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Abstract. A governing equation of stable random walks is developed in one dimension.
This Fokker-Planck equation is similar to, and contains as a subset, the second-order
advection dispersion equation (ADE) except that the order (a) of the highest derivative is
fractional (e.g., the 1.65th derivative). Fundamental solutions are Lévy’s a-stable densities
that resemble the Gaussian except that they spread proportional to time1/a, have heavier
tails, and incorporate any degree of skewness. The measured variance of a plume
undergoing Lévy motion would grow faster than Fickian plume, at a rate of time2/a, where
0 , a # 2. The equation is parsimonious since the parameters are not functions of time
or distance. The scaling behavior of plumes that undergo Lévy motion is accounted for by
the fractional derivatives, which are appropriate measures of fractal functions. In real
space the fractional derivatives are integrodifferential operators, so the fractional ADE
describes a spatially nonlocal process that is ergodic and has analytic solutions for all time
and space.

1. Introduction

Solutes that move through aquifers do not generally follow a
Fickian, second-order, governing equation because of large
deviations from the stochastic process of Brownian motion.
The most common methods to incorporate relatively large
particle motions include treating the parameters and depen-
dent variables of the advection dispersion equation (ADE) as
random and correlated, leading to a local, scale-dependent
effective dispersion tensor [Gelhar and Axness, 1983; Dagan,
1984, 1988; Neuman and Zhang, 1990]. This local approach is
handy because analytic solutions are available; however, it as-
sumes that a Gaussian model is reasonably appropriate at all
scales. In developing these equations, a Fickian model is typ-
ically assumed at some small scale. Nonlocal methods [e.g.,
Neuman, 1993; Deng et al., 1993; Cushman et al., 1994] can
model long-range spatial and/or temporal correlation of par-
ticle and can do away with the Fickian assumption. The non-
local forms are typically solved in Fourier/Laplace space [e.g.,
Deng et al., 1993]. The most general formulations [Cushman et
al., 1994] allow virtually any space-time structure to solute
movement, although measurement of the Fourier/Laplace dis-
persion tensor is not straightforward. All theories that develop
a local dispersion coefficient, and some of the nonlocal meth-
ods, are based on finite velocity autocorrelation models. Molz
et al. [1997], Liu and Molz [1997a, b], and Painter [1996a, b,
1997] have called this most basic assumption about aquifer
properties into question. This study looks at the governing
equation of motions with finite or infinite variance from a
Fokker-Planck perspective. The classical, deterministic ADE is

a subset of this equation, just as Brownian motion is a subset of
Lévy motion. The governing equation uses fractional deriva-
tives, which are appropriate measuring tools to use on fractal
functions [Kolwankar and Gangal, 1996; Stiassnie, 1997]. The
simplest form of this equation, shown herein, retains a spatially
nonlocal form but describes an ergodic Markov process at all
times.

Solute transport in subsurface material may be viewed as a
purely probabilistic problem [e.g., Cushman, 1990; Bhatta-
charya and Gupta, 1990]. This approach is intimately tied to the
classical divergence (Eulerian) point of view through a string of
mathematical equivalences. Einstein [1956] first explored this
method by assuming that a single microscopic particle was
continuously bombarded by other particles, resulting in
Brownian random walk. By assuming a finite variance process
and taking appropriate limits, he found that the resulting
Green’s function of the probability of finding a particle some-
where in space was a Gaussian (Normal) probability density. If
the motions of a large number of particles are assumed inde-
pendent, then the particle probability and the concentration of
a diffusing tracer are interchangeable, leading to the equiva-
lence of the process of Brownian motion and the governing
equation C/t 5 $¹2C . The most important assumption
tied to Brownian motion and the second-order, Fickian diffu-
sion equation is that a particle’s motion has little or no spatial
correlation. Since long walks in the same direction are rare, the
variance of a particle’s excursion distance is finite.

The classical descriptions of a local dispersion tensor based
on the second-order diffusion equation [Gelhar and Axness,
1983; Dagan, 1984, 1988; Neumann and Zhang, 1990] carry
similar assumptions: The aquifer velocity contrasts must be
small and the mean travel distance must be large compared to
a typical velocity correlation length. These assumptions arise

Copyright 2000 by the American Geophysical Union.

Paper number 2000WR900032.
0043-1397/00/2000WR900032$09.00

WATER RESOURCES RESEARCH, VOL. 36, NO. 6, PAGES 1413–1423, JUNE 2000

1413



because the dispersion part of the ADE is essentially a restate-
ment of DeMoive’s central limit theorem: a large number of
finite variance particle trajectories (random variables) must be
added before a Gaussian appears. Tracer particles released
into aquifers experience large velocity contrasts along their
trajectories. Recent theories devised to explain non-Fickian
dispersion in turbulent and chaotic systems [e.g., Shlesinger et
al., 1982; Klafter et al., 1987; Zaslavsky, 1994a; Saichev and
Zaslavsky, 1997] begin with the assumption that particle excur-
sion distances and velocities are likely to have large, even
infinite, variance. Since the trajectories are (or belong to the
domain of attraction of) stable variables, these transitions con-
verge relatively quickly to a non-Gaussian limit distribution.
The result is that a tracer test need not sample large volumes
before it can be described by a single, self-contained equation,
if the motions are well modeled by an infinite variance (e.g.,
power law) model. However, the second-order ADE is not the
governing equation of these movements.

Physicists, chemists, engineers, economists, and hydrologists
are using infinite variance models to conveniently describe
realistic processes that are dominated by extreme events [e.g.,
Mandelbrot, 1963; Fama, 1965; Shlesinger et al., 1982, 1987,
1995; Nikias and Shao, 1995; Anderson and Meershaert, 1998;
Adler et al., 1998]. Motivated by diffusion in fractals [Giona and
Roman, 1992], motion in chaotic [Zaslavsky, 1994a, b] and
turbulent flow [Shlesinger et al., 1987], Fokker-Planck equa-
tions have been developed that use fractional derivatives.
These derivatives are nonlocal operators that incorporate spa-
tial and/or temporal memory. In particular, a spatial fractional
derivative describes particles that move with long-range spatial
dependence or high velocity variability [Benson, 1998; Benson
et al., 2000]. These motions fall within a very general model of
particle motion called continuous time random walks (CTRW)
[Montroll and Weiss, 1965; Scher and Lax, 1973]. Reviews of
CTRW in a hydrologic context are given by Berkowitz and
Scher [1995] and Benson [1998]. The CTRW allow descriptions
of particle motions that have extremely long-range temporal
and/or spatial correlation. In general, the CTRW eventually
converge to Brownian motion unless some infinite moments of
the particle excursion time and/or variance are assumed. In
these cases, the CTRW converge to motions described by the
fractional-order Fokker-Planck equations.

