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a b s t r a c t

Anomalous diffusion with ballistic scaling is characterized by a linear spreading rate with
respect to time that scales like pure advection. Ballistic scaling may be modeled with
a symmetric Riesz derivative if the spreading is symmetric. However, ballistic scaling
coupled with a skewness is observed in many applications, including hydrology, nuclear
physics, viscoelasticity, and acoustics. The goal of this paper is to find a governing equation
for anomalous diffusion with ballistic scaling and arbitrary skewness. To address this
problem, we propose a new operator called the Zolotarev derivative, which is valid for all
orders 0 < α ≤ 2. The Fourier symbol of this operator is related to the characteristic
function of a stable random variable in the ZolotarevM parameterization. In the symmetric
case, the Zolotarev derivative reduces to the well-known Riesz derivative. For α ̸= 1, the
Zolotarev derivative is a linear combination of Riemann–Liouville fractional derivatives
and a first derivative. For α = 1, the Zolotarev derivative is a non-local operator that
models ballistic anomalous diffusion. We prove that this operator is continuous with
respect to α. We derive generator, Caputo, and Riemann–Liouville forms of this operator
and provide two examples. The solutions of diffusion equations utilizing the Zolotarev
derivative with an impulse initial condition are shifted and scaled stable densities in theM
parameterization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Anomalous super-diffusion is characterized by a spreading rate faster than the classical t1/2 predicted by Fickian
diffusion [1], where t is time. Super-diffusion with a spreading rate of t1/α can be modeled by a space-fractional diffusion
equation with order α. In particular, densities of stable Lévy motion with index α ̸= 1 solve space-fractional diffusion
equations where the fractional derivative has order α [2,3]. The special case α = 1 is ballistic motion, which scales like
pure advection. The linear scaling may either indicate transport, or anomalous diffusion with a linear spreading rate [4]. For
example, experimental evidence shows that the turbulent diffusion of contaminant plumes in rivers [5] and the spreading of
mechanical pulses in viscoelastic materials [6] may exhibit ballistic scaling. Modeling this situation requires a derivative of
order one which is neither the usual first derivative, nor the square root of the second derivative. In this paper, we introduce
an appropriate derivative operator for this application.

The intimate connection between fractional partial differential equations (FPDEs), heavy-tailed probability distributions,
and random walks is discussed in [7–9]. Solutions to diffusion-wave equations [10] and the general space–time fractional
diffusion equation [11] also involve stable densities and the density of the inverse stable subordinator [12]. In particular, long
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particle jumps may be modeled with space-fractional PDEs, such as the space-fractional diffusion equation (FDE), whereas
long waiting times may be modeled with time-fractional PDEs, such as the time-fractional diffusion equation.

All of these FPDEs assume that the index α ̸= 1. Nevertheless, stable densities are defined for α = 1, which prompts
the question: what is the governing equation of Lévy stable motion for α = 1? In the symmetric case, the answer is known:
simply replace the second derivative in the traditional diffusion equation with its square root, i.e., the symmetric Riesz
derivative. However, many applications, such as hydrology [3], nuclear physics [13,14], pulse propagation in viscoelastic
materials [15], seismology [16], ocean acoustics [17] and biomedical acoustics [18–20] require an asymmetric anomalous
diffusionwith stable indexα either near one or identically one. For example, [20] derived a power-lawwave equation (PLWE)
thatmodels frequency dependent attenuation of ultrasound in tissue, where the attenuation coefficient follows a power-law
with respect to frequency. This PLWE does not allow the special case of linear attenuation even though empirical data [21,22]
indicate that the power-law attenuation index for many types of tissue is approximately equal to α = 1. Although several
papers have proposed certain integro-differential equations for α = 1 [13,17,18], the corresponding derivative operators
have not been rigorously studied. Hence, the current paper will develop the governing equation of Lévy stable motion for
α = 1 along with their solutions.

The goal of this paper is to find a governing equation for anomalous diffusion with ballistic (linear) scaling and arbitrary
skewness. From a probabilistic point of view, we will study the governing equation of Lévy stable motion for α = 1. First,
we recall the governing equation of Lévy stable motion for α ̸= 1, which is a space-fractional diffusion equation of order
α. We then write the point source solution assuming an impulse initial condition in terms of stable distributions and show
why these solutions are invalid for α = 1. To alleviate this problem, we reparameterize the governing space-fractional
diffusion equation and calculate these solutions in terms of stable densities in the ZolotarevM parameterization [23]. Since
the ZolotarevM parameterization is continuous across theα = 1 ‘‘barrier’’, we derive a newoperator, the Zolotarev derivative
of order one. We derive generator, Riemann–Liouville, and Caputo forms of this operator, along with formulas for the Laplace
transform. Concrete examples of the Zolotarev derivative are calculated, thereby illuminating practical applications of this
operator.

2. The space-fractional diffusion equations and stable densities

This section reviews the connection between Riemann–Liouville derivatives, stable densities, and Lévy motion. We
explicitly calculate the point source solution of the space-fractional diffusion equation for fractional orders excluding one.
While this calculation has been performed in other works [11,24], our calculation demonstrates the singularity at α = 1.
Second, we explore numerically how this solution becomes singular as α → 1, motivating the remainder of the paper.
Finally, we recall an alternative parameterization of stable densities, the Zolotarev M parameterization, and show how this
parameterization eliminates the α = 1 ‘‘barrier’’.

2.1. Riemann–Liouville fractional derivatives

First, recall the definition of the Riemann–Liouville (RL) derivative on the real axis.

Definition 2.1. Let α > 0, n = ⌈α⌉, and α ̸= n. The positively and negatively skewed Riemann–Liouville (RL) fractional
derivatives are defined by [25, p. 87]

∂α

∂xα
f (x) =

1
Γ (n − α)

∂n

∂xn

∫ x

−∞

f (y)(x − y)n−1−α dy (2.1a)

∂α

∂(−x)α
f (x) =

(−1)n

Γ (n − α)
∂n

∂xn

∫
∞

x
f (y)(y − x)n−1−α dy. (2.1b)

Define the Fourier transform (FT) by

f̂ (k) = Fx [f (x)] =

∫
∞

−∞

e−ikxf (x) dx, (2.2)

and assume f (n)(x) exists and f (x), . . . , f (n)(x) ∈ L1. Then we have [25, (2.3.27) and (2.3.28)]

Fx

[
∂α

∂xα
f (x)

]
= (ik)α f̂ (k) (2.3a)

Fx

[
∂α

∂(−x)α
f (x)

]
= (−ik)α f̂ (k). (2.3b)

Likewise, define the inverse FT via

f̂ (x) = F−1
x

[
f̂ (k)

]
=

1
2π

∫
∞

−∞

eikx f̂ (k) dk. (2.4)
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FPDEs involving space-fractional Riemann–Liouville derivatives are intimately connected with stable densities. Hence, we
recall the generator form of the stable characteristic function and two particular parameterizations of stable laws in the
following sections.

