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Abstract. A transport equation that uses fractional-order dispersion derivatives has
fundamental solutions that are Lévy’s a-stable densities. These densities represent plumes
that spread proportional to time1/a, have heavy tails, and incorporate any degree of
skewness. The equation is parsimonious since the dispersion parameter is not a function
of time or distance. The scaling behavior of plumes that undergo Lévy motion is
accounted for by the fractional derivative. A laboratory tracer test is described by a
dispersion term of order 1.55, while the Cape Cod bromide plume is modeled by an
equation of order 1.65 to 1.8.

1. Introduction

Anomalous, or non-Fickian, dispersion has been an active
area of research in the physics community since the introduc-
tion of continuous time random walks (CTRW) by Montroll
and Weiss [1965]. These random walks extended the predictive
capability of models built on the stochastic process of Brown-
ian motion, which is the basis for the classical advection-
dispersion equation (ADE). The CTRW assign a joint space-
time distribution, called the transition density, to individual
particle motions. When the tails are heavy enough (i.e., power
law), non-Fickian dispersion results for all time scales and
space scales. Berkowitz and Scher [1995, 1998] and Painter et al.
[1998] provide reviews of CTRW and application to transport
in fractured rock. Numerous authors have shown the equiva-
lence between these heavy-tailed motions and transport equa-
tions that use fractional-order derivatives. The motions can be
heavy-tailed, implying extremely long-term correlation and
fractional derivatives in time [Giona and Roman, 1992;
Compte, 1996] and/or space [e.g., Gorenflo and Mainardi, 1998;
Saichev and Zaslavsky, 1997; Benson, 1998; Chaves, 1998; Meer-
schaert et al., 1999].

Second-order dispersion arises when tails of this distribution
are sufficiently “thin” that relative to an observation or mea-
surement event, time-consuming or very large motions are
effectively ruled out. Typically, a sufficient number of thin-
tailed motions must also be integrated before DeMoive’s cen-
tral limit theorem is a good assumption and before ergodicity
and Fickian transport ensue. During this pre-Fickian phase of
transport, scale-dependent dispersion coefficients can be used
in a local ADE, although a nonlocal formulation is a more
accurate model of these motions [Neuman, 1993; Cushman et
al., 1994]. Solutions of certain nonlocal equations are gained
via fast Fourier and Laplace transforms for relatively homoge-
neous media [e.g., Deng et al., 1993].

The classical ADE with a local (or asymptotically constant)
dispersion tensor is a very handy predictive equation, since
solutions are easily gained. The fractional-order forms of the
ADE are similarly useful. General nonlocal forms of the sec-
ond-order ADE are less so, since solutions must be gained by
numerical convolution. Similarly, explicit numerical modeling
by generation of random K fields and subsequent Monte Carlo
simulation is a very time-consuming process that is commonly
used to gain information about a plume’s pre-Fickian behavior.
The fractional ADE used herein is spatially nonlocal and mod-
els particles that experience very large transitions. The large
transitions may arise from high heterogeneity [Benson et al.,
2000] and very long spatial autocorrelation [Benson, 1998]. If
the transition probabilities follow a power law, then analytic
solutions of the fractional ADE may serve as good stand-alone
models of transport throughout a plume’s development. In this
study we examine whether the fractional-order ADE is also a
useful model for transport in relatively homogeneous material.

2. Evidence of Fractional, or a-Stable, Behavior
in Relatively Homogeneous Material

The fractional ADE predicts concentration versus time and
distance in closed form, once the scaled a-stable density (fun-
damental solution) is known. In this spirit, two experiments are
analyzed in the simplest way possible to look for evidence of
non-Fickian, heavy-tailed, behavior. A typical question that a
contaminant hydrogeologist wishes to answer is How far and
how fast will a tracer move? As a first approximation, this
reduces most problems to one spatial dimension (one-
dimensional (1-D)). The following experiments will be treated
as such. The questions associated with multiple dimensions
and averaging are left for future work.

Two experiments are analyzed in this section. The first one
was intuitively expected to follow Fick’s law. It is a 1-D tracer
test in a laboratory-scale (1 m) sandbox. The sandbox was
constructed with very uniform sand in an effort to minimize
heterogeneity. The second test uses data collected by the U.S.
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Geological Survey during a 511-day tracer test within a rela-
tively uniform sand-and-gravel aquifer on Cape Cod.