In this study, we review Benson’s [1998] derivation of a
Fokker-Planck equation for Markovian particle transport,
which follows the methodology of Zaslavsky [1994a, b]. The
choice of Markovian transport results in a greatly simplified
derivation. Inherent in this assumption is that all dependence
can be explicitly accounted for by spatially heavy-tailed particle
excursion probabilities, rather than by temporal correlation
functions. We show how the classical ADE results from an
assumption of the existence of the second moment of the
particle transition probability and then generalize the transi-
tion density to include particle walks that favor long-range
motions and may include skewness.

2. Local Theories
Because of their relative simplicity and widespread use, we

review the basis of local theories, which typically make use of
the ADE:

C
t 5 ¹ z ~2vC 1 $¹C! , (1)

where C is solute concentration and $ and v are local disper-
sion and velocity tensors, respectively. On a multidimensional,
macroscopic scale the concentration is a random function, so C
refers to the expected concentration. The ADE is based on the
classical definition of the divergence of a vector field. The
divergence is defined as the ratio of total flux through a closed
surface to the volume enclosed by the surface when the volume
shrinks toward zero [e.g., Schey, 1992]:

div J ; lim
V30

1
V E

S

J ? n dS , (2)

where J is a flux vector, V is an arbitrary volume enclosed by
surface S , and n is a unit vector normal to the surface. This is
valid only if the flux is indeed a “point” vector quantity relative
to the scale of observation, for example, heat flow in homoge-
neous material. Then the limit exists and the operator reduces
to the familiar dot product with the gradient vector [/ x ,
/ y , / z]. Solute dispersion is a counterexample since it is
primarily due to velocity fluctuations that arise only as an
observation space grows larger, invalidating the limit. The sol-
ute flux is due to the combined effects of mean velocity (ad-
vection) and velocity fluctuations (dispersion). The dispersive
fluxes for a given volume are typically averaged in some fash-
ion (volumetric, statistical) and approximated by Fick’s first
law. Since velocity itself is a variable function of space, as a
control volume shrinks (as the divergence requires), the Darcy
velocity fluctuations and the dispersive flux disappear. There-
fore the true divergence of the macroscopic solute flux cannot
contain a macroscopic dispersive term.

Because of the limit in (2), the classical Gauss divergence
theorem discounts macrodispersion until the dispersive flux
can be approximated by a point vector. This requires a sepa-
ration of scale: The scale of the transport process must be
much larger than some finite volume at which the ratio in (2)
becomes relatively constant. For these things to happen, the
dispersive flux must not increase as a volume passes some
largest size. This representative elementary volume (REV) for
dispersion is the point at which deviations in the velocity field
are negligible.

However, when a plume is in an intermediate stage not many
times larger than a finite velocity autocorrelation distance, a de
facto definition of divergence is often used to quantify advec-
tion and dispersion. The divergence is associated with a non-
zero volume and is given by the first derivative of total surface
flux to volume (Figure 1) rather than the limit of the derivative
at zero volume. The dispersion coefficient does not grow
(scale) if the ratio of surface flux to volume is constant over
some range of volume (solid lines in Figure 1). An example is
a column of uniform glass beads. At the pore scale the ratio is
nonconstant, and no single dispersion parameter can be as-
signed. At some larger scale the ratio of total surface flux to
volume is constant over a large range of arbitrary volumes, and
the relatively constant first derivative (the de facto divergence)
allows the assignment of a dispersion coefficient. Both volume
averaging [Bear, 1972] and ensemble averaging [e.g., Gelhar,
1986; Dagan, 1986] theories are based on this concept of sep-
aration, or distinction, of scale.

At the field scale, at least two problems occur that make it
difficult to rely on the REV concept. First, even if there is a
distinct hierarchy, the act of measurement involves a volume
integration, which impacts the dispersion coefficient [Cush-
man, 1984]. Second, there is a long-standing and growing body
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of evidence that real geologic materials have evolving hetero-
geneity [e.g. Winograd and Pearson, 1976; Sposito et al., 1986;
Wheatcraft and Tyler, 1988; Rajaram and Gelhar, 1995; Di Fe-
derico and Neuman, 1997]. If this is the case, there will be no
separation of scale as in Figure 1a, and the growth of dispersive
flux follows the dashed lines in Figure 1, which represent con-
tinuous scaling of the solute flux over a relatively large range.

Since many analytic solutions already exist to the classical
ADE, it has been advantageous to assume that the noncon-
stant volumetric surface flux can be approximated by a step
function (Figure 1), wherein each rise is described by a growing
$. The local parameter $ is intimately tied to a specific vol-
ume, and the ADE is no longer self-contained with a closed-
form solution for all scales. Typical methods used to estimate
the scale-dependent $ rely on a small-perturbation (linear-
ized) stochastic ADE [Gelhar and Axness, 1983; Dagan, 1984,
1988; Neuman and Zhang, 1990] that are limited to relatively
homogeneous aquifers. More recent methods [Serrano, 1995]
can handle high variance through iterative expansions. Many
theories recognize that in the midst of continuous heterogene-
ity, a plume will deviate significantly from a Gaussian and that
the effective dispersion coefficient is simply a measure of the
time rate of change of the ensemble average plume’s second
moment [e.g., Rajaram and Gelhar, 1995]. Popular descriptions
of continuous (evolving) heterogeneity include fractional
Brownian motion and fractional Gaussian noise [Rajaram and
Gelhar, 1995; Neuman, 1995; Kemblowsi and Wen, 1993; Zhan
and Wheatcraft, 1996; Di Federico and Neuman, 1997, 1998;
Molz et al., 1997], which require cutoffs (often naturally im-
posed) to ensure convergence of second moment expressions.

