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Stochastic solution of space-time fractional diffusion equations
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Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives, and other
pseudodifferential operators in space. In this paper we show that replacing the integer time derivative by a
fractional derivative subordinates the original stochastic solution to an inverse stable subordinator process
whose probability distributions are Mittag-Leffler type. This leads to explicit solutions for space-time fractional
diffusion equations with multiscaling space-fractional derivatives, and additional insight into the meaning of
these equations.
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I. INTRODUCTION

Space-fractional diffusion equations@1–4# have been use
ful as models of anomalous transport in many diverse di
plines, including finance, semiconductor research, biolo
and hydrogeology@5–7#. In the context of the flow in porous
media, fractional space derivatives model large motio
through highly conductive layers or fractures, while fra
tional time derivatives describe particles that remain moti
less for extended periods of time. Dissolved solutes may s
to solid material@8# or diffuse into immobile-water zones o
various sizes@9#. The scalar space-fractional diffusion equ
tion governs Le´vy motion, and the tail parametera of the
Lévy motion equals the order of the fractional derivativ
Solutions to the vector space-fractional diffusion equat
are operator Le´vy motions @10# that may scale at differen
rates in different directions. The matrix exponent of the fra
tional derivative is related to the scaling rates in a sim
manner@11,12#. A more general diffusion equation govern
any Lévy processX(t) @13,14#. The probability density
p(x,t) of any such process solves a diffusion-type equat

]p~x,t !

]t
5Lp~x,t !; p~x,0!5d~x!, ~1!

where L is the generator of the Feller semigroupSt f (x)
5* f (x2y)p(y,t)dy @15–17#. In this case, we say thatX(t)
is the stochastic solution to Eq.~1!. The generatorL f (x)
5 limt↓0t21@St f (x)2 f (x)#. If X(t) is ana-stable Lévy mo-
tion without drift, thenL is a fractional derivative operator o
ordera.
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Fractional time derivatives are important in reactive tra
port, since solutes may interact with the immobile poro
medium in highly nonlinear ways. There is evidence th
solutes may sorb for random amounts of time that hav
power law distribution@8#, or move into irregularly sized
blocks of relatively immobile water, producing similar be
havior @9#. If the first moment of these time delays diverge
then a fractional time derivative applies@6#. The fractional
time derivative ]gg(t)/]tg for 0,g,1 is the inverse
Laplace transform ofsgg(s), where g(s)5L@g(t)# is the
usual Laplace transform. In this paper, we find the stocha
solution to the space-time fractional diffusion equation

]gq~x,t !

]tg
5Lq~x,t !1d~x!

t2g

G~12g!
. ~2!

We show that ifX(t) is the stochastic solution to Eq.~1! then
X(Vt) is the corresponding solution to Eq.~2!, whereVt is
the inverse Le´vy process@18# for the stable subordinato
with index g. The fractional time derivative subordinate
X(t) to the inverse stable subordinatorVt .

The space-time fractional diffusion equation is also co
nected with scaling limits of continuous time random wal
~CTRW, see@6#!. The spatial operatorL depends on the jump
size distribution@11,12#. A fractional time derivative of order
0,g,1 pertains when the random waiting timeT between
jumps satisfiesP(T.t)'t2g so thatE(T)5`. The infinite
mean waiting time CTRW limit is the finite mean waitin
time CTRW limit, subordinated to the inverse stable sub
dinatorVt . The random variableVt has a Mittag-Leffler dis-
tribution @19# previously noted in connection with fractiona
time derivatives@4,20# and relaxation@21#.
©2002 The American Physical Society03-1
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II. CTRW SCALING LIMITS

CTRW were introduced@22,23# to study random walks on
a lattice. They are now used in physics to model a w
variety of phenomena connected with anomalous diffus
@23–25#. With finite mean waiting times, the jump process
asymptotically linear, and the CTRW behaves in a man
similar to the original random walk for large time@20,26#.
For a scalar process, finite variance jumps lead to Brown
motion in the scaling limit. Infinite variance jumps wit
power law tails lead to Le´vy motion. Vector jumps with finite
second moments lead to multivariable Brownian motio
Vector jumps with power law tails lead to multivariable Le´vy
motion, or operator Le´vy motion if the power law behavio
varies with the direction of motion@11,12#. The speed of
convergence to the CTRW scaling limit, and the implicatio
for fractional diffusion modeling, are discussed in a rec
paper of Barkai@27#.

Many physical applications involve infinite mean waitin
times @21,28#. Introducing infinite mean waiting times ha
the effect of subordinating the CTRW scaling limit to th
inverse process of a stable subordinator whose indexg is the
same as the power law tail index of the waiting times. E
sentially, this is because the counting process for part
jumps is inverse to the jump time process. The jump ti
process is asymptotically the stable subordinator, so
counting process for particle jumps is asymptotically the
verse stable subordinator.