2.2. Stable densities: generator form and ST parameterization

Let f (x) be an element of the Banach space C0(R) consisting of continuous real-valued functions on the real line that tend
to zero at ±∞, with the supremum norm. Given a Lévy process {Zt : t ≥ 0} [9, p. 57], define a family of linear operators

Tt f (x) = E [f (x − Zt )] (2.5)

for t ≥ 0. This family of operators Tt is a C0 semigroup [9, p. 60]. The generator [9, Eq. (3.8)] of this semigroup is given by
the following result from [9, Theorems 3.4 and 3.17]. Recall that if f (x) is a probability density, its characteristic function is
defined as f̂ (−k).

Theorem 2.2. Suppose that Zt is a Lévy processes with characteristic function etψ(k), where the log characteristic function (LCF)

ψ(k) = ika −
k2b
2

+

∫ (
eiky − 1 −

iky
1 + y2

)
φ(dy), (2.6)

where φ(dy) is the Lévy measure. Then the generator of the semigroup given by (2.5) is

Lf (x) = −af ′(x) +
b
2
f ′′(x) +

∫ (
f (x − y) − f (x) +

yf ′(x)
1 + y2

)
φ(dy) (2.7)

for any f such that f , f ′, f ′′
∈ C0(R). If we also have f , f ′, f ′′

∈ L1 (R), then ψ(−k)f̂ (k) is the Fourier transform of Lf (x).

From the generator form (2.6), stable characteristic functionsmay be derived in several parameterizations. First, we recall
the popular Samorodnitsky and Taqqu (ST) parameterization of stable densities [26].

Definition 2.3. A stable random variable X with index 0 < α ≤ 2, skewness −1 ≤ β ≤ 1, scale σ > 0 and location µ ∈ R
in the ST parameterization [26, Equation (1.1.6)] has characteristic function E

[
eikX

]
= eφ(k;α,β,σ ,µ) where:

φ(k;α, β, σ , µ) =

⎧⎪⎨⎪⎩
−σ α|k|α

[
1 − iβ sgn(k) tan

(πα
2

)]
+ ikµ α ̸= 1;

−σ |k|
[
1 +

2iβ
π

sgn(k) ln|k|
]

+ ikµ α = 1.
(2.8)

In the special case of a standard stable law with σ = 1 and µ = 0 we will also write φα,β (k) = φ(k;α, β, 1, 0), so that:

φα,β (k) =

⎧⎪⎨⎪⎩
−|k|α

(
1 − iβsgn(k) tan

(πα
2

))
α ̸= 1;

−|k|
(
1 +

2iβ sgn(k)
π

ln|k|
)

α = 1.
(2.9)

For X as in Definition 2.3, the random variable (X − µ)/σ is standard stable with LCF φ(k;α, β, 1, 0) for α ̸= 1, and
φ(k;α, β, 1, 2 β

π
ln σ ) for α = 1 [26, Propositions 1.2.2 and 1.2.3]. A standard stable density in the ST parameterization is

given by

gα,β (x) = F−1
x

[
exp

(
φα,β (−k)

)]
=

1
2π

∫
∞

−∞

eikx
[
exp

(
φα,β (−k)

)]
dk. (2.10)

Remark 2.4. If the skewness parameter β ̸= 0, the ST parameterization is discontinuous at α = 1 due to the tan(πα/2)
term in (2.9), which was pointed out in [23, p. 11]. This discontinuity poses a problem in the numerical evaluation of stable
densities in this parameterization for stability parameters near α = 1 [27].

2.3. Space-fractional diffusion equation

Now consider the space-fractional diffusion equation
∂

∂t
u(x, t) = p

∂α

∂xα
u(x, t) + q

∂α

∂(−x)α
u(x, t) (2.11)

where 1 < α ≤ 2 and p, q are nonnegative real numbers such that p + q = 1, subject to an impulse initial condition
u(x, 0) = δ(x). If 0 < α < 1, then the right hand side of (2.11) is multiplied by −1 [Remark 5.10, 9]. Space-fractional
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(a) gα,1(x). (b) u(x, t) for t = 1.

Fig. 1. Panel (a) displays the positively-skewed stable density gα,1 for α = 1.2 (solid), 1.1 (dashed),1.05 (dotted), and 1.02 (dash-dotted). Note that the peak
tends towards −∞ as α ↓ 1. Panel (b) shows the solution to the fractional diffusion Eq. (2.14) at time t = 1 for α = 1.2 (solid), 1.1 (dashed),1.05 (dotted),
and 1.02 (dash-dotted). Since the scale σ = |cos(πα/2)|1/α approaches zero as α ↓ 1, the solution u(x, t) approaches δ(x + 1).

diffusion equations model super-diffusion of particles, since the particle spreading rate is faster than the t1/2 rate associated
with traditional diffusion [3]. Defining the Laplace transform via

f̃ (s) = Lt [f (t)] =

∫
∞

0
f (t)e−st dt, (2.12)

we may calculate the point source solution of (2.11) by applying a Fourier transform followed by a Laplace transform to
(2.11) and utilizing (2.3), yielding

u(k, s) =
1

s − p(ik)α − q(−ik)α
,

where u(k, s) = LtFx[u(x, t)]. Calculating the inverse LT gives

û(k, t) = exp [tp(ik)α + tq(−ik)α] , (2.13)

for t > 0. Noting that (±ik)α = |k|α [cos(πα/2) ± i sgn(k) sin(πα/2)], we write (2.13) as

û(k, t) = exp
[
tσ αφα,β (−k)

]
where φα,β (k) is given by (2.9), σ = |cos(πα/2)|1/α , and β = p− q. A little algebra along with (2.10) yields the solution [10]

u(x, t) =
1

t1/ασ
gα,β

( x
t1/ασ

)
, (2.14)

a stable density with index α, skewness β , and a time-dependent scaling parameter. The case 0 < α < 1 is similar, and leads
to the same solution (2.14), see Remark 5.10 in [9].

This point source solution, or Green’s function, is also the probability density function of a stable Lévy motion of order
α and skew β . For example, if α < 1 and β = 1 (positive skew), (2.14) is the density of a stable subordinator D(t). Since
the spreading rate is t1/α and the peak decays at the same rate [9, p. 12], (2.14) models super-diffusion, which is faster
than traditional diffusion (α = 2). Clearly, the space-fractional diffusion equation (2.11) reduces to a transport equation
(or one-way wave equation) when α = 1, and the solution (2.14) is not valid in this case. However, there is a need to
model ballistic diffusion, the case α = 1. See, for example, Fig. 1 in [1]. Applications of anomalous diffusion with a linear
spreading rate include: energy loss of fast particles (e.g. electrons) due to ionization [13,14], the propagation of short (wide-
band) mechanical pulses through viscoelastic materials (e.g. polymers) [6,15], and turbulent dispersion of a contaminant
plume [5,28].

Fig. 1(a) illustrates the discontinuity in the ST parameterization of the stable density atα = 1. Asα decreases to 1, the peak
moves towards −∞. Fig. 1(b) shows the behavior of the solution to the fractional diffusion equation (2.14) as α decreases
to 1. The scale σ = |cos(πα/2)|1/α in (2.14) approaches zero as α ↓ 1, hence the solution u(x, t) approaches δ(x + 1), which
is the solution to a transport equation.

