
Journal of Statistical Planning and
Inference 71 (1998) 19–34

A simple robust estimation method for the thickness
of heavy tails

Mark M. Meerschaert a; ∗, Hans-Peter Sche�er b; 1
a Department of Mathematics, University of Nevada, Reno, NV 89557, USA
b Fachbereich Mathematik, Universit�at Dortmund, 44221 Dortmund, Germany

Received 14 March 1996; accepted 17 February 1998

Abstract

We present a simple general method for estimating the thickness of heavy tails based on the
asymptotics of the sum. The method works for dependent data, and only requires that the centered
and normalized partial sums are stochastically compact. For data in the domain of attraction of
a stable law our estimator is asymptotically log stable, consistent and asymptotically unbiased,
and converges in the mean-square sense to the index of regular variation. c© 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Heavy tail probability distributions are important in applications to electrical engi-
neering, �nance, geology, hydrology, and physics. See, for example, Brockwell and
Davis (1991), Feller (1971), Hosking and Wallis (1987), Janicki and Weron (1994),
Jansen and de Vries (1991), Leadbetter et al. (1980), Loretan and Phillips (1994),
Mandelbrot (1982), McCulloch (1997), Mittnik and Rachev (1995), Nikias and Shao
(1995) and Resnick and St�aric�a (1995). Several di�erent heavy tail distributions are
commonly used, including the stable laws, the type II extreme value distributions, and
the generalized Pareto laws. In many applications it is impossible to determine a priori
which family of distributions is appropriate, leading to a need for robust estimators
of the distributional parameters. Hill (1975) proposed the most popular robust estima-
tor, based on the asymptotics of extreme values. McCulloch (1997) shows that Hill’s
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estimator can yield misleading results when applied to stable data. In this paper we
propose an alternative robust estimator based on the asymptotics of the sum. Our es-
timator performs about as well as Hill’s estimator in most practical situations, and it
performs best in exactly those situations in which Hill’s estimator is most likely to fail.
We say that a random variable X has heavy tails if there is some �¿0 such that

E|X |�¡∞ for 0¡�¡� and E|X |�=∞ for �¿�. The parameter � measures tail thick-
ness. In this paper we present a new method for estimating the parameter � for a heavy
tail distribution. Our method is based on the asymptotics of the sum. For heavy tail
data, these asymptotics depend only on the tail index �, and not on the exact form
of the distribution. This makes our estimator very robust. It even works for dependent
data, or when the centered and normalized partial sums are only stochastically com-
pact. Since the asymptotics of the sum are well known, theoretical properties of our
estimator are relatively easy to check. When the data belong to the domain of attraction
of a stable law with index �, our estimator is asymptotically log stable. This allows
us to construct con�dence intervals and hypothesis tests. Our estimator is also simple
to compute, and perform as well or better than existing estimators in most practical
applications.
We illustrate our estimation method in a simple special case. Suppose that Xn are

i.i.d. strictly positive random variables belonging to the domain of normal attraction of
some � stable random variable Y¿0 (this requires �¡1) and write Sn=X1 + · · ·+Xn.
Then we have

n−1=�Sn ⇒ Y;

ln Sn − 1
�
ln n⇒ ln Y;

ln n
(
ln Sn

ln n
− 1

�

)
⇒ ln Y

(1.1)

and so ln Sn= ln n is a consistent, asymptotically log-stable estimator of 1=�. Although
the rate of convergence is slow, the limiting distribution is rather narrow, and we have
found that the estimator is useful in most situations where asymptotic methods would
be appropriate.

2. Asymptotic results

In this section we present asymptotic results for our estimation method. First, we
discuss the estimation of the tail thickness parameter � for data in the domain of
attraction of a stable law. Suppose that X; X1; X2; X3; : : : are independent, identically
distributed random variables on R1. We say that X belongs to the domain of attraction
of a stable random variable Y with index � if there exist real constants an¿0 and bn

such that a−1n (X1 + · · ·+ Xn − nbn)⇒ Y , and we write X ∈DOA(�). If 0¡�¡2 then
P[|X |¿t] varies regularly with index −� and we can take an= sup{t: nP[|X |¿t]¿1},
bn=EXI(|X |6an), see, for example, Feller (1971) XVII. In the special case an= n1=�
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we say that X belongs to the domain of normal attraction of Y and we write X ∈
DONA(�). De�ne

̂n=
ln+

∑n
i=1(Xi − �X n)2

2ln n
; (2.1)

where �X n= n−1(X1 + · · ·+Xn) is the sample mean and ln+(x)=max{ln x; 0}. Our �rst
result shows that ̂n is a consistent estimator of 1=� which converges in L2 norm and
whose asymptotic distribution can be expressed as a simple function of an �=2 stable
law.