A rigorous mathematical proof appears in@29#. We re-
count the basic ideas here to emphasize the physical a
cations. Given iid positive random variablesJi let Tn

5( i 51
n Ji denote the time of thenth particle jump. The po-

sition of the particle after thenth jump is W(n)5( i 51
n Yi

whereYi are iid and assumed independent ofJi . Then Nt
5max$n:Tn<t% counts the number of particle jumps by tim
t.0 and the CTRW variableW(Nt) gives the position of the
particle at timet.0.

If Y has zero mean and finite second moments, the sim
random walk of particle jumps

c21/2W~@ct# !⇒X~ t ! as c→`, ~3!

where the scaling limitX(t) is a Brownian motion. Shrinking
the spatial coordinates byc1/2 compensates expanding th
time scale byc according to the central limit theorem.
P(J.t)'t2g for some 0,g,1 then

c21/gT[ct]⇒Bt as c→` ~4!

according to the extended central limit theorem@15# where
the scaling limitBt is the stable subordinator process@13#.
Theg-stable random variableBt is totally positively skewed,
hence this Le´vy process is strictly increasing. The inver
process

Vt5 inf$t:Bt.t%

is also called the hitting time or first passage time proce
Using the fact thatTn ,Nt are inverse, so that$Nt>x%
5$Tdxe<t%, along with Eq.~4! yields
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c2gN[ct]⇒Vt as c→`.

HenceN[ct]'cgVt , and together with Eq.~3! this yields

c2g/2W~N[ct] !'~cg!21/2W~@cgVt# !⇒X~Vt!

asc→`, so that the Brownian motionX(t) is subordinated
to the inverse stable subordinatorVt .

The inverse processes have inverse distributional sca
Bct5c1/gBt and Vct5cgVt , and together with the classica
scaling for Brownian motionX(ct)5c1/2X(t) this shows that
the CTRW limit is subdiffusive

X~Vct!5X~cgVt!5cg/2X~Vt!

with Hurst indexH5g/2,1/2. SinceP(Vt<t)5P(Bt>t)
5P(t1/gB1>t)5P„(B1 /t)2g<t… the random variableVt
has the same density function as (t/B1)g. The densitygg of
the stable random variableB1 has Laplace transform
L@gg(t)#5e2sg

. Computing moments of (t/B1)g shows that
Vt has a Mittag-Leffler distribution@19#. If p(x,t) is the
density ofX(t) then a conditioning argument along with
simple change of variable shows thatX(Vt) has density

q~x,t !5E
0

`

p„x,~ t/s!g
…gg~s!ds

5
t

gE0

`

p~x,u!gg~ tu21/g!u21/g21du. ~5!

Analytical estimates in@29# show thatq(k,t)>Ciki2b for
largeiki , soX(Vt) does not have a normal density and hen
cannot be a fractional Brownian motion@30#.

If P(iYi.r )'r 2a for some 0,a,2 then X(t) is an
a-stable Lévy motion and the CTRW limitX(Vt) has Hurst
index H5g/a. If the tail index varies with the spatial coor
dinate, operator norming applies@12#. ThenX(ct)5cEX(t)
leads toX(Vct)5cgEX(t) so that the Hurst indexH5gE is
a matrix. For a diagonal exponentE5diag(1/a1 , . . . ,1/ad)
the i th coordinateXi(t) is an a i-stable Lévy motion and
Xi(Vt) is self-similar with Hurst indexg/a i . Diagonalizable
matrix exponents introduce a change of coordinates.
peated eigenvalues thicken probability tails by a logarithm
factor, and complex exponents introduce rotations, leadin
discrete scale invariance@31#. In every case, the scaling limi
X(t) of the simple random walk is subordinated by the
verse stable subordinatorVt and the density changes from
p(x,t) to q(x,t) via Eq.~5! when infinite mean waiting times
are introduced. Next, we show that this change correspo
to a fractional time derivative in the diffusion equation.

III. TIME-FRACTIONAL DIFFUSION EQUATIONS

Wyss @32# and Schneider and Wyss@33# studied a time-
fractional diffusion equation. Zaslavsky@34# introduced the
space-time fractional kinetic equation~2! for Hamiltonian
chaos. When L52v]/]x1D]a/]uxua Saichev and
Zaslavsky@35# show that if p(x,t) solves Eq.~1! then the
function q(x,t) given by Eq.~5! solves Eq.~2!. When a
52 they call the stochastic solution to Eq.~2! a ‘‘fractal
3-2
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Brownian motion.’’ We prefer the term ‘‘time-fractional dif
fusion’’ to avoid confusing this process with the well-know
fractional Brownian motion. In fact, ifX(t) is a Brownian
motion, the stochastic solution to Eq.~1! in this case, then
the stochastic solution to Eq.~2! is X(Vt) whereVt is the
inverseg-stable subordinator. This interesting stochastic p
cess is self-similar with Hurst indexg/2 so it is subdiffusive.
HoweverX(Vt) does not have a Gaussian distribution and
does not have stationary increments@29#, so it is not frac-
tional Brownian motion.