Since we analyze these tracer tests in one dimension, we use
the 1-D form of the fractional advection-dispersion equation
[Meerschaert et al., 1999]:

C
t 5 2v

C
 x 1 $p

aC
 xa 1 $~1 2 p!

aC
~2x!a , (1)

where C is the expected concentration, t is time, v is a constant
mean velocity, x is distance in the direction of mean velocity, $
is a constant dispersion coefficient, 0 # p # 1 describes the
skewness of the transport process, and a is the order of frac-
tional differentiation (appendix). For a discussion of this equa-
tion, see Benson et al. [2000] or Meerschaert et al. [1999]. When
a 5 2, the dispersion operators are identical and the classical
ADE is recovered. Fundamental (Green function) solutions
are Lévy’s a-stable densities (appendix).

2.1. Laboratory-Scale Tracer Test

A laboratory-scale sandbox (Figure 1) was constructed for
the purpose of studying Henry’s [1964] seawater intrusion
problem. The sandbox was designed and built using as homo-
geneous a porous medium as possible [Burns, 1996] for com-
parison to analytical solutions. Numerous researchers have
shown that it is extremely difficult, if not impossible, to create
a homogeneous sandbox. A number of simple tracer tests were
conducted to estimate the transport characteristics of the sand.
These tracer tests showed non-Gaussian breakthrough curves
[Burns, 1996] with sigmoid shape on probability plots and
heavy leading and trailing edges (tails) similar to theoretical
a-stable solutions (Figure 2).

In a typical 1-D laboratory tracer test, the velocity is held
constant and large enough to neglect molecular dispersion.
The classical ADE is used to model the breakthrough curve
using the 1-D velocity-dependent dispersion coefficient $ 5
vaL, where aL is the longitudinal dispersivity. Fickian trans-
port refers to transport within a medium in which aL remains
a constant throughout a plume’s history, yielding a constant
coefficient on the second-order dispersion term. This would be
expected for transport at larger than pore scales in a column
(or sandbox) of perfectly mixed, homogeneous sand [Taylor,
1953; de Josselin de Jong, 1958]. A continuous tracer has a
breakthrough curve that is a shifted Gaussian distribution
function. The curves are translated by a distance vt , which is
the mean travel distance within the column. The quantity
(2aLvt)1/ 2 is analogous to the standard deviation of the graph
of the concentration versus distance, so the distance (Xc)

between any two quantiles, or relative concentration levels, in
a plume grows proportional to (aLt)1/ 2. If the rate of growth
is faster, then aL is made to absorb the increase since the
second-order diffusion equation can only afford growth pro-
portional to t1/ 2.

In an a-stable plume following (1), Xc should grow propor-
tional to t1/a. If the dispersivity is thought to grow as a power
function of the mean travel distance or time during a constant
velocity test (i.e., aL } tm), then the value of the Lévy index
(a) can be directly calculated:

~aLt!1/ 2 } ~tmt!1/ 2 } Xc } t1/a. (2)

Some algebra gives the expression for a in terms of the slope
(m) of the increase of apparent dispersivity versus time on a
log-log graph: a 5 2/(m 1 1). The Fickian result is recovered
if the dispersivity does not increase with scale. Then m 5 0
and a 5 2.

A series of conservative tracer tests were conducted in the
sandbox to estimate the anticipated single value of aL for the
sandbox [Burns, 1996]. The value of dispersivity at each of 23
conductivity probes was markedly different, with a general
increase of the values with mean travel distance (Figure 3).
The mean travel velocity was found to decrease with depth
within the sandbox, indicating the presence of fining-upward
sequences and compaction that were created during sand em-
placement. These sequences are not visible because of the high
degree of sand uniformity [Burns, 1996]. The initial indication
of a-stable transport within the sandbox lies within the heavy-
tailed breakthrough curves (Figure 2). When the concentration
is normalized and plotted on a probability axis versus scaled

Figure 2. (a) Normalized concentration versus scaled time
for probe 20, test 3 [after Burns, 1996]. A best fit line (implying
an underlying Gaussian profile) is typically used to calculate
the apparent dispersivity. (b) The a-stable distributions, which
are solutions to (1) for a constant source.