An integer-order divergence theorem forces a scaling pa-
rameter, since the ratio of flux to volume is scale-dependent.
Rather than use a step function approximation of the growth of
the dispersive flux with scale, which forces $ to take on in-
creasing values, one might try to describe the evolving dashed
curve in Figure 1b. Nonlocal, including convolutional, theories
do this by integrating the cumulative effects of dispersion over
any lengthscale and/or timescale. A subset of these uses the
mathematical tools of fractional calculus, which are nonlocal
operators for fractal functions. Fractional derivatives are at-
tractive because they behave very much like traditional, inte-
ger-order derivative operators and allow simple equations and
solutions. Further, a large class of random motions directly
imply fractional-order governing equations [Meerschaert et al.,
1999].

3. Fokker-Planck Equation
Recently, the governing equation of all stable random walks

was developed in multiple dimensions [Meerschaert et al.,
1999]. Here we derive a simpler one-dimensional (1-D) subset
to illustrate the concepts. A Fokker-Planck equation (FPE)
describes the change of probability of a random function in
space and time, so it is naturally used to describe solute trans-
port. The FPE is a statement about the conservation of prob-
ability that a particle will occupy a specific location. At any
particular time the sum of the probabilities at all locations
must equal unity. So if the probability changes in one location
from one moment to the next, the probability must also change
in the vicinity to conserve probability. An ensemble of particles
(i.e., a large number) can fulfill the probabilities, and the FPE
becomes an equation of the conservation of mass.

Derivation of an FPE starts with a simple mathematical

statement of how a random measure changes state from one
moment to the next after some event has occurred. In this case,
we are interested in the probability that a particle has moved
from location x0 to x2 in the time t0 to t2, or p( x2 2 x0; t2 2
t0). This probability will be referred to as the transition den-
sity, which is conditional on the initial position ( x0) and the
time interval. The particle must move through an intermediate
location x1, so this probability can be found by summing over
all possible intermediate points x1. If the process is defined so
that a Markov process, in which the movement of a particle is
independent of past movements, arises, then the probability of
making both transitions ( x0 to x1 to x2) is the product of the
single-transition probabilities, giving the Chapman-Kolmog-
orov equation:

p~ x2 2 x0; t2 2 t0!

5 E p~ x2 2 x1; t2 2 t1! p~ x1 2 x0; t1 2 t0! dx1. (3)

The relationship between this transition density and the
particle position density (known as the propagator for a single
particle) is that the particle position density has moved from
(and must incorporate) the initial conditions. The particle’s
initial position is defined as x0 at time t0 5 0. Placing this
density into (3) and dropping the subscript on x2 yields

p~ x 2 x0; t! 5 E p~ x 2 x1; t 2 t1! p~ x1 2 x0; t1! dx1. (4)

Two different tacks are often used to obtain solutions of the
Chapman-Kolmogorov equation. The first uses the fact that
convolutions are present and transfers to Fourier/Laplace
space for solutions [Montroll and Weiss, 1965; Scher and Lax,
1973; Shlesinger et al., 1982]. The second stays in real space and
solves the instantaneous change in probability resulting in a
Fokker-Planck differential equation [Zaslavsky, 1994a, b]. Sim-
ilar to equations of conservation of mass, the FPE is a state-
ment of the conservation of probability of a single particle’s
location over a brief period of time. Since solutions of the FPE
are gained via Fourier and Laplace transforms, the two meth-
ods are closely related. Staying in real space and realizing that
the propagator is the transition from the initial condition to the
present time gives a shorthand notation of the density p( x 2

Figure 1. Illustration of the definition of the divergence of
solute flux over many scales. Solid lines denote assumption of
local homogeneity and multiscale, integer-order (classical) di-
vergence. Dashed lines denote continuum heterogeneity and
the resulting noninteger-order divergence. To reconcile the
growth in the integer divergence (using local theories) from
scale a to b , the first-order fluctuations v9C9 are approximated
by $¹C with increasing, spatially local $.
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x0; t) 5 P( x , t). Using this shorthand notation, replacing x1

with z and signifying the interval t 2 t1 by Dt gives a compact
form for the next jump:

P~ x , t 1 Dt! 5 E p~ x 2 z; Dt! P~z , t! dz . (5)

To make the next step in the derivation, a requirement on
the relative size of the total time (t) versus the transition time
(Dt) is sometimes needed. For a general transition density, Dt
must be much smaller than the total time, and Dt is called a
mixing time. Then an appropriate limit theorem such as the
central limit theorem (CLT) can be invoked, implying that a
large number of transitions are integrated and a limit distribu-
tion is approached. The assumption of a Markovian process
requires that all time dependence is contained in this mixing
time so that the convolution still holds. If the transitions are
independent, identically distributed (iid) stable variables (the
standard normal, for example), then no restrictions are placed
on the transition time and the convolution is always satisfied.
For example, iid Gaussian transitions result immediately in a
Gaussian propagator.

By taking infinitesimal values of Dt in (5), we will know the
change in P( x , t) over a very short time period, resulting in a
differential equation. The limits and moments of the particle
transition probability must be correctly identified. One should
expect that a particle that travels along fractal paths and/or
requires power law times to complete individual walks will
have different limiting behavior than a typical Gaussian or
finite variance process. We limit this discussion to the first time
derivative. An extension to fractional-in-time processes is
straightforward [Zaslavsky, 1994a, b; Saichev and Zaslavsky,
1997; Benson, 1998]. The time derivative of p is defined as

p~ x 2 x0; t!
t 5 lim

Dt30

1
Dt @ p~ x 2 x0; t 1 Dt! 2 p~ x 2 x0; t!# .

(6)

The density p( x 2 x0; t 1 Dt) can be replaced by the Markov
relation:

p~ x 2 x0; t 1 Dt! 5 E p~ x 2 z; Dt! p~z 2 x0; t 2 t0! dz .

