acetone case).
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