Figure 1. Schematic view of the experimental sandbox tracer
tests [after Burns, 1996]. The flow path highlighted by the
arrow is analyzed in detail.
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time (or distance) on a normal axis, a Gaussian plume appears
as a straight line [Pickens and Grisak, 1981]. The slope of the
line is proportional to aL, so this method is commonly used to
estimate the dispersivity of the transport medium. An a-stable
plume plotted in the same manner will appear nearly Gaussian
throughout the middle of the breakthrough curve but will also
show higher tail probabilities, presenting a sigmoid shape
throughout the breakthrough curve (Figure 2). The heavy-
tailed breakthrough curves are well within the probe calibra-
tion ranges [Burns, 1996] and cannot be attributed to instru-
ment error.

This heavy-tailed breakthrough is typically explained and
subsequently modeled by kinetic reactions or multiple com-
partments, or phases, into which the solute can partition [Coats
and Smith, 1964; van Genuchten and Wierenga, 1976; Brusseau
et al., 1989; Haggerty and Gorelick, 1995]. The compartments
can be given different rates of Gaussian transport; a zero-
velocity (immobile) phase is commonly used. These mobile/
immobile models can be tuned to provide excellent data fits
and in some cases are based on a truly immobile (i.e., dead-end
pore) phase. To model skewed, heavy-tailed plumes, these
theories require one or more generally empirical parameters in
the form of transfer coefficients or distributions of coefficients
[Li et al., 1994; Haggerty and Gorelick, 1995; Haggerty et al.,
1998]. These methods are typically used to explain long-tailed
trailing edges but do not account for non-Gaussian fast path-
ways. An interesting and open question is whether the heavy-
tailed and possibly skewed plumes predicted by the fractional
ADE can reproduce a range of results from these multiphase
Gaussian models. In the sandbox, heavy leading and tailing
tails are likely due to channeling within small fining-upward
sequences that resulted from sand emplacement through
standing water and from cracked and intact surface clays on
the sand particles (Figure 4).

Each dispersivity value is difficult to estimate accurately
because of the sigmoid breakthrough curves (Figure 2). The
choice of dispersivity depends on a judgement of the number
of data assumed to fall along a straight line. These estimates
only give a rough idea of the non-Fickian growth rate of the
solute pulse. We model the flow path indicated by the arrow in
Figure 1 because it represents the longest flow path with six
sample ports, providing six dispersivity values (Figure 3). The

rest of the dispersivity data (Figure 3) are indicative of other
pathways through the sandbox. Since we are using break-
through curve data from the flow path, or stream tube, indi-
cated in Figure 1, our comparisons are self-consistent. Our
purpose here is to look for non-Fickian, heavy-tailed, behavior
in this experiment. A complete analysis of the sandbox break-
through curve data, including lateral transport, is left for fur-
ther analysis.

The apparent dispersivities along the chosen flow path indi-
cate a value of a 5 1.55. As a result, the breakthrough curves
along this flow path should be scale-invariant after shifting by
the mean travel time and dividing by t1/1.55. By plotting the
tails of the distribution, i.e., C/C0 for the leading edge and
(1.0 2 C/C0) for the trailing edge, versus the absolute value
of (t 2 tmean), the skewness and heavy, power law tails of the

Figure 3. Calculated dispersivities versus distance of probe
from source. Probes along the flow path chosen for analysis are
indicated by solid ovals. The best fit dashed line indicates a
fractional index (a) of 1.55.

Figure 4. Photomicrographs of the sand used in Burns’
[1996] experiment.
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plume are immediately apparent (Figure 5). Proper time
rescaling by t1/a shows reasonably good agreement throughout
the entire breakthrough curve history, particularly the trailing
edge. One can empirically estimate the value of a by plotting
the breakthrough curves with the abscissa scaled by different
values of t1/a. If a is too large, the downstream curves plot to
the right (Figure 5b). Too small a value of a results in down-
stream curves shifted to the left.

Once the index of differentiation is known, a predictive
model of transport is obtained. One need only generate a
single density (or distribution function for a continuous tracer
test) and scale this density for any time or distance. The value
of $ is obtained from the scaling of the breakthrough curves
relative to a standard a-stable curve (appendix). Several stan-
dard densities using a 5 1.55 and various skewness parameters
( p) were generated to achieve the observed separation of the
leading and trailing tails. A value of p 5 3/4 provides a
reasonable separation (Figure 6). Compared to the classical
ADE solution, the fractional ADE model more accurately
represents the heavy tails observed at all of the probe locations
along the streamtube. A scale-dependent dispersivity is not
needed since the fractional derivative describes the faster than
Fickian transition zone growth.