(7)

Placing (7) into (6) and recalling the definition p( x 2 x0; t) [
P( x , t) gives the differential probability change:

P~ x , t!
t 5 lim

Dt30

1
Dt S E p~ x 2 z; Dt! P~z , t! dz 2 P~ x , t!D .

(8)

The instantaneous transition density has the following limit:

lim
Dt30

p~ x 2 z; Dt! 5 d~ x 2 z! , (9)

where d( x 2 z) is the Dirac delta function, which means that
as the transition time tends to zero, the probability that the
particle does not move goes to unity. Equivalently, the Fourier
transform of the transition density has a limit of unity:

lim
Dt30

^@~ p~ x 2 z; Dt!# ; lim
Dt30

p̂~k; Dt! 5 1, (10)

where the circumflex and change of variable from x to k indi-
cates Fourier transform. This density has all positive moments
equal to zero. When Dt is nonzero, the density has higher-
order moments. The first moment of this instantaneous tran-
sition density is defined by the expected value of the particle’s
new position minus the initial position:

A~Dt! 5 E ~ x 2 z! p~ x 2 z; Dt! dx . (11)

The second moment of many power law functions and most of
Lévy’s a-stable instantaneous transition densities is infinite;
therefore we choose a coefficient B(Dt) that is a measure of
the spread of the density similar to the second moment of a
Gaussian. A very general transition density with finite or infi-
nite variance has a Fourier transform:

p̂~k; Dt! 5 1 2 A~Dt!~ik! 1
1
2

B~Dt!@~1 1 b!~ik!a

1 ~1 2 b!~2ik!a# 1 2~Dt! , (12)

where 21 # b # 1 indicates the relative weight of forward
versus backward transition probability and 1 , a # 2 is the
scaling exponent in one-dimensional (1-D) space. The final
term 2(Dt) indicates higher-order terms that diminish to zero
faster than Dt . Since exp (2z) 5 1 2 z 1 z2/2 z z z , this density
contains the expansion for the a stables (including the Gauss-
ian; see section 5) as a subset. A finite variance density requires
that a 5 2, so (12) reduces to the transition density used to
derive the classical FPE:

p̂~k; Dt! 5 1 2 A~Dt!~ik! 1 B~Dt!~ik!2 1 2~Dt! , (13)

where 2B(Dt) is equal to the second moment of the particle
excursion distances when a 5 2. This special case instanta-
neous transition density has an inverse transform that contains
derivatives of the Dirac delta function:

p~ x 2 z; Dt! 5 d~ x 2 z! 2 A~Dt!d9~ x 2 z!

1 B~Dt!d0~ x 2 z! 1 2~Dt! . (14)

This transition density, when substituted into (8), leads to the
classical FPE for Brownian motion with advective drift. Power
law and a-stable transitions with a , 2 have a real-space
density for small time (the inverse transform of (12)):

p~ x 2 z; Dt! 5 d~ x 2 z! 2 A~Dt!d9~ x 2 z!

1
1
2

~1 1 b! B~Dt! D1
a d~ x 2 z!

1
1
2

~1 2 b! B~Dt! D2
a d~ x 2z! 1 2~Dt! , (15)

where D6
a are ath-order fractional derivatives defined in the

appendix by equation (A5). The terms involving a-order
derivatives can be directly evaluated as proportional to
( ux 2 z u)212a (appendix), which shows the power function
density of the instantaneous transition approximation. For
symmetric jumps, b 5 0. The coefficients A(Dt) and B(Dt)
vanish as Dt goes to zero, as required by (9). We assume that
the rate of change of the drift and scale coefficients for small
time are constants, so A(Dt) and B(Dt) are linear with Dt for
small transition times, leading to the constants

v ; lim
Dt30

A~Dt!
Dt (16)
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$ ; lim
Dt30

B~Dt!
Dt . (17)

Nonlinear, power function scaling of A(Dt) and B(Dt) with Dt
can be used to model non-Markovian, long-term temporal
correlation and leads to a fractional time derivative [Zaslavsky,
1994a, b]. For simplicity, we will assume that time correlation
is thin-tailed relative to spatial correlation, so that (16) and
(17) are good approximations (see also Benson [1998] and
Benson et al. [2000] for evidence of this). Placing the expansion
(15) into (8), integrating the delta function term directly, the
first-order term by parts, using the integration by parts formula
for fractional derivatives (appendix) on the remaining terms,
and letting Dt tend toward zero gives a fractional-order FPE:

P
t 5 2



 x vP 1 ~1
2
1b/ 2!

a

 xa $P 1 ~1
2
2b/ 2!

a

~2x!a $P .

(18)

The function v is the drift of the process, i.e., the mean
advective velocity. If the particle transition is modeled by an
infinite variance probability, then the nonlinear growth of the
particle propagator is incorporated within the fractional deriv-
ative, rather than the leading parameter $. The derivative
must be defined so that it correctly captures the scaling of the
transition density. The limit in (8) has invoked an ergodic
process. The number of individual transitions has become large
enough that the (limit) stable distribution results, no matter
the specific form of the infinite variance transition density. This
constitutes the crux of the applicability of (18): Are a large but
finite number of power law transitions (that are bounded by
finite velocity) best modeled by a stable law? The limits of this
assumption remain an open question, although studies by
Mantegna and Stanley [1995] and Makse et al. [2000] suggest
that this is valid over a very large range (number) of transi-
tions.

For a large number of independent solute “particles” the
probability propagator is replaced by the expected concentra-
tion C [e.g., Fürth, 1956; Bhattacharya and Gupta, 1990]. Fur-
ther, since the particle motions are iid, (18) simplifies to

C
t 5 2v

C
 x 1 ~1

2
1b/ 2!$

a

 xa C 1 ~1
2
2b/ 2!$

a

~2x!a C ,

(19)

where the dimensions of $ are LaT21. For Gaussian or other
light-tailed random motions including log-normal, a 5 2 and
the classical ADE is recovered, since d2/dx2 5 d2/d(2x)2.
The conversion from one to many particles also invokes a
slightly different ergodic hypothesis. It assumes that the con-
taminant is sampling the aquifer as a whole and that the aqui-
fer itself is relatively well mixed. As a result, the quantity C will
have dimensional variability in addition to random fluctuations
from the mean solution. This has been an area of research in
second-order stochastic theory [e.g., Graham and McLaughlin,
1989; Kapoor and Gelhar, 1994a, b; Dagan and Fiori, 1997]. We
have not addressed the variability of C around its expected
value for the fractional equation.