Note that the solution (2.14) to the space-fractional diffusion equation (2.11) is also invalid for α = 1, since the scale
parameter σ = |cos(πα/2)|1/α is zero for α = 1. Hence, (2.11) cannot model super-diffusion that exhibits a linear spreading
rate. This singularity is not surprising, since the governing equation (2.11) reduces to a transport equation if α = 1.
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Nevertheless, stable distributions are defined for α = 1 and all β ranging from −1 to 1 using the LCF given by (2.9). A
natural question arises: What is the governing equation of (2.14) for α = 1? We are particularly interested in the case
(α, β) = (1, 1), which has applications in both nuclear physics [13] and acoustics [20]. To our knowledge, this governing
equation has not been reported in the literature. In the next section, we develop the mathematical machinery necessary to
state the governing equation of Lévy motion of order α = 1 with arbitrary skewness −1 ≤ β ≤ 1.

2.4. Zolotarev M parameterization

To analyze the important case of α = 1, we must write stable densities and fractional derivatives in a parameterization
that eliminates the singularity at α = 1. Armed with these alternative parameterizations, we may consider the case α = 1
in a natural manner.

Recall an alternative parameterization of stable random variables introduced by Zolotarev [23]. The motivation behind
this parameterization is to eliminate the discontinuity at α = 1.

Definition 2.5. A stable random variable X in the Zolotarev M parameterization [23, p. 11] has characteristic function

E
[
eikX

]
= exp (ψ(k;α, β, λ, γ )) (2.15)

where the LCF

ψ(k;α, β, λ, γ ) =

⎧⎪⎨⎪⎩
−λ|k|α

[
1 + iβ sgn(k) tan

(πα
2

) (
|k|1−α − 1

)]
+ ikλγ α ̸= 1

−λ|k|
[
1 +

2iβ
π

sgn(k) ln|k|
]

+ ikλγ α = 1
(2.16)

has stable index 0 < α ≤ 2, skewness −1 ≤ β ≤ 1, scale λ > 0 and location γ ∈ R. The standard (in the Zolotarev M
parameterization) stable LCF with λ = 1 and γ = 0 is then given by

ψα,β (k) =

⎧⎨⎩
−|k|α

[
1 + iβ sgn(k) tan (θ)

(
|k|1−α − 1

)]
α ̸= 1

−|k|
[
1 +

2iβ
π

sgn(k) ln|k|
]

α = 1
(2.17)

where θ = πα/2. A standard (in the Zolotarev M parameterization) stable density with index α and skewness β is denoted
by

fα,β (x) = F−1
x

[
exp

(
ψα,β (−k)

)]
=

1
2π

∫
∞

−∞

eikx
[
exp

(
ψα,β (−k)

)]
dk. (2.18)

Remark 2.6. The various parameterizations of stable laws have been studied by Nolan [29]. The LCFs of the ST parameteri-
zation and the ZolotarevM-parameterization are related for α ̸= 1 via

ψα,β (k) = φα,β (k) − ikβ tan
(πα

2

)
. (2.19)

Hence, the Zolotarev M parameterization subtracts a shift from φα,β (k) that tends to infinity as α → 1. If α = 1, then
ψα,β (k) = φα,β (k).

Remark 2.7. Note that the ST parameterization (2.10) and the Zolotarev M parameterization (2.18) are identical for α = 1.
In particular

g1,0(x) = f1,0(x) =
1

π (1 + x2)
(2.20a)

g1,1(x) = f1,1(x) =
π

2
fL

(πx
2

+ ln
(π
2

))
, (2.20b)

where (2.20a) is the well-known Cauchy distribution and fL(x) is the Landau distribution [13, Equation (13)] defined by the
contour integral

fL(x) =
1

2π i

∫
B
es ln s+xs ds, (2.21)

where B is the Bromwich contour. The connection between the Landau distribution and stable distributions was first made
in the Soviet physics literature [14] and later summarized in [30, Section 13.4].

Proposition 2.8. The log characteristic functionψα,β (k) given by (2.17) is continuous with respect to index α for all−1 ≤ β ≤ 1.
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Proof. It suffices to show ψα,β (k) is continuous at α = 1. When k = 0, the result follows from ψ1,β (0) = 0. Let α = 1 + ϵ
where ϵ > 0. Then

lim
α→1

ψα,β (k) = lim
ϵ→0+

−|k|1+ϵ
[
1 + iβ sgn(k) tan

(
π (1 + ϵ)

2

) (
|k|−ϵ − 1

)]
= lim

ϵ→0+
−|k|

[
|k|ϵ + iβ sgn(k)

|k|ϵ − 1
tan(πϵ/2)

]
= − |k|

[
1 +

2iβ
π

sgn(k) lim
ϵ→0+

|k|ϵ − 1
ϵ

]
,

where we used the identity tan(π/2 + θ ) = − cot(θ ) in the second line and tan z ∼ z for small z in the third line. Noting
that

lim
ϵ↓0

zϵ − 1
ϵ

= ln z (2.22)

for z > 0 yields the α = 1 case in (2.17). For α = 1 − ϵ, the proof is similar. □

Corollary 2.9. By Proposition 2.8 and the Fourier continuity theorem [31, Theorem 1.3.6], it follows that fα,β (x) is continuous
with respect to α.

3. Zolotarev fractional derivative

In this section, we propose a new pseudo-differential operator [32] based on the standard stable LCF in the Zolotarev M
parameterization, which we call the Zolotarev fractional derivative. To provide a setting for this operator, recall the space of
Bessel potentials.

Definition 3.1. Let ν ≥ 0 be a real number. The space of Bessel potentials or the Liouville space Hν is defined [32, Definition
1.14 (p = 2)]

Hν =

{
f ∈ L2 :

(
1 + |k|2

)ν/2
f̂ (k) ∈ L2

}
. (3.1)

If ν is an integer, then Hν is a classical Sobolev space. Using [33, Corollary 7.18.1], Definition 3.1 is equivalent to fractional
Sobolev spaceW ν,2 [7,34] for real ν equipped with the norm [34, Equation 2.2 with p = 2 and n = 1]

∥f (x)∥Hν =

(∫
∞

−∞

|f (x)|2 dx +

∫
∞

−∞

∫
∞

−∞

|f (x) − f (y)|2

|x − y|1+2ν dx dy
)1/2

. (3.2)

Definition 3.2. The Zolotarev fractional derivative Dα,βx f (x) of order 0 < α ≤ 2 and skewness β of a function f (x) is defined
by

Dα,βx f (x) = F−1
x

[
f̂ (k)ψα,β (−k)

]
, (3.3)

where ψα,β (k) is given by (2.17).