2.2. Cape Cod Aquifer

In July 1985, ;7.6 m3 of tracer was introduced into a sand
and gravel aquifer in Cape Cod, Massachusetts. The injected
tracer contained 640 mg/L of the relatively nonreactive bro-
mide (Br2) ion, as well as reactive (sorbing) Li1 and MoO4

22

ions. LeBlanc et al. [1991] and Garabedian et al. [1991] docu-

ment the tracer test and the characteristics of the plume, such
as estimated first and second moments. Over 650 multilevel
samplers (MLS) were installed to monitor the plume (Figure
7) for over 511 days. The Br2 plume extended well beyond the
MLS array after 511 days, creating an effective time cutoff for
analysis of the nonreactive plume. Each MLS (the numerous
small circles in Figure 7) consisted of 15 sampling ports at
different depths, resulting in the collection of a large number
of data points in x-y-z time coordinates.

For simplicity, the positive x direction will refer to the mean
plume movement direction of roughly 88 east of south (Figure
7). The deviations that the plume made from this line are small
enough that the difference between the actual travel distance
and the distance projected onto this x axis is negligible. A
plume of nonreactive tracer is a 3-D joint density. Analysis can
be reduced to one dimension in several ways. Cross-sectional
averaging investigates marginal 1-D densities. Examining the
peak concentration along the plume core investigates condi-
tional densities. Both methods suffer from various sampling,
bias, and interpolation errors. We choose to analyze the
plume’s core, which is not mass conserving when transverse
dispersion is large. However, the analysis is very simple to
perform, and the peak concentrations will suffer the least
amount of variability [Kapoor and Gelhar, 1994]. Since trans-
verse dispersion at Cape Cod is relatively small, we examine
the core by first reducing the 15 vertical samples at each MLS
into a single piece of data: the maximum concentration. This
maximum concentration will be considered the true peak con-

Figure 6. Comparison of traditional and fractional ADEs
with the data from probe 3 ( x 5 55 cm) in the sandbox test:
(a) real time and (b) data tails. Note the large underprediction
of concentration by the traditional ADE at very early and late
time.

Figure 5. Measured breakthrough “tails” at probes along the
flow path (a) properly rescaled by t1/1.55 and (b) rescaled by
the traditional t1/ 2. Note the strong skewness that separates
the leading and trailing limbs of the plume. Very early and late
data show probe noise.
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centration at a given point in horizontal space; thus the 3-D
problem is reduced to 2-D. The behavior of vertical averages at
Cape Cod were very similar to these maxima [Benson, 1998], so
we look only at the maxima here. Finally, since the MLS array
generally consists of a series of MLS arranged perpendicular to
the flow to laterally bracket the plume (Figure 7), the maximum
concentration observed within a specific travel distance range is
taken to represent the peak concentration for that distance. This
procedure gives a 1-D picture of the plume at any sampling time.
The peak concentrations in 3-D are projected to the x axis,
resulting is a series of 1-D snapshots of the plume’s core.

2.2.1. Estimation of parameters. Garabedian et al. [1991]
calculated the variance of the plume roughly along the direc-
tion of mean travel and concluded that the growth was linear
after 83 days, suggesting that a local, Fickian (second-order)
governing equation is applicable after this point. A plot of the
variance versus mean travel distance ( x# ) on log-log axes indi-
cates that the growth appears nonlinear for much, if not all, of
the plume’s history (Figure 8), suggesting that a fractional
approach may be applied. Fits of the power law and Fickian
(linear) models are similar in untransformed coordinates (Fig-
ures 8a and 9a). The major difference between the plume sizes

Figure 8. Calculated plume variance [Garabedian et al.,
1991] versus mean travel distance: (a) linear coordinates, with
residuals minimized by power law with a 5 1.8; (b) log-log
coordinates, showing best fit line of a 5 1.65. All lines use a
zero-variance intercept.

Figure 7. Aerial view of the Cape Cod Br2 plume. The plume deviated from travelling due south by ;88 to
the east. Circles are multilevel samplers (MLSs).