Barkai, Metzler, and Klafter@20# introduce a fractional
Fokker-Planck equation equivalent to Eq.~2! with

L52
]

]x

V8~x!

mh1
1K1

]2

]x2
.

Barkai @4# applies Eq.~5!, which he calls the inverse Le´vy
transform ofp(x,t), to the solution of Eq.~1! in order to
solve this fractional Fokker-Planck equation.

Scalar solutions to Eq.~1! with

L52v
]

]x
1DS 12b

2

]a

]~2x!a
1

11b

2

]a

]xaD
are a-stable densities@36,37#, purely symmetric when the
skewnessb50 @2,38# and maximally skewed whenb51
@3,34#. When a52 the skewnessb is irrelevant, and the
solutions are normal densities. Vector solutions for

L52v•“1D“m
a

are multivariable stable densities@11#, where“m
a is the op-

erator with Fourier symbol

E
iui51

~ ik•u!am~u!du.

If a52, this integral reduces to (ik)A( ik)8 where the matrix
A hasi j component*u iu jm(u)du, and solutions are vecto
Brownian motion.

Operator stable densities, where the stable index dep
on the coordinate, solve Eq.~1! with

L52v•“1 1
2“•A“1F,

where the generalized fractional derivative

Ff ~x!5E @ f ~x2y!2 f ~x!1y“ f ~x!#df~y!

and df(r Eu)5r 22dr m(u)du is an operator stable Le´vy
measure@10,12,39#. These are all abstract Cauchy problem
@16,17# whose solutionp(x,t) is the family of densities for a
Lévy process, a stationary independent increment proc
that includes Brownian motion and~operator! Lévy motion
as special cases. Baeumer and Meerschaert@40# give a rig-
orous mathematical proof that any solution to the abst
Cauchy problem~1! is transformed to a solution of the frac
04110
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tional Cauchy problem~2! via the inverse Le´vy transform
~5!. We summarize the essentials here in order to clarify
argument.

Use sg215L@ t2g/G(12g)# and take Laplace-Fourie
transforms (x°k,t°s) in Eq. ~2! to get sgq(k,s)
5c(k)q(k,s)1sg21, wherec(k) is the Fourier symbol of
L, so thatF @L f (x)#5c(k) f (k). Then

q~k,s!5
sg21

sg2c~k!
5sg21E

0

`

exp$2@sg2c~k!#u%du

5E
0

`

sg21e2sgup~k,u!du, ~6!

using *0
`e2audu5a21 and p(k,t)5ec(k)t, which follows

from Eq. ~1!. Use d(e2sgu)/ds52gsg21ue2sgu to get
sg21e2sgu52(gu)21d(e2sgu)/ds. Recall that e2sg

5L@gg(t)# and write

e2sgu5e2(su1/g)g
5E

0

`

e2su1/gvgg~v !dv

5E
0

`

e2stgg~u21/gt !u21/gdt. ~7!

Then compute

sg21e2sgu5
21

gu

d

dsS E
0

`

e2stgg~u21/gt !u21/gdtD
5

1

guE0

`

te2stgg~u21/gt !u21/gdt ~8!

and combine with Eq.~6! to write q(k,s) as

E
0

`S 1

guE0

`

te2stgg~u21/gt !u21/gdtD p~k,u!du

5E
0

`

e2stS E
0

`

p~k,u!gg~u21/gt !
t

g
u21/g21duD dt.

Now invert the Laplace transform to obtain

q~k,t !5
t

gE0

`

p~k,u!gg~ tu21/g!u21/g21du

and invert the Fourier transform to get Eq.~5!.

IV. CONCLUSIONS

Infinite mean waiting times subordinate CTRW scali
limits to an inverse stable subordinator, equivalent to app
ing an inverse Le´vy transform ~5! to the solution density.
Since the solutions to time-fractional diffusion equations
also obtained via the inverse Le´vy transform, ag-fractional
time derivative in a diffusion equation has the effect of su
ordinating the stochastic solution to the inverse process
g-stable subordinator. When applied to the classical diffus
equation, this procedure produces the ‘‘fractal Brownian m
3-3



e
is
on
as
in

,
ed
n
or

ase

S
by
E-

MEERSCHAERT, BENSON, SCHEFFLER, AND BAEUMER PHYSICAL REVIEW E65 041103
tion’’ of Saichev and Zaslavsky as the solution to the tim
fractional diffusion equation, a model for subdiffusion. Th
interesting stochastic process is not the same as fracti
Brownian motion, but rather a completely different stoch
tic process. For CTRW models with coupled memory,
which particle jumpsYi and waiting timesJi are dependent
the effect of infinite mean waiting times is more complicat
@26#. In a forthcoming paper we will show that infinite mea
waiting times in a coupled CTRW model also induce sub
s

r,

te

e

f

.

e

-

s

-

to
s

d

04110
-

al
-

-

dination by an inverse stable subordinator, but in that c
the two processes are dependent.
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