Remark 3.3. In the symmetric case β = 0, the Zolotarev fractional derivative

Dα,0x f (x) = F−1
x

[
−f̂ (k)|k|α

]
=

∂α

∂|x|α
f (x) (3.4)

reduces to a Riesz fractional derivative (or the fractional Laplacian) [35] of order α. Unlike the RL or Caputo fractional
derivatives, the Riesz fractional derivative is well-defined and continuous at α = 1. In particular, if α = 1 and β = 0,
then

D1,0
x f (x) = F−1

x

[
−f̂ (k)|k|

]
= F−1

x

[
−f̂ (k)i sgn(k)(ik)

]
= −

d
dx

H [f (x)] (3.5)

where

H [f (x)] =
1
π

lim
ϵ→0

∫
|y|>ϵ

f (y)
x − y

dy (3.6)

is theHilbert transform on the real line [36, (1.2)] and the integral in (3.6) in the Cauchy principal value. The above relationship
was noted in [37]. This computation utilized the Fourier transform relationship Fx [H [f (x)]] = −i sgn(k)f̂ (k).
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Remark 3.4. The relationship betweenD1,0
x and the Hilbert transformmay be extended to β ̸= 0. A direct calculation yields

D1,β
x f (x) = F−1

x

[
f̂ (k)ψ1,β (−k)

]
= F−1

x

[
−f̂ (k)i sgn(k)(ik)

]
+ F−1

x

[
f̂ (k)

2β
π

(ik) ln|k|
]

= −
d
dx

H [f (x)] +
2β
π

d
dx

F−1
x

[
ln|k|f̂ (k)

]
.

Note that [38, p. 72]

F−1
x [ln|k|] = −

1
2|x|

− γ δ(x) (3.7)

where γ is the Euler–Mascheroni constant. Note that the inverse FT in (3.7) exists as a distribution. Applying (3.7) alongwith
the convolution theorem [36, Equation (2.54)] yields

D1,β
x f (x) = −

2
π

d
dx

[
H [f (x)] + βγ f (x) + β lim

ϵ→0

∫
|y|>ϵ

f (y)
|x − y|

dy
]
. (3.8)

Hence, the Zolotarev fractional derivative consists of three components: (1) a symmetric term involving the Hilbert
transform, (2) a local term which is proportional to the skewness β , and (3) a nonlocal term also proportional to the
skewness β .

We now identify an appropriate function space for the Zolotarev derivative.

Proposition 3.5. Let ϵ > 0 and define

ν =

⎧⎪⎨⎪⎩
α for β = 0 and 0 < α ≤ 2
1 for α < 1 and β ̸= 0
1 + ϵ for α = 1 and β ̸= 0
α for 1 < α ≤ 2 and any − 1 ≤ β ≤ 1.

(3.9)

Suppose f ∈ Hν . Then Dα,βx f (x) ∈ L2.

Proof. The proof will be divided into four cases. For k ≤ 1, we have |ψα,β (k)| ≤ 1 for all α. We utilize this bound for all four
cases.

(i) If β = 0, then Dα,0x is the Riesz derivative (3.4), and the result follows immediately from [33, Theorem 7.16 with p = 2
and n = 1].

(ii) If α < 1 then

|ψα,β (k)| =

√
|k|2α + β2tan2θ(|k|α − |k|)2. (3.10)

For k ≥ 1, we have |k|α ≤ |k|, implying |ψα,β (k)| ≤ |k|. Hence |ψα,β (k)| ≤ (1 + |k|2)1/2 for all k ≥ 0. Taking ν = 1 in
(3.1) ensures that ψα,β (−k)f̂ (k) is in L2.

(iii) Suppose 1 < α ≤ 2. If k > 1, then |ψα,β (k)| ≤ Cα,β |k|α where Cα,β =

√
1 + β2tan2θ . Hence |ψα,β (k)| ≤

Cα,β (1 + |k|2)α/2.
(iv) Suppose α = 1 and β ̸= 0. As in the previous cases, |ψ1,β (k)| ≤ 1 for |k| ≤ 1. Also note that

ln k ≤
kϵ − 1
ϵ

for any k > 0 and ϵ > 0. Hence, for k > 1, ln k ≤ kϵ/ϵ Letting C ′
= 2β/π , we have

|ψ1,β (k)| =

√
k2 +

4β2

π2 k2ln2
|k|

≤ |k| + C ′
|k| ln|k|

≤ |k| + C ′
|k|

kϵ

ϵ

≤
(
1 + C ′/ϵ

)
|k|1+ϵ .

Letting C ′′
= (1+ C ′/ϵ), we have |ψ1,β (k)| ≤ C ′′

(
1 + |k|2

)(1+ϵ)/2
. Setting ν = (1+ ϵ) ensures thatψ1,β (−k)f̂ (k) is in L2.

This completes the proof. □

Later, to prove continuity of Dα,βx with respect to α, we will need a bound which was established in the proof of
Proposition 3.5.
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Lemma 3.6. For all 0 < α ≤ 2 and all −1 ≤ β ≤ 1, |ψα,β (k)| ≤
√
2(1 + k2).

Remark3.7. From theprevious proposition,we see that the Zolotarev derivativewithβ ̸= 0 requires slightlymore regularity
than the corresponding Riesz derivative (β = 0) for α ≤ 1. For α < 1, this requirement stems from the additional shift term
in (2.17), while for α = 1, the requirement stems from the logarithm term. For 1 < α ≤ 2, the Riesz derivative and Zolotarev
derivative with β ̸= 0 have the same regularity requirements.

Remark 3.8. Proposition 3.5 specifies an appropriate fractional Sobolev space Hν in which the Zolotarev derivative exists
in the (weak) L2 sense. For the Zolotarev derivative to exist pointwise, we may use a result in [39, Theorem 23.14.2]: Let
D = {f (x) ∈ L1 : f (x), f ′(x) ∈ AC and f ′(x), f ′′(x) ∈ L1}, where AC is the space of absolutely continuous functions. If f ∈ D,
then Dα,βx f (x) exists for all x ∈ R, for all 0 < α ≤ 2 and −1 ≤ β ≤ 1. Since f ′′

∈ L2 implies f ∈ H2, and H2
⊆ Hν for

ν ≤ 2 by [34, Corollary 2.3], it follows that D ⊂ Hν . We have a proper subset since all functions in D are continuous and
differentiable.

Proposition 3.9. Let α ̸= 1, n = ⌈α⌉, and suppose f (n)(x) exists and f (x), . . . , f (n)(x) ∈ L1. Then the Zolotarev fractional
derivative (3.3) can be written as

Dα,βx f (x) = β tan(θ )
∂ f
∂x

−
p

cos(θ )
∂α f
∂xα

−
q

cos(θ )
∂α f

∂(−x)α
, (3.11)

where β = p − q, θ = πα/2, and the second and third terms involve the Riemann–Liouville fractional derivatives defined by
(2.1). In particular, if α = 2, D2,β

x f (x) = f ′′(x).