Figure 9. Calculated plume variance [Garabedian et al.,
1991] versus elapsed transport time: (a) linear coordinates,
with roughly equal residual squared errors between data and
linear or a 5 1.8 power law models; and (b) log-log coordi-
nates, with errors of log-transformed data about 1/3 as high for
the a-stable model.
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predicted by the fractional and Fickian approaches is only
realized at much later times, when the measured variance of an
a-stable plume continues to grow at a nonlinear rate. Only
after transformation to log-log coordinates does the fractional
approach show some advantage (Figures 8b and 9b). The plots
of estimated variance versus either time or x# have different
slopes owing to the fact that the mean velocity changed subtly
throughout the test [Garabedian et al., 1991]. Estimates of a range
from 1.65, which minimizes the data residuals after log transfor-
mation of variance versus x# , to 1.8, which minimizes residuals
of untransformed data. We investigate both solutions.

One check of the ergodicity of the transport process is the
decline rate of the concentration within some fixed portion of
the plume. Since the fundamental solutions of the local ADE
and the fractional ADE are densities, the height of the density
(the concentration measured along the plume core) should
decline at the same rate that the density grows in space. How-
ever, the rate of peak concentration decline is much more
rapid than either the traditional or fractional ADEs predict
(Figure 10). This suggests that (1) the calculation of plume
variance is strongly influenced by detection limits, underesti-
mating the variance (plotted in Figures 8 and 9) more strongly
at later times; (2) a significant mass of bromide is partitioning
into an immobile phase; (3) plume dilution is greater at later
time, or (4) a temporally nonlocal governing process is at work.

Mass recovery at the Cape Cod site was generally very good
with little systematic decline [Garabedian et al., 1991], suggest-
ing that the first two explanations are not important. Further,
the reactor ratio (the ratio of measured to maximum plume
entropy assuming a Gaussian) is relatively constant at Cape
Cod [Thierrin and Kitanidis, 1994]. This suggests that temporal
nonlocality may be important and that solutions to either a
local ADE or the fractional ADE will suffer similar inaccura-
cies. The degree to which either solution is in error is left as an
open question.

The dispersion coefficient for the FADE can be obtained by
generating a standard a-stable density (appendix) and plotting
this density alongside the field data measured at some point in
time. The lateral shift required on log-log plot is equal to (ucos
pa/ 2 u$t)1/a. Another method recognizes that an a-stable
plume is roughly Gaussian close to the center of mass [Sam-
orodnitsky and Taqqu, 1994] so the early time estimates of the
dispersion coefficient based on standard methods should give a
reasonable estimate. Equating the Gaussian and a-stable so-
lutions gives

S U cos
pa

2 U$tD 1/a

< S 1
2 VARD 1/ 2

, (3)

where VAR is the measured plume variance. From this we can
roughly estimate the dispersion coefficient for a fractional
ADE:

$ < SVAR
2 D a/ 2 1

U cos
pa

2 U t
. (4)

Estimates of the dispersion coefficient for values of a 5 1.65,
1.8, and 2 based on the estimated variance [Garabedian, et al.
1991] mimics the growth of the variance (Figure 11). Since
these numbers are based on the elapsed time, rather than the
mean travel distance, the approximate dispersion coefficients
for a 5 1.8 appear the most consistent. Had we used mean
travel distance and a constant velocity, the values for a 5 1.65
would be relatively constant. Since these numbers are approx-
imations, the calculation of $ from t using (4) will suffice.
From the early data we have a, $ doublets of 1.65, 0.21 m1.65/d
and 1.8, 0.25 m1.8/d. Hess et al. [1992] used permeameter and

Figure 10. Maximum measured bromide concentrations in
each sampling event: (a) linear coordinates and (b) log-log
coordinates. The theoretical concentration decline should fol-
low t21/a. Minimizing squared errors of untransformed data
gives a 5 1.3, while minimizing squared errors of log data gives
a 5 1.2.

Figure 11. Estimated longitudinal dispersion coefficients for
a 5 2 (diamonds), a 5 1.8 (squares), and a 5 1.65 (circles)
estimated by equation (4). Early plume data give $ ' 0.25 for
a 5 1.8 and $ ' 0.21 for a 5 1.65.
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flowmeter K data to estimate an asymptotic longitudinal dis-
persivity ranging from 0.35 to 0.78 m. We use an average of 0.5
here. With a relatively steady velocity of 0.43 m/d, the K data
give an asymptotic dispersion coefficient of 0.21 m2/d for the
second-order equation. Garabedian et al. [1991] use the plume
variance data (Figure 8) to infer an asymptotic, or Fickian, aL

value of 0.96 m, or a dispersion coefficient of 0.41 m2/d.
2.2.2 Analytic solutions. Analytic solutions have been

generated using the aquifer parameters estimated in section
2.2.1. The 1-D equations are

C
t 1 v

C
 x 2 $~ x# !