A special case of the fractional ADE (equation (19)) de-
scribes symmetric transitions, where b 5 0. Defining the sym-
metric operator equivalent to the Riesz potential [Samko et al.,
1993]:

2¹a ; D1
a 1 D2

a (20)

gives the mass balance equation for advection and symmetric
fractional dispersion:

C
t 5 2v z ¹C 1 $¹aC . (21)

We use the description “fractional ADE” with the understand-
ing that only the dispersion term is described by a fractional
derivative.

4. Solutions of the Fractional Advection-
Dispersion Equation

Solutions to common solute transport boundary value prob-
lems (BVPs) are gained through Laplace or Fourier transforms
in a manner similar to that of Ogata and Banks [1961]. Here we
solve the BVP for instantaneous injection of a Dirac delta
function spike of solute, i.e., the Green function. The fraction-
al-in-space equation (19) is solved via Fourier transform of the
fractional derivatives (appendix):

Ĉ~k , t! 5 exp @1
2

~1 2 b!~2ik!a$t

1
1
2

~1 1 b!~ik!a$t 2 ikvt# . (22)

With a notational simplification @ 5 ucos (pa/2)u$, and the
identities i 5 eip/ 2 and eiu 5 cos u 1 i sin u, we obtain

Ĉ~k , t! 5 exp $2@t uk ua@1 1 ib~sign ~k!#

z tan ~pa/ 2!! 2 ikvt% . (23)

This Fourier transform does not have a closed-form inverse.
However, putting it in the form of the characteristic function
(substituting 2k for k), the density can be manipulated into
the canonical form of the characteristic function for a-stable
densities (see section 5):

Ĉ~2k , t! 5 exp $2@t uk ua@1 2 ib sign ~k!

z tan ~pa/ 2!# 1 ikvt% , (24)

where the positive number s 5 (@t)1/a indicates a stable
density that is shifted by the mean (vt) and invariant upon
scaling by t1/a. The entire family of 1-D stable densities is
generated from the governing equation, including the Gauss-
ian when a 5 2. Since different operators describe motions
that are faster and slower than the mean, the solutions can
include skewness when a , 2 (Figure 2). A solution of the
simplified, symmetric, fractional advection-dispersion equation
(21) results in

Ĉ~k , t! 5 exp ~2@t uk ua 2 ikvt! . (25)

It is a simple matter to show that for any a , 2, the a-stable
variables have infinite variance, since one or both of the tails
decay like fa( x) ; c ux u212a (Figure 3). However, a finite
sampling of the density (i.e., a plume) yields a finite sample
variance. Since the density is scale invariant with t1/a, the
sample variance must grow proportional to the square of this.
So a plume undergoing Lévy motion would have a sample
variance that grows proportional to t2/a, or always equal to or
faster than Fickian growth.

The solution to the classical ADE with the continuous
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source initial condition is generally written in closed form using
the error function:

erf ~ z! 5
2

Îp E
0

z

e2x2 dx . (26)

This integral has no algebraic formula, so it is numerically
estimated and tabulated. The step function BVP using the
classical ADE is given by [Ogata and Banks, 1961]

C 5
C0

2 F 1 2 erf S x 2 vt

2 Î$tD G . (27)

For continuity with this widely used formula, a similar solution
for the fractional advection dispersion equation is given by

C 5
C0

2 F 1 2 serfa S x 2 vt
~@t!1/aD G , (28)

where we define the a-stable error function (serfa) function
similarly to the error function, i.e., twice the integral of a
symmetric a-stable density from 0 to the argument ( z):

serfa ~ z! 5 2E
0

z

fa~ x! dx , (29)

where fa( x) is the standard, symmetric, a-stable density (see
section 5). The factor of 2 in the denominator of the serfa

argument has been dropped from (28) for simplicity. The val-
ues of the serfa(z) function have been tabulated over a range of
arguments from 0 to 10 and for values of a from 1.1 to 2.0
incremented by 0.1 [Benson, 1998, Tables 5.1 and 5.2]. Note
that the definition of serfa (z) uses a standard distribution
which, for a 5 2.0, is a Gaussian with standard deviation of
=2. Since the error function is a Gaussian with standard de-
viation of =2/2, erf(z) and serf2.0(z) are related by

erf ~ z! 5 serf2.0 ~2z! . (30)

5. Stable Random Variables
DeMoive’s CLT for finite variance, iid random variables Xi:

X1 1 X2 1 · · · 1 Xn 2 nm

sn1/ 2 f Z , (31)

where m and s are constants, the arrow denotes convergence in
probability, and Z is a standard normal random variable, can
be generalized by removing the assumption of finite variance
[Lévy, 1937]:

X1 1 X2 1 · · · 1 Xn 2 nm

sn1/a f Y , (32)

Figure 3. Plots of symmetric a-stable densities showing
power law, heavy-tailed character: (a) linear axes and (b) log-
log axes.

Figure 2. Comparison of the development of spatially sym-
metric (dashed lines) and positively skewed (b 5 1, solid lines)
plumes represented by (a) continuous source and (b) pulse
source. Three dimensionless elapsed times (0.1, 1.0, and 10)
are shown. As a gets closer to 2, the skewing diminishes. All
curves use a 5 1.7 and $ 5 1.

BENSON ET AL.: FRACTIONAL-ORDER GOVERNING EQUATION OF LÉVY MOTION1418



where Y is a standard a-stable variable that has infinite vari-
ance. This is a similar statement to the Fokker-Planck devel-
opment, with proper rescaling of time via the number of ad-
ditions of random particle excursions. Densities of a-stable
variables are a generalization of the normal probability density
function [Samorodnitsky and Taqqu, 1994]:

c~k! 5 exp $2uk uasa@1 2 ib sign ~k!

z tan ~pa/ 2!# 1 ikm% 1 , a # 2, (33)

where the parameters s, b, and m describe the spread, the
skewness, and the location of the density, respectively. Equa-
tion (33) is the characteristic function (i.e., the Fourier trans-
form with k 3 2k of the probability density function) for
stable densities. The sign(k) function is 21 for k , 0 and 1
otherwise. The characteristic function for a 5 1 (the Cauchy
distribution) is slightly different from (33) and will not be
discussed here for the sake of brevity.