Proof. Write k = |k| sgn(k) and (ik)α = |k|α (cos θ + i sgn k sin θ), so that we also have (−ik)α = |k|α (cos θ − i sgn k sin θ).
Apply a FT to (3.11) utilizing (2.3) to get

Fx
[
Dα,βx f (x)

]
= f̂ (k)

[
tan θβik −

p
cos θ

(ik)α −
q

cos θ
(−ik)α

]
= f̂ (k) [−(p + q)|k|α + i sgn(k) tan θ (β|k| − p|k|α + q|k|α)]

= − f̂ (k)|k|α
[
1 − βi sgn(k) tan θ

(
|k|1−α − 1

)]
,

where we used p + q = 1 and p − q = β in the second line. Since |−k| = |k| and sgn(−k) = − sgn(k), the bracketed
expression is ψα,β (−k). □

Remark 3.10. Unlike the Riemann–Liouville fractional derivative, the Zolotarev fractional derivative does not possess a
semi-group property if β ̸= 0. That is

Dα1,βx Dα2,βx f (x) ̸= Dα1+α2,β
x f (x). (3.12)

In particular, D1,β
x D1,β

x ̸= ∂2/∂x2 if β ̸= 0.

We now prove that the Zolotarev derivative is continuous with respect to the index α, thereby removing the ‘‘barrier’’ at
α = 1.

Theorem 3.11. Let f ∈ H2 and let αn → α. Then

Dαn,βx f (x) → Dα,βx f (x) (3.13)

with respect to the L2 norm.

Proof. Since f ∈ H2, it follows that ψαn,β (−k)f̂ (k) ∈ L2 and ψα,β (−k)f̂ (k) ∈ L2 for all 0 ≤ α ≤ 2. Then

∥Dαn,βx f (x) − Dα,βx f (x)∥2
L2 =

F−1
x

[(
ψαn,β (−k) − ψα,β (−k)

)
f̂ (k)

]2

L2

=
1
2π

∥
(
ψαn,β (−k) − ψα,β (−k)

)
f̂ (k)∥2

L2

where we used Plancherel’s Theorem∫
∞

−∞

|f (x)|2 dx =
1
2π

∫
∞

−∞

|f̂ (k)|
2
dk

in the second line. Let Gn(k) = |
(
ψαn,β (−k) − ψα,β (−k)

)
f̂ (k)|

2
. By Lemma 3.6, we have

Gn(k) ≤ 2(1 + |k|2)2|f̂ (k)|
2

which is integrable. Since ψαn,β (−k) → ψα,β (−k) by Proposition 2.8, we apply the Dominated Convergence Theorem and
Theorem 3.11 follows. □
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4. Explicit forms of Zolotarev derivative of order one

In this section, we develop an explicit formula for (3.3) for α = 1 and all β . Generator, Caputo, and Riemann–Liouville
forms of D1,β

x are computed. To establish the generator form, we recall the Lévy–Khintchine representation of a stable law
with index α = 1 [31, Lemma 7.3.9] or [40, Eq. (6.8)]. We write the (positively skewed) Zolotarev derivative of order one
D1,β
x using the LCFs ψ+(−k) = ψ1,1(−k) and the negatively skewed Zolotarev derivative of order one as D1,−1

x with Fourier
multiplier ψ−(−k) = ψ1,−1(−k).

Theorem 4.1. The Fourier symbol ψ1,β (k) of the Zolotarev fractional derivative of order one can be written in the form

ψ1,β (k) = pψ+(k) + qψ−(k) (4.1)

where

ψ+(k) =
2
π

∫
∞

0

(
eiky − 1 − ik sin y

)
y−2 dy, (4.2a)

ψ−(k) =
2
π

∫ 0

−∞

(
eiky − 1 − ik sin y

)
|y|−2 dy (4.2b)

and β = p − q.

Proof. The calculation of (4.2) is an application of the Lévy–Khintchine formula (2.6) for infinitely divisible laws. Eq. (4.2a)
is calculated on [31, p. 268] and then (4.2b) follows by a simple change of variable. Noting that β = p − q and p + q = 1,
(4.1) follows immediately from (4.2). □

We now write the generator forms of the Zolotarev derivatives D1,1
x and D1,−1

−x which form the basis for the remainder of
the paper.

Proposition 4.2. The generator forms of D1,1
x and D1,−1

−x are

GD1
x f (x) =

2
π

∫
∞

0

(
f (x − y) − f (x) + f ′(x) sin y

)
y−2 dy (4.3a)

GD1
−x f (x) =

2
π

∫
∞

0

(
f (x + y) − f (x) − f ′(x) sin y

)
y−2 dy. (4.3b)

Proof. Let f̂ (k) denote the FT of f (x) and use (4.2a) to obtain

GD1
x f (x) = F−1

x

[
ψ+(−k)f̂ (k)

]
=

2
π
F−1

x

[∫
∞

0

(
e−iky

− 1 + ik sin y
)
y−2 dyf̂ (k)

]
.

The inverse FT and integration over ymay be interchanged using Fubini’s theorem. Apply the shifting propertyF−1
x [e−iky f̂ (k)]

= f (x − y) and (2.3a) with α = 1, yielding (4.3a). A similar calculation utilizing (4.2b) yields (4.3b). □

Suppose f (x) ∈ C1 and f (x) → 0 as x → −∞. Integrate by parts with u = f (x − y) − f (x) + f ′(x) sin y and dv = y−2dy,
and note that the boundary terms at y = 0 and y = ∞ both vanish. The boundary term at ∞ vanishes since f (x− y) → 0 as
y → ∞ for any x, while the boundary term at zero vanishes by performing a Taylor series expansion. This calculation yields
the Caputo form on the real axis

CD1
x f (x) =

2
π

∫
∞

0

[
f ′(x) cos y − f ′(x − y)

]
y−1 dy. (4.4)

Note that (4.4) involves differentiation followed by an integration, which is analogous to the definition of Caputo fractional
derivative [41]. Thus, the following definition is motivated.

Definition 4.3. The positive and negative Zolotarev integrals are defined by

Z+f (x) =
2
π

∫
∞

0
y−1 [f (x) cos y − f (x − y)] dy (4.5a)

Z−f (x) =
2
π

∫
∞

0
y−1 [f (x + y) − f (x) cos y] dy. (4.5b)
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Definition 4.4. The positive and negative Zolotarev–Caputo derivatives of order one are defined by

CD1
x f (x) = Z+f ′(x) =

2
π

∫
∞

0
y−1 [

f ′(x) cos y − f ′(x − y)
]
dy (4.6a)

CD1
−x f (x) = Z−f ′(x) =

2
π

∫
∞

0
y−1 [

f ′(x + y) − f ′(x) cos y
]
dy. (4.6b)

If f (x) ∈ C1 and f (x) → 0 as x → −∞, then CD1
x f (x) = GD1

x f (x). Similarly, if f (x) ∈ C1 and f (x) → 0 as x → ∞, then
CD1

−x f (x) = GD1
−x f (x). We may also define a Riemann–Liouville form

Definition 4.5. The positive and negative Zolotarev–Riemann– Liouville derivatives of order one are defined by

RLD1
x f (x) =

d
dx

Z+f (x) =
2
π

d
dx

∫
∞

0
y−1 [f (x) cos y − f (x − y)] dy (4.7a)

RLD1
−x f (x) =

d
dx

Z−f (x) = −
2
π

d
dx

∫
∞

0
y−1 [f (x) cos y − f (x + y)] dy. (4.7b)

In general, we do not expect the Zolotarev–Riemann– Liouville and Zolotarev–Caputo derivatives to be equal. Later, we
will establish a relationship between the two forms on the half line.