2C
 x2 5 C0x0d~t , x! (5)

C
g

1 v
C
 x 2 $¹aC 5 C0x0d~t , x! , (6)

where C0x0d(t , x) denotes the initial solute concentration
(C0) spread over some injection distance x0 which is mathe-
matically concentrated into a delta function “spike.” This num-
ber is the area under all of the concentration versus distance
curves and should coincide with the injected concentration
times the initial size of the injected mass. We use the value in
the x direction of 640 mg/L 3 400 cm 5 0.256 g/cm2 estimated
by LeBlanc et al. [1991]. We have used the notation ¹a to
denote a symmetric fractional-order operator ( p 5 0), which
is also known as the Riesz potential [Samko et al., 1993]. In
both equations, v 5 0.43 m/d.

One measure of the predictive ability of the various methods
is the shape of the fundamental solutions. If the a-stable so-
lution to (6) provides a fair representation of the plume, one
would also expect to see heavy tails [e.g., Benson et al., 2000].
The Cape Cod data were not collected with this type of analysis
in mind, so most MLSs were not sampled if the concentration
was thought to be near the background concentration of ;0.01
mg/L. The sampling period at 349 days is an exception to this
general rule, as many MLSs behind, and several ahead of, the
main plume body were sampled and analyzed (Figure 12). The
maximum concentration measured in vertical planes roughly
perpendicular to flow (the core of the plume) are shown in the
plot. The plotted data represent corrected concentrations in
excess of the background of roughly 0.01 mg/L [Garabedian et
al., 1991]. To examine the tail characteristics, the concentra-
tions measured at this time are also plotted on a log axis
(Figure 12b). Note that four MLS did not show Br2 above
background concentrations (plotted at 0.01 mg/L). Each of
these points was surrounded in the forward and backward
directions by at least two concentrations above background.

Analytic solutions of the fractional ADE, using values of a
and $ estimated from the first several plume measurements,
show good agreement with data measured on day 349 (Figure
12a). The ADE with an asymptotic value of $ 5 0.21 (an
average of theoretical predictions from permeameter and flow-
meter K data [see Hess et al., 1992]) underpredicts total spread.
A best fit Gaussian with a variance matched to the measured
data has a similar shape to the fractional solutions (Figure
12a). This solution represents a value of $ 5 0.4. The Fickian
model underpredicts the concentrations of Br2 on the trailing
(well-sampled) edge of the plume (Figure 12b). The fractional
solution is typically within an order of magnitude, although the
Fickian model fits the data more closely than the fractional
ADE between the tails and the peak. Notable on this plot is the
concave-upward shape of both the data and the a-stable solution
tails. No effort was made to iteratively fit the a-stable solutions to

the measured data. The Fickian solution underpredicts concen-
trations and arrival speed of the leading edge about as much as
the fractional ADE overpredicts the same. Benson [1998] also
shows that various averages of the MLSs perpendicular to the
flow direction have a similar shape as these concentration
maxima data. The averages imply that samples taken from
wells screened across larger aquifer thicknesses will also show
the same plume tailing on the leading and trailing edges.

Solutions to (5) using the asymptotic dispersivity and to (6)
using a 5 1.8 and $ 5 0.25 for six other sampling rounds are
very similar (Figure 13). Because the value of a is very close to
2 for the Cape Cod site, nearly indistinguishable fits (except for
the tails) can be achieved at any time period by adjusting the
dispersivity in the second-order equation. The curves for an
asymptotic dispersivity are shown to highlight the difference on
the fractional approach, which has more rapid rates of peak
concentration decline and plume growth than a Fickian plume.
Also shown are the solutions for a 5 1.65 and $ 5 0.21 at the
first and last time step, showing even more rapid growth.

3. Discussion
The fractional ADE (1) is the governing equation of all 1-D

stable random walks [Meerschaert et al., 1999]. If the walks are
not heavy-tailed (i.e., have finite variance), then the classical
central limit theorem gives a 5 2 [Bhattacharya and Gupta,
1990]. Walks that fit a heavy-tailed probability distribution

Figure 12. Predicted (solid lines) and measured (symbols)
plume profile at 349 days: (a) real axes and (b) semilog axes.
Concentration refers to concentration above background along
the plume core. Dashed line indicates best fit Gaussian.