When the density is symmetric, the skewness parameter (b)
is zero, and the symmetric characteristic function is

c~k! 5 exp ~2sauk ua 1 ikm! . (34)

Note the similarity between (34) and (25), the solution to the
symmetric fractional advection-dispersion equation. A stan-
dard a-stable density function has unit “spread” and is cen-
tered on the origin, so s 5 1 and m 5 0. A nonstandard density
fa( x) is related to a standard sa( x) by fa( x) 5 s21sa[( x 2
m)/s]. A standard, symmetric a-stable distribution is charac-
terized by the compact formula

c~k! 5 exp ~2uk ua! . (35)

In this form, it is easy to see that the Gaussian (normal)
density is a-stable with a 5 2. Note, however, that when the
scale factor of the stable law s 5 1, the standard deviation of
the normal (a 5 2) distribution (1) is =2:

1~k! 5 exp ~22s2k2 1 ikm! . (36)

The most important feature of the a-stable distributions
(33), (35) is the characteristic exponent (also called the index
of stability) a. The value of a determines how “non-Gaussian”
a particular density becomes. As the value of a decreases from
a maximum of 2, more of the probability density shifts toward
the tails. Figure 4 shows the standard a-stable distribution
functions for a 5 1.6, 1.8, 1.9, and 2. Note that the distributions
appear very Gaussian in untransformed coordinates and that
the difference lies in the relative weight present in the tails. For
probabilities between 1 and 99% the different distributions
appear near normal; however, the difference between the dis-
tributions (the weight in the tails) becomes apparent in prob-
ability space (Figure 3b).

Cauchy and Lévy found that direct inversion of the charac-
teristic function c(k) to the density function is only possible
when a 5 1/2, 1, or 2. A number of accurate approximations
are available for other values. Several series expansions of the
standard a-stable densities are listed [Feller, 1971; Nikias and
Shao, 1995; Janicki and Weron, 1994]. The density inversion
formula also has many real-valued integral representations
that yield quick numerical solutions [cf., Zolotarev, 1986; Mc-
Culloch and Panton, 1996; McCulloch, 1998; Nolan, 1997]. We
have used numerical integration (coded in FORTRAN [see
Benson, 1998, Appendix I]) of McCulloch’s integral forms to
generate the densities (Figure 3) and distribution functions

(Figure 4). The constant-source solution of the fractional ADE
(Figure 3a) is unity minus the distribution function. The skew-
ness that results from higher probability of particles moving
either ahead or behind the mean diminishes as a gets closer to 2.

6. Discussion
The FPE may contain a fractional time derivative [Giona

and Roman, 1992], which measures the power law random
trapping, or “waiting” time that a particle may experience in
fractal lattices. Compte [1996] showed that power law waiting
times and Gaussian trajectories lead to this fractional-in-time
diffusion that is typically slower than Fickian. Zaslavsky [1994a,
b] and Saichev and Zaslavsky [1997] suggest that fractional
derivatives are allowable in both time and space, resulting in a
process similar to fractional Lévy motion [Saichev and
Zaslavsky, 1997]. Benson [1998] showed that a time- and space-
fractional equation does not generally follow from coupled
power law trajectories and waiting times. He also suggests that
such an equation is intractable. Metzler et al. [1998] further
explore the coupling between fractional time and fractional
space processes. Metzler and Nonnenmacher [1998] indicate

Figure 4. Plots of the distribution function F( x) versus x for
several standard symmetric a-stable distributions using (a) lin-
ear scaling and (b) probability scaling. The Gaussian normal
(a 5 2.0) plots as a straight line using probability scaling for
the vertical axis.
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that faster-than-Fickian diffusion (or dispersion) is possible
with power law waiting times. Benson [1998] noted that a
fractional time derivative may be useful for the open question
of the governing equation for sorbing solutes in heavy-tailed
velocity fields.

Several of the derivations that use a fractional space deriv-
ative result in special cases. Zaslavsky [1994a, b] and Compte
[1997] use one-sided operators that lead to maximally skewed
transitions and limiting stable distributions. Zaslavsky [1994a,
b] also chose to describe advection with a lower moment (a/2)
instead of the first. The (a/2)-order term leads to a difficult
solution that is a convolution of two stable densities. Compte
[1996] and Metzler et al. [1998] use a form that allows only
symmetric transitions. Saichev and Zaslavsky [1997], Benson
[1998], Chaves [1998], and Gorenflo and Mainardi [1998] rec-
ognized that two operators are required to generate all possi-
ble stable (including symmetric) plumes in 1-D and generate
fractional ADEs or diffusion equations similar to (19). Meer-
schaert et al. [1999] generalize spatially fractional dispersion to
any number of dimensions after a definition of multidimen-
sional fractional derivatives. They recover all possible stable
random vectors. Gorenflo and Mainardi’s [1998] intuitive de-
velopment of a fractional diffusion equation is from an Eule-
rian, rather than the present LaGrangian, point of view. Fi-
nally, Benson [1998] shows that the spatial velocity
autocorrelation of CTRW that converge to Lévy motion is
infinite, but that the same CTRW with upper (largest) cutoff
lengths are well approximated by power law autocorrelation.