Remark 4.6. The fractional derivative given by (3.4) is related to the RL fractional derivatives (2.1) via [35, (5.70)] by

dα

d|x|α
f (x) =

1
2|cos(πα/2)|

(
dα

dxα
f (x) +

dα

d(−x)α
f (x)

)
for α ̸= 1. Since ψα,1(−k) + ψα,−1(−k) = 2ψα,0(−k) = −2|k|α , it follows from the definition of the Zolotarev fractional
derivative (3.3) that

dα

d|x|α
f (x) =

1
2

(
Dα,1x f (x) + Dα,−1

x f (x)
)
,

which is valid for all 0 < α ≤ 2. In particular, for α = 1, we have

d
d|x|

f (x) =
1
2

(
D1,1
x f (x) + D1,−1

x f (x)
)
, (4.8)

which follows from (2.17). Hence, (4.3a) is the positive component of the Riesz derivative, while (4.3b) is the negative
component.

Proposition 4.7. Let f , g ∈ Hν ∩ L1 where ν is given by (3.9). Then the Zolotarev derivatives Dα,βx and Dα,−βx form an adjoint
pair: ∫

∞

−∞

Dα,βx f (x)g∗(x) dx =

∫
∞

−∞

f (x)Dα,−βx g∗(x) dx, (4.9)

where ‘‘*’’ denotes complex conjugate. In addition, (4.7a) and (4.7b) form an adjoint pair.

Proof. Let f (x) ↔ f̂ (k) and g(x) ↔ ĝ(k) be FT pairs. Since both f , g ∈ L1 ∩ L2, we apply Plancherel’s theorem [39, Eq.
(22.5.4)],∫

∞

−∞

Dα,βx f (x)g∗(x) dx dx =
1
2π

∫
∞

−∞

ψα,β (−k)f̂ (k)ĝ∗(k) dk

=
1
2π

∫
∞

−∞

ψ∗

α,−β (−k)ĝ∗(k)f̂ (k) dk

=
1
2π

∫
∞

−∞

(
ψα,−β (−k)ĝ(k)

)∗ f̂ (k) dk,

where we observed thatψ∗

α,β (k) = ψα,−β (k) in the second line. (4.9) follows by application of Plancherel’s theorem. To show
(4.7a) and (4.7b) are adjoints, note the following FTs

Fx [Z+f (x)] =
2
π

ln(ik)f̂ (k) (4.10a)

Fx [Z−f (x)] = −
2
π

ln(−ik)f̂ (k), (4.10b)
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which follow from (6.2). Multiplying (4.10a) and (4.10b) by ik yields the FT of (4.7a) and (4.7b) respectively, and since these
FT are complex conjugates, it follows as in the first part of the proof that (4.7a) and (4.7b) form an adjoint pair. □

If β = 0, Proposition 4.7 restates that the Riesz derivative is self-adjoint. The adjoint operator may be used to solve
inverse problems, such as contaminant source prediction in hydrology [42] or parameter identification [43] for fractional
diffusion problems.

5. Governing equation for anomalous diffusion with ballistic scaling

Armed with the Zolotarev derivative, we may now state and prove the central result of this paper.

Theorem 5.1. Let Dα,βx be the Zolotarev derivative defined by (3.3). The point source solution of the fractional advection diffusion
equation

∂

∂t
u(x, t) + v

∂

∂x
u(x, t) = aDα,βx u(x, t) (5.1)

with velocity v > 0, fractional dispersion a > 0, and initial condition u(x, 0) = δ(x) is

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
1

(at)1/α
fα,β

(
x − vt + β tan θ (at − (at)1/α)

(at)1/α

)
α ̸= 1;

1
at

f1,β

(
x − vt
at

−
2β
π

ln(at)
)

α = 1,
(5.2)

where fα,β (x) is the standard stable density in the Zolotarev M parameterization given by (2.18).

Proof. Apply a Fourier transform Fx followed by a Laplace transform Lt to (5.1), yielding

u(k, s) =
1

s + ivk − aψα,β (−k)
.

Apply an inverse LT, yielding

û(k, t) = exp
(
atψα,β (−k) − ivtk

)
.

Put τ = at . First, assume α ̸= 1 and put θ = πα/2. Since τ > 0, we have

τψα,β (−k) = −τ |k|α
[
1 − iβ sgn(k) tan (θ)

(
|k|1−α − 1

)]
= −|kτ 1/α|

α
[1 + iβ sgn(k) tan θ ] + ikτβ tan θ

= −|w|
α [1 + iβ sgn(w) tan θ ] − iwβ tan θ + iwβ tan θ + β tan θ iwτ 1−1/α,

where w = kτ 1/α . Rewrite as

τψα,β (−k) = ψα,β (−w) − iwτ−1/αβ tan θ
(
τ 1/α − τ

)
and apply an inverse FT using the substitution above, yielding

u(x, t) =
1

2πτ 1/α

∫
∞

−∞

exp
(
ψα,β (−w)

)
exp

(
iwτ−1/α(x − vt − β tan θ (τ 1/α − τ ))

)
dw.

Now (5.2) for α ̸= 1 follows from (2.18).
Now consider α = 1:

τψ1,β (−k) = −τ |k|
(
1 −

2iβ
π

sgn(k) ln|k|
)

= −|w|

(
1 −

2iβ
π

sgn(w) ln
⏐⏐⏐w
k

⏐⏐⏐)
= ψ1,β (−w) −

2βiw
π

ln τ ,

where w = τk. Apply an inverse FT utilizing (2.18), yielding (5.2) for α = 1. □

Fig. 2 evaluates (5.2) for β = 1 (positively skewed) and α = 0.8, 1, 1.2, and 2 using MATLAB’s Statistics and Machine
Learning Toolbox (r2016a) with a = 1 and v = 0. The left panel is evaluated at t = 1 and the right panel at t = 3. Note that
the solutions smoothly transition between α > 1 and α < 1.
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(a) t = 1. (b) t = 3.

Fig. 2. Plot of (5.2) for β = 1 (positively skewed) and α = 0.8 (dotted), 1 (dash-dotted), 1.2 (dashed), and 2 (solid). The left panel is evaluated at t = 1 and
the right panel at t = 3. In both plots, a = 1 and v = 0.