1409BENSON ET AL.: APPLICATION OF A FRACTIONAL ADVECTION-DISPERSION EQUATION



(e.g., power law with index a , 2) have infinite variance and
imply a fractional equation of order a [Meerschaert et al., 1999].
Benson et al. [2000] show that a highly heterogeneous site fits
this infinite variance model. The laboratory-scale sandbox and
the Cape Cod aquifer are less likely candidates because of their
relative homogeneity. Yet the breakthrough data in both cases
are heavy-tailed and spread faster than Boltzmann scaling for
most, if not all, of the plume history. These experiments indi-
cate that a fractional-order equation is a useful predictive tool
that is at least as accurate as a local, second-order equation
with scale-dependent dispersivity.

The number of parameters required in a governing equation
for early and late time plume predictions remains equal to or
less than that needed for the traditional ADE. The dispersion
coefficient is a constant, rather than a function of time or mean
travel distance [Dagan, 1988; Neuman and Zhang, 1990; Ra-
jaram and Gelhar, 1995], reducing the number by one. This is
replaced by the order of differentiation in (1). To get skewness
(and tailing with a local ADE), another parameter is needed
for any order equation: p for the fractional ADE and a mass
transfer rate coefficient for mobile/immobile formulations.
Since two-phase mobile/immobile solutions produce exponen-
tial, not power law tails, it is not well suited to the sandbox
data. Haggerty et al. [1998] have shown that an infinite number
of immobile phases can produce power law tailing, if the rate
coefficient probability distribution has a power law tail. This is
conceptually similar to the fractional ADE, which explicitly

dictates that very slow particle motions have a much higher
probability than the Gaussian can allow. An open question is
the exact nature of the overlap between a fractional ADE and
the infinite immobile phase model of Haggerty et al. [1998].

These analyses are purely heuristic. A direct link between
the order of the governing equation and the hydraulic proper-
ties of the sandbox and Cape Cod aquifer remains to be shown.
However, since the fractional ADE uses constant parameters,
their values may be estimated from several early measure-
ments of the plume. Knowledge of the K autocorrelation prop-
erties is not needed for long-term predictions. This may be
financially beneficial, since plume concentrations are often
measured at contaminated sites while the K structure is not.

4. Conclusions
The fractional ADE is compatible with observations of

plumes in the laboratory and the field. It predicts power law,
faster than linear scaling of the apparent plume variance. The
fundamental solutions are a-stable densities with heavy tails
that may arise from hydraulics alone. The parameters in the
equation can be calculated from early time plume growth or
breakthrough curve data. While Benson et al. [2000] indicate
that the parameters can also be discerned from the K distri-
bution at highly heterogeneous sites, this type of analysis has
not yet been applied to the relatively homogeneous sandbox
and Cape Cod aquifer. Tracer data show that a predictive
equation valid over a wide range of time and distance scales
can be found in the absence of aquifer K data.

Building a homogeneous sandbox is clearly a difficult en-
deavor. Deviations from the homogeneous ideal were manifest
in the heavy (power law) tailed 1-D tracer tests. The very fast
and very slow tracer excursions also cause the plume width to
grow faster than by t1/ 2. The number of effective parameters
needed to model a plume’s behavior is equal to, or less than,
that required by a local, second-order equation. While the
reduction of $( x# ) to a constant $ reduces the number of
parameters by one, the fitted order of differentiation restores
the amount of information needed in the governing equation.
To get skewness, one can use a mobile/immobile rate coeffi-
cient or the fractional ADE’s skewness parameter p . This
parameter allows the heavy trailing edge similar to mobile/
immobile solutions and will also allow heavier leading edges
such as that found in the Macro Dispersion Experiment
(MADE) tracer tests at the Columbus Air Force Base in Mis-
sissippi [Benson et al., 2000]. We have not investigated the skew-
ness achievable by nonlocal methods [e.g., Deng et al., 1993].