Theorem 1. If X ∈DOA(�) for some 0¡�¡2 then:
(i) ̂n

P−→ 1=�;
(ii) E(̂n)→ 1=�;
(iii) E(̂n − 1=�)2→ 0; and furthermore,

2ln n(̂n − 1=�− cn)⇒ ln Y (2) (2.2)

for some �=2 stable law Y (2) and some cn → 0 (if X ∈DONA(�) we can take cn=0).

Proof. Following Feller (1971) VIII.8 we de�ne V�(t)=E|X |�I(|X |¿t) and U�(t)=
E|X |�I(|X |6t). If X ∈DOA(�) for 0¡�¡2 then P[X 2¿t] =P[|X |¿√

t] =V0(
√
t)

varies regularly with index �=2, hence X 2 ∈DOA(�=2) and, in fact, a−2n
∑

X 2
i ⇒ Y (2)

centered stable with index �=2 and skewness 1. Note that no centering is required since
�=2¡1.

Lemma 1. De�ne �Sn=
∑n

i=1(Xi − �X n)2 where �X n= n−1
∑n

i=1 Xi is the sample mean.
If X ∈DOA(�) for 0¡�¡2 then

a−2n
�Sn ⇒ Y (2); (2.3)

where Y (2) is centered stable with index �=2 and skewness 1.

Note that �Sn −
∑

X 2
i =−n �X 2

n . Here and below the sum is taken over i=1; : : : ; n.
Then it will su�ce to show that na−2n

�X 2
n → 0 in probability. Since X ∈DOA(�) we

have na−1n ( �X n − bn)⇒ Y stable with index �, hence n1=2a−1n ( �X n − bn)→ 0 in prob-
ability. If 1¡�¡2 then bn →EX and since an varies regularly with index 1=� we
get n1=2a−1n bn → 0. If 0¡�61 then U1(an) varies regularly with index (1 − �)(1=�)
and so again |n1=2a−1n bn|6n1=2a−1n U1(an)→ 0. Then n1=2a−1n

�X n → 0 in probability, and
Eq. (2.3) follows easily.

Lemma 2. For all �¿0; for some K0¿0 we have

P
[

n∑
i=1

X 2
i ¿a2n t

]
6K0t−�=2+� (2.4)

for all n¿1 and all t¿0.
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De�ne Snn=
∑

X 2
i I(X

2
i 6a2n t), En= {X 2

i ¿a2n t ∃ 16i6n}, Gn= {Snn¿a2n t} so that
{∑X 2

i ¿a2n t}⊆En∪Gn. Then P[
∑

X 2
i ¿a2n t]6P(En)+P(Gn). Here P(En)6nP[X 2¿

a2n t] = nP[X¿an
√
t] = nV0(an

√
t)= nV0(an)·V0(an

√
t)=V0(an) where nV0(an)→C so that

nV0(an)6C1 for all n¿1 for some C1¿C. Without loss of generality, an¿1 for all
n and then Potter’s theorem (see, for example, Bingham et al., 1987, p. 25) im-
plies that there exist t0¿0 and A¿0 such that V0(an

√
t)=V0(an)6At−�=2+� for all

n¿1 and all t¿t0. Hence, P(En)6C1At−�=2+� for all n¿1 and all t¿t0. Next, we
have P(Gn)6(a2n t)

−1ESnn=n(a2n t)
−1U2(an

√
t)=U2(an

√
t)=(an

√
t)2V0(an

√
t) ·V0(an

√
t)=

V0(an) · nV0(an)6C2 · At−�=2+� · C1 for all n¿1 and all t¿t0, since In; t =U2(an
√
t)=

(an
√
t)2V0(an

√
t)→ �=(2− �) by Karamata’s Theorem (see, for example, Feller, 1971,

p. 283) and so In; t6C2 for all n¿1 and all t¿t0 for some C2¿�=(2 − �). Then
Eq. (2.4) holds for all n¿1 and all t¿t0 with K0 =C1A(1 + C2). Enlarge K0 if nec-
essary so that K0t−�=2+�¿1 for all 0¡t¡t0 to �nish the proof.

Lemma 3. De�ne Vn(t)=P[ �Sn¿a2n t] where �Sn is as in Lemma 1. For all �¿0; for
some C¿0 we have

Vn(t)6Ct−�=2+� (2.5)

for all n¿1 and all t¿0.