Remark 5.2. In particular, if α = 1, we have
∂

∂t
u(x, t) + v

∂

∂x
u(x, t) = aD1,1

x u(x, t) (5.3)

which is the governing equation for Lévy motion of order α = 1. If β = 1 and a = π/2, the point source solution is

u(x, t) =
1
t
fL

(
x − vt

t
− ln t

)
, (5.4)

where fL(z) is the Landau distribution [13,14]. Because of the logarithmic correction, the mode of the plume is given by

xc = tm1 + vt + t ln t, (5.5)

wherem1 = −0.22278 is the mode of the Landau distribution. From a physical point of view, the ‘‘effective’’ velocity, which
governs the location of the plume peak, is veff = v + ln t . For t < 1, the effective velocity is less than v, while for t > 1, the
effective velocity is greater than v.

Fig. 3 displays snapshots of (5.4) for times t = 0.3, 0.6, 1.0, and 1.5 for v = 0 (left) and v = 2 (right). In the case of no
drift (v = 0), the peak (mode) moves slightly in the negative x direction for t = 0.3, 0.6, 1.0. For the choice of v = 2, the
peak moves rightward for t = 0.3, 0.6, 1.0 since the drift term overpowers the logarithmic correction term.

By [44, (14.37)], fL(z) ∼ z−2 for z ≫ 1, yielding

u(x, t) ∼ t−1
(
x − vt

t
− ln t

)−2

(5.6)

for x ≫ xv + t ln t .

Remark 5.3. Space-fractional diffusion equation equations are often used in hydrology to model groundwater flows. In this
application [45], the fractional exponent is often near one. Hence, a governing equationwhich is continuouswith respect toα
may be useful for parameter estimation [46] or source identification [42] in hydrology. In particular, (5.3) models anomalous
super-diffusion with a ballistic spreading rate, and skewness.

Remark 5.4. This paperwasmotivated by a problem in biomedical acoustics:modeling the attenuation of acoustic energy in
a biological tissue. Experimentally, the attenuation coefficient inmost biological tissue is a power lawwith respect to angular
frequency ω by α(ω) = α0|ω|

y, where the exponent y may vary from zero to two [22]. We modeled this wave propagation
in 3D by a time-fractional PDE called the PLWE in [20]; however, the PLWE is not valid for y = 1. A simplified PLWE for
acoustic pressure p(z, t), valid for one-way propagation in one spatial dimension is given by [47]

1
c0

∂

∂t
p(z, t) +

α0

cos θ
∂y

∂ty
p(z, t) +

∂

∂z
p(z, t) = b(z, t), (5.7)

where θ = πy/2, c0 is a reference speed of sound, and b(z, t) is a boundary term given in [47, Section 5]. Like the 3D
PLWE, (5.7) is not valid for y = 1. As mentioned in the introduction, the power-law exponent is very close to one in many
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(a) v = 0. (b) v = 2.

Fig. 3. Snapshots of (5.4) for (a) v = 0 and (b) v = 2 for four successive times: t = 0.3 (dash-dotted), t = 0.6 (dotted), t = 1 (solid), and t = 1.5 (dashed).
In the case of no drift (v = 0), the peak (mode) moves in the negative x direction. For the choice of v = 2, the peak moves rightward.

measurements. Using the Zolotarev fractional derivative given by (3.11), Eq. (5.7) may be rewritten as
1
c1

∂

∂t
p(z, t) − α0D

y,1
t p(z, t) +

∂

∂z
p(z, t) = b(z, t), (5.8)

where c1 is an alternative reference frequency. Unlike the one-way PLWE (5.7), (5.8) is continuous for all 0 < y ≤ 2 and
valid for the physically important case of y = 1.

Remark5.5. Inmanypractical applications, the coefficients of the governing FPDE (e.g. (5.1)) are not constant, or complicated
boundary conditions are involved. Since analytical solutions are not available, these problems require stable, accurate, and
efficient numerical methods to discretize the fractional derivative. The discretization of the Zolotarev fractional derivative
is an interesting open problem. One approach is to use a shifted Grünwald approximation [48], which is conditionally
stable and applicable to the advection–dispersion equation in hydrology. However, the Grünwald approximation for α = 1
reduces to the first derivative. Alternatively, one may develop spectral methods based on eigenfunction expansions [49] or
discontinuous spectral element approaches [50], which reformulate the governing equation in a weak form. The adjoint
formula for the Zolotarev derivative given by (4.9) may be interpreted as an integration by parts formula, which is an
ingredient for writing a weak form. A third common approach, used to discretize the Caputo derivative, applies a Riemann
sum approximation to the fractional integral [51], such as (6.5) in the next section. Emerging approaches for nonlinear FPDEs
include the variational iteration method and Adomain decomposition method [52].

6. Zolotarev–Caputo and Zolotarev–Riemann–Liouville derivatives on the half-axis

Initial-value problems (IVPs) require functions and operators defined on the half-axis. The fractional Caputo derivative
is useful for capturing nonlocal temporal phenomena, such as fractional relaxation in viscoelasticity [53] and long waiting
times in hydrology [54]. Therefore, we investigate the Zolotarev derivatives of order one on the half-line in this section.

A function f (t) is termed causal if f (t) = 0 if t < 0. In this section, we restrict our attention to causal functions.

Proposition 6.1. Given a causal function f (t) with Laplace transform f̃ (s) defined by (2.12)

Lt [Z+f (t)] =
2
π

ln sf̃ (s). (6.1)

Proof. Recall the shifting property of Laplace transforms: Lt [f (t − y)] = e−sy f̃ (s). Interchange the Laplace transform with
the integral, yielding

Lt [Z+f (t)] =
2
π

∫
∞

0
y−1 [

cos y − e−sy] dyf̃ (s) =
2
π

ln sf̃ (s),

where the identity

ln s =

∫
∞

0
y−1 [

cos y − e−sy] dy (6.2)

is invoked (see Appendix). □
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Corollary 6.2. Given a causal function f (t) with Laplace transform f̃ (s),

Lt
[
CD1

t f (t)
]

=
2
π
sf̃ (s) ln s −

2
π
f (0) ln s, (6.3)

and

Lt
[
RLD1

t f (t)
]

=
2
π
sf̃ (s) ln s − Z+f

(
0+

)
. (6.4)

Proof. Recall thatLt
[
f ′(t)

]
= sf̃ (s)−f (0). Apply Proposition 6.1, yielding (6.3). To establish (6.4), integrate by parts, yielding

Lt
[
RLD1

t f (t)
]

=

∫
∞

0
e−st ∂

∂t
Z+f (t) dt

= s
∫

∞

0
e−stZ+f (t) dt

=
2
π
s ln sf̃ (s) − Z+f

(
0+

)
. □

With Corollary 6.2, we can relate the Caputo and Riemann–Liouville derivatives of order one.

Proposition 6.3. Given a causal function f (t)

CD1
t f (t) = RLD1

t f (t) −Φ(t)f (0) (6.5)

where

Φ(t) = −
2
π

(
H(t)
t

+ γ δ(t)
)

+ Z+f
(
0+

)
δ(t). (6.6)

Proof. Subtract (6.4) from (6.1), yielding

Lt
[
CD1

t f (t)
]
− Lt

[
RLD1

t f (t)
]

= −
2
π
f (0) ln s + Z+f

(
0+

)
.