One way to interpret the simplified form (21) is that a frac-
tional divergence operator is applied to a Fickian dispersion
term. For an illustration of how fractional derivatives relate to
the definition of divergence in the context of solute transport,
consider two simple functions g( x) 5 x2 and f( x) 5 x1.5. The

integer derivatives of g( x) are g9( x) 5 2x and g0( x) 5 2. In
the latter case, all of the information about the function is held
in a constant. The derivatives deduce how much curvature, or
growth, is in a function of another variable by stripping off
successive levels of curvature. The integer derivatives describe
the curvature of well-behaved (integer-powered) functions but
do not fare so well with a rational-powered function. The first
or second derivatives of f( x) do not reduced the amount of
information needed, since each of these derivatives still de-
pends on ( x) (Figure 5). If a fractional differential operator is
chosen in which the fractional order of differentiation matches
the power law scaling of the function, then the curvature is
reduced to a constant, and all of the scaling information is
contained in the order of the derivative and that constant. In
this case, the 1.5th derivative of f( x) returns a constant (Figure
5). We have used a lower limit of zero in Figure 5 since volume
is always nonnegative. If a plume is travelling through material
with evolving heterogeneity, then a fractional divergence might
account for the increased dispersive flux over a larger range of
measurement scale (compare Figures 1 and 5). An open ques-
tion is whether the fractional operator might incorporate the
smallest scale of measurement by using a finite, nonzero lower
limit of partial integration (appendix).

7. Conclusions
The fractional advection-dispersion equation is a parsimo-

nious description of particle transport with noninteger space-
time scaling. It is based on a Markov process of particle mo-
tions that have infinite variance, or heavy-tailed, excursion
lengths. The equation is nonlocal in space and describes an
ergodic limit process at all times. The Markov process requires
that temporal correlation is relatively short-lived, or thin-
tailed. Motions that have heavy-tailed temporal correlation
may imply a fractional time derivative. Fundamental (Green)
function solutions to the fractional ADE developed here are
Lévy’s a-stable densities. Fickian dispersion is not assumed at
any scale. The equation is attractive because, with constant
coefficients, it predicts plumes that (1) grow proportional to
t1/a, (2) have apparent variance that grows proportional to
t2/a, (3) have heavy leading and/or trailing edges, (4) incorpo-
rate any degree of skewness, and (5) are ergodic (limit) pro-
cesses at all times.

Since the model is based on infinite variance particle excur-
sions, it is perhaps best suited to sites that have heavy-tailed
velocity distributions [Benson et al., 2000] and very long-range
autocorrelation [Benson, 1998].

Appendix: Properties of Fractional Derivatives
A number of excellent texts describe the long history and

analytical properties of fractional derivatives and fractional
differential equations [Oldham and Spanier, 1974; Miller and
Ross, 1993; Samko et al., 1993]. Analysis of fractional deriva-
tives is also finding exposure in recent mainstream texts [e.g.,
Debnath, 1995]. Perhaps the most intuitive notion of fractional
differentiation is that the Fourier transform of a fractional
derivative of order q results in a multiplication in Fourier
space by (ik)q. This recovers the integer-order cases when q is
any integer. We first list the definitions of fractional deriva-
tives.

The composition rule and the Riemann-Liouville integral
give an equivalence between the nearest higher-order integer

Figure 5. Integer and fractional derivatives of a simple
power function. (top) First derivative of f( x) 5 x1.5. (bottom)
Fractional derivative around the point a 5 0 of f( x) 5 x1.5.
The first derivative has not reduced the information; that is,
the first derivative is still a function of x . The correct fractional
derivative reduces the information to a single constant.
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and rational order derivatives [Oldham and Spanier, 1974;
Miller and Ross, 1993; Samko et al., 1993]. This indicates that
fractional derivatives are integer derivatives of “partial inte-
grals.” If n is the smallest integer larger than the rational
number q , we have

Da1
q F~ x! 5

dn

dxn Ia1
n2qF~ x!

5
1

G~n 2 q!

dn

dxn E
a

x

~ x 2 z!n2q21F~z! dz , (A1)

where G( z) is the gamma function, which extends the factorial
function to real numbers:

G~ z! 5 E
0

`

xz21e2x dx (A2)

For values of z between 0 and 1, 1/G( z) is approximately
equal to z . The gamma function follows the recursion relation-
ship G( z 1 1) 5 zG( z). Since G(1) 5 1, G(n 1 1) 5 n!,
where n is an integer.

The lower limit of integration is commonly set to zero or
minus infinity. The zero bound is most commonly used for
time-dependent functions u(t) that are causal, or nonzero only
for t $ 0 [Giona and Roman, 1992; Gorenflo and Mainardi,
1998]. For spatial functions an infinite bound is typically used,
and for notational simplicity the limit is eliminated from the
subscript and only the direction of fractional integration (1 or
2) is noted.

dq

dxq f~ x! ; D1
q f~ x! 5

1
G~n 2 q!

dn

dxn E
2`

x

~ x 2 z!n2q21f~z! dz .

(A3)

One can integrate from the other side of ( x), defining another
related type of fractional differentiation [Samko et al., 1993]
based on integer derivatives of the Weyl partial integral:

dq

d~2x!q f~ x! ; D2
q f~ x! 5

~21!n

G~n 2 q!

dn

dxn

z E
x

`

~z 2 x!n2q21f~z! dz . (A4)

Because of their domains of [2` , x] and [ x , `], these are the
most useful forms when dealing with functions in physical
space. Samko et al. [1993] represent both formulas by a single
shorthand representation (note the change of (1) to (2) and
vice-versa inside the integral):

D6
q f~ x! 5

~61!n

G~n 2 q!

dn

dxn E
0

`

zn2q21f~ x 7 z! dz . (A5)

Like integer derivatives, a fractional derivative of a power
function of x reduces the exponent by the order of the differ-
entiation. With certain restrictions [e.g., Miller and Ross, 1993],

D01
q xu 5

G~u 1 1!