Early plume data at Cape Cod indicate an order of differ-
entiation a of the order of 1.65 to 1.8. While the fits of the
Gaussian and a-stable solutions are about the same in the
Cape Cod bromide plume at 349 days, the Gaussian solution
underpredicts concentration and speed of the leading edge,
while the a-stable solution overpredicts the same. The differ-
ences in the tail concentrations predicted by the Gaussian
versus a-stable solutions span many orders of magnitude, es-
pecially at very low concentration and large distances. Differ-
ences between a 5 1.65 and 1.8 solutions are less pronounced.

Appendix
Fractional derivatives of a function with domain (2`, `) can

be defined several ways. We use a scaled combination of two
operators defined [Samko et al., 1993; Debnath, 1995; Benson et

Figure 13. Analytic models of the Cape Cod plume in one
dimension: (a) early time and (b) late time. Symbols are max-
imum concentrations measured along plume centerline. Un-
less otherwise noted, solid lines are solutions to fractional
ADE using a 5 1.8 and $ 5 0.25 m1.8/d. Dashed lines are
Fickian using asymptotic $ 5 0.42 m2/d. Sample times are
shown above peaks.
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al., 2000] by extending the well-known action of Fourier trans-
form on integer derivatives ^[(dn/dxn) f( x)] 5 (ik)nf̂(k) to
rational order: ^[(da/dxa) f( x)] 5 (ik)a f̂(k), where f( x)
and f̂(k) are Fourier transform pairs. If the derivative is taken
with respect to 2x , we substitute 2k for k:

^F da

d~2x!a f~ x!G 5 ~2ik!af̂~k! .

By inverse transform [Samko et al., 1993; Benson et al., 1999],
one finds that these fractional derivatives have the 1-D repre-
sentations:

daf~ x!

dxa 5
1

G~n 2 a!

dn

dxn E
2`

x

~ x 2 j!n212af~ x! dj (A1)

daf~ x!

d~2x!a 5
~21!n

G~n 2 a!

dn

dxn E
x

`

~j 2 x!n212af~ x! dj (A2)

with the single shorthand notation [Samko et al., 1993]:

D6
a f~ x! 5

~61!n

G~n 2 a!

dn

dxn E
0

`

jn2a21f~ x 7 j! dj , (A3)

where G( ) is the Gamma function and n is the smallest integer
larger than a. The Green function solution to (1), representing
an instantaneous pulse source, is an a-stable density denoted
fabsd( x), where a is the index of stability, b is the skewness, s
is the scale, and d is the shift. A standard density has s 5 1 and
d 5 0. A general density is related to the standard by
fabsd( x) 5 s21fab10(( x 2 d)/s). The solution to the 1-D
fractional ADE has d 5 vt and s 5 [ucos (pa/ 2) u$t]1/a

[Benson, 1998]. Given v and $, one can specify any x and t and
find the standard density for the argument ( x 2 vt)/[ ucos
(pa/ 2) u$t]1/a. The canonical forms of the density assume
many different definitions of a skewness parameter. Our
choice of p is related to Samorodnitsky and Taqqu’s [1994]
common skewness parameter (b) by b 5 2p 2 1. A standard
density can be found by integrating the expression [Benson,
1998]

fab10~ x! 5
ucx u1/~a21!ac

c u1 2 a u

z E
2u

1

Ua~f , u ! exp @2ucx ua/~a21!U~f , u !# df ,

(A4)

where

c 5 $1 1 @b tan ~pa/ 2!#2%21/ 2a,

u 5
2

pa
tan21 ~b tan ~pa/ 2!! ,

Ua~f , u ! 5 1 sin
p

2 a~f 1 u !

cos
p

2 f 2
a/~12a!

,

or by Feller’s [1971] series (for 1 , a # 2):

fag10~ x! 5
1

px O
k50

`
G~ka21 1 1!

k! ~2x!k sin
pk
2a

~g 2 a! , (A5)

where Feller’s skewness parameter g is obtained from b by
[Samorodnitsky and Taqqu, 1994]

g 5
2
p

arctan @b tan ~p~a 2 2!/ 2!# . (A6)

For symmetric densities, setting b 5 g 5 0 in (A5) yields a
formula that converges rapidly even for large arguments. The
symmetric standard density for 1 , a # 2 is given by the series

fa010~ x! 5
1
p O

k50

`
~21!k

~2k 1 1!! G S 2k 1 1
a

1 1D x2k. (A7)

The integral expression was incorporated into FORTRAN
codes (cvt.f and cvx.f [Benson, 1998, Appendix I]) that generate
expected concentration versus time (at a point in space) or
distance (at a specific time).
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