By the Laplace transform pair [55, Appendix 4]

Lt

(
H(t)
t

)
= −γ − ln s, (6.7)

where γ is again the Euler–Mascheroni constant, and then (6.5) follows. □

Remark 6.4. Note that (6.6) takes the role of the Gel’fand–Shilov function [53,56] H(t)tα−1/Γ (α) that relates the standard
Caputo and Riemann–Liouville derivatives. Unlike the Gel’fand–Shilov function, (6.6) consists of both a global component
and a local (Dirac) component.

We close this section with an explicit formula for the Caputo derivative of order one for causal functions.

Proposition 6.5. Let f (t) be a differentiable causal function. Then

CD1
t [f (t)] =

2
π

[
(−γ − ln t)f ′(t) +

∫ t

0
y−1 (

f ′(t) − f ′(t − y)
)
dy

]
. (6.8)

Proof. Letting f (t) = H(t)g(t), we have

Z+ [H(t)g(t)] =
2
π
H(t)

∫
∞

0
y−1(g(t) cos y − H(t − y)g(t − y)) dy

=
2
π
H(t)

[∫ t

0
y−1 (g(t) cos y − g(t − y)) dy + g(t)

∫
∞

t

cos y
y

dy

]

=
2
π
H(t)

[∫ t

0
y−1 (g(t) cos y − g(t − y)) dy

− g(t)
(
γ + ln t +

∫ t

0

cos y − 1
y

dy
)]

=
2
π
H(t)

[
(−γ − ln t)g(t) +

∫ t

0
y−1 (g(t) − g(t − y)) dy

]
,
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where we used the following identity involving the Cosine integral Ci(z) [57]

Ci(z) = −

∫
∞

z

cos y
y

dy = γ + ln z +

∫ z

0

cos y − 1
y

dy. (6.9)

Proposition 6.5 follows by (4.6a). □

Remark 6.6. By the previous proposition, CD1
t has two components: a local component, consisting of differentiation

multiplied by a logarithmic weight, and a nonlocal component consisting of differentiation followed by a regularized
convolution against 1/y.

7. Examples

We close with several explicit examples of Zolotarev–Riemann–Liouville and Zolotarev–Caputo derivatives of order one.

Example 7.1. Let f (x) = eλx, where λ > 0. Then

Z+

[
eλx

]
=

2
π

∫
∞

0
y−1 [

eλx cos y − eλ(x−y)] dy

=
2
π
eλx

∫
∞

0
y−1 [

cos y − e−λy] dy

=
2
π
eλx ln λ

where (6.2) is again used. Taking a derivative yields

RLD1
x

[
eλx

]
=

2
π
λ ln λ eλx. (7.1)

The Zolotarev–Caputo derivative of order one of eλx is identical. If λ < 1, this derivative is negative; if λ = 1, the derivative
is zero.

Now apply (3.11) to eλx with β = 1. Using [9, Ex. 2.6] yields

Dα,1x

[
eλx

]
= tan (πα/2) λeλx −

1
cos (πα/2)

λαeλx

=
λeλx

cos (πα/2)

(
sin(πα/2) − λα−1) .

Take the limit as α ↓ 1. Let ϵ = α − 1 and note cos(πα/2) = − sin(πϵ/2) ∼ −πϵ/2 for ϵ ≪ 1. Letting ϵ → 0 yields

lim
α↓1

Dα,1x

[
eλx

]
= λeλx lim

ϵ↓0

λϵ − 1
πϵ/2

=
2
π
λ ln λeλx

where (2.22) is invoked in the second line. Since the Zolotarev fractional derivative is continuous in α, by Theorem 3.11, we
conclude that the Zolotarev derivative agrees with the Zolotarev–Riemann–Liouville in this case, for α = 1.

Example 7.2. Let f (x) = H(x)xα where α > 0. Put g(x) = xα and apply (6.8). Then

CD1
x [H(x)xα] = H(x)

2
π

[
(−γ − ln x)αxα−1

+ α

∫ x

0
y−1 (

xα−1
− (x − y)α−1)] dy

= H(x)
2α
π

[
(−γ − ln x)xα−1

+ xα−1 (γ + ψ(α))
]

= H(x)
2α
π

xα−1 [ψ(α) − ln x] (7.2)

where ψ(z) = Γ ′(z)/Γ (z) is the digamma function [57]. In this example, the Zolotarev–Caputo derivative of order one
consists of the power rule result αxα−1 multiplied by a logarithmic term. If α = 1, then ψ(1) = γ , and we have

CD1
x [H(x)x] = −H(x)

2
π
(γ + ln x) .

Note that the Zolotarev–Caputo derivative of order one of a power function has a singularity of at x = 0 for α ≤ 1.
Fig. 4 displays plots of (7.2) for α = 2, 1, 0.5, and 0.05. We remark that for α = 0.05 the plot in Fig. 4 eventually tends to

+∞, but that is not visible at this scale.



176 J.F. Kelly et al. / Journal of Computational and Applied Mathematics 339 (2018) 161–178

Fig. 4. Plot of (7.2) for α = 2 (solid), 1 (dashed), 0.5 (dotted), and 0.05 (dash-dotted).

8. Conclusion

This paper has presented a fractional diffusion equation valid for all orders 0 < α ≤ 2, including the important but often
neglected case of α = 1. Eq. (5.3) models anomalous diffusion with arbitrary skewness and ballistic (linear) scaling, using
a new operator that we term the Zolotarev fractional derivative. The point source solution of this equation spreads at rate
t1/α away from its center of mass, including the case α = 1 of ballistic scaling. The Fourier symbol of this operator is the
log-characteristic function of a stable law in the Zolotarev M parameterization. For the special case of positive skewness
(β = 1), the point source solution of (5.3) can be written using the Landau distribution from nuclear physics. The Zolotarev
fractional derivative, defined by (3.3), is a nonlocal operator. The generator, Riemann–Liouville, and Caputo forms of the
Zolotarev derivative of order one were investigated on both the real line and the positive half-line. We proved that the
Zolotarev fractional derivative is continuous at α = 1. For problems on the half-line, the Caputo form (6.8) illustrates how
this new fractional derivative consists of both a local component involving the natural logarithm, and a global component.
Two concrete examples were given, illustrating the behavior of this new derivative.
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Appendix

Let x ≥ 0 and define

f (x; s) =

∫
∞

0
e−xyy−1 (

cos y − e−sy) dy

where f (x; s) → 0 as x → ∞. Then

f ′(x; s) = −

∫
∞

0
e−xy cos y dy +

∫
∞

0
e−(x+s)y dy

= −
x

1 + x2
+

1
x + s

.

Integrate, yielding

f (x; s) = −
1
2
ln(1 + x2) + ln(x + s) + C

= ln
(

x + s
√
1 + x2

)
+ C .
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By letting x → ∞, we determine C = 0, implying∫
∞

0
e−xyy−1 (

cos y − e−sy) dy = ln
(

x + s
√
1 + x2

)
. (A.1)

Setting x = 0 in (A.1) yields (6.2).
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