G~u 2 q 1 1!
xu2q. (A6)

We use the fractional derivative of the Dirac delta function
d( x 2 c) with b # c # d , defined by

E
b

d

d~ x 2 c! f~ x! dx 5 f~c! . (A7)

The fractional derivatives with order 0 , q of d( x 2 c) are
directly obtained:

D1
q d~ x 2 c! 5

1
G~n 2 q!

dn

dxn E
2`

x

d~z 2 c!~ x 2 z!n2q21 dz

5
1

G~2q! H 0
~ x 2 c!2q21

x , c
x $ c (A8)

and

D2
q d~ x 2 c! 5

~21!n

G~n 2 q!

dn

dxn E
x

`

d~z 2 c!~z 2 x!n2q21 dz

5
1

G~2q! H ~c 2 x!2q21

0
x # c
x . c (A9)

By definition, every fractional differential operator is a con-
volution in either Laplace or Fourier space, depending on the
limits of integration. The convolution (asterisk) of functions f
and g with respect to Fourier transforms is given by

f~ x!*g~ x! 5 E
2`

`

g~ x 2 j! f~j! dj . (A10)

The Fourier transform of a convolution is the product of the
transforms of the two functions. We use this property since we
require the Fourier transforms of the fractional derivatives.
The following result differs slightly from that given by Debnath
[1995] and used by Benson [1998], so we list a brief derivation.
The Fourier transform defined by

^@ f~ x!# ; f̂~k! 5 E
2`

`

e2ikxf~ x! dx (A11)

of integer-order (n) derivatives follows

^@D1
n f~ x!# 5 ^S dnf~ x!

dxn D 5 ~ik!nf̂~k! (A12)

^@D2
n f~ x!# 5 ^S dnf~ x!

d~2x!nD 5 ~2ik!nf̂~k! . (A13)

Starting with the definition of the positive-direction fractional
integral (A3) for n 5 0 and substituting y 5 x 2 z gives, for
21 , p , 0,

D1
p f~ x! 5

1
G~2p! È0

y2p21f~ x 2 y!~2d y! (A14)

D1
p f~ x! 5

1
G~2p! E

2`

`

y2p21H~ y! f~ x 2 y! d y (A15)

where H( y) is the Heaviside function (5 0 for y , 0 and 1 for
y . 0). This is a convolution, which means that the Fourier
transform of the left-hand side is equal to the products of the
transforms of x212pH( x)/G(2p) and f( x). The former is
listed in tables as uk up exp ((ipp/ 2) sign (k)). Since exp
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[(ipp/ 2) sign (k)] 5 ip when k . 0 and (2i)p for k , 0, we
have

^@D1
p f~ x!# 5 ~ik!pf̂~k! . (A16)

It is a simple matter to show that as the order of the derivative
increases (i.e., n 5 1, 2, z z z ) that the result is general for all
orders of fractional derivatives q 5 n 1 p:

^@D1
q f~ x!# 5 ^$Dn@D1

p f~ x!#% 5 ~ik!n~ik!pf̂~k!

5 ~ik!n1pf̂~k! 5 ~ik!qf̂~k! . (A17)

Similar computations for the negative-direction operator give

^@D2
q f~ x!# 5 ~2ik!qf̂~k! . (A18)

Finally, the Fourier transforms of the fractional derivatives of
a Dirac delta function are

^@D1
q d~ x!# 5 ~ik!q ^@D2

q d~ x!# 5 ~2ik!q, (A19)

and it follows that a “fractional integration by parts” is similar
to the integer-order formula:

@D6
q d~ x!# p f~ x! 5 d~ x! p @D6

q f~ x!# 5 D6
q f~ x! . (A20)

Acknowledgments. D.A.B. received partial support from the U.S.
Department of Energy, Basic Energy Sciences grant DE-FG03-
98ER14885. We thank J. H. Cushman, S. P. Neuman, and an anony-
mous reviewer for their criticism.

References
Adler, R. J., R. Epstein-Feldman, and M. S. Taqqu (Eds.), A Practical

Guide to Heavy Tails: Statistical Techniques and Applications, Papers
From the Workshop Held in Santa Barbara, CA, December, 1995,
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Lévy, P., Théorie de l’Addition des Variables Aléatoires, Gauthier-
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advection and fractional dispersion, Phys. Rev. E, 59(5), 5026–5028,
1999.

Metzler, R., and T. F. Nonnenmacher, Fractional diffusion, waiting-
time distributions, and Cattaneo-type equations, Phys. Rev. E, 57(6),
6409–6414, 1998.

Metzler, R., J. Klafter, and I. M. Sokolov, Anomalous transport in
external fields: Continuous time random walks and fractional diffu-
sion equations extended, Phys. Rev. E, 58(2), 1621–1633, 1998.

Miller, K. S., and B. Ross, An Introduction to the Fractional Calculus
and Fractional Differential Equations, John Wiley, New York, 1993.

Molz, F. J., H. H. Liu, and J. Szulga, Fractional Brownian motion and
fractional Gaussian noise in subsurface hydrology: A review, pre-
sentation of fundamental properties, and extensions, Water Resour.
Res., 33(10), 2273–2286, 1997.

Montroll, E. W., and G. H. Weiss, Random walks on lattices, II, J.
Math. Phys., 6(2), 167–181, 1965.

Neuman, S. P., Eulerian-Lagrangian theory of transport in space-time
nonstationary velocity fields: Exact nonlocal formalism by condi-
tional moments and weak approximation, Water Resour. Res., 29(3),
633–645, 1993.

Neuman, S. P., On advective transport in fractal permeability and
velocity fields, Water Resour. Res., 31(6), 1455–1460, 1995.

Neuman, S. P., and Y.-K. Zhang, A quasi-linear theory of non-Fickian
and Fickian subsurface dispersion, 1, Theoretical analysis with ap-
plication to isotropic media, Water Resour. Res., 26(5), 887–902,
1990.

Nikias, C. L., and M. Shao, Signal Processing with Alpha-Stable Distri-
butions and Applications, John Wiley, New York, 1995.

Nolan, J. P., Numerical calculation of stable densities and distribution
functions: Heavy tails and highly volatile phenomena, Commun.
Stat. Stochastic Models, 13(4), 759–774, 1997.

Ogata, A., and R. B. Banks, A solution of the differential equation of
longitudinal dispersion in porous media, U.S. Geol. Surv. Prof. Pap.,
411-A, 1961.

Oldham, K. B., and J. Spanier, The Fractional Calculus, Academic,
New York, 1974.

Painter, S., Evidence for non-Gaussian scaling behavior in heteroge-
neous sedimentary formations, Water Resour. Res., 32(5), 1183–1195,
1996a.

Painter, S., Stochastic interpolation of aquifer properties using frac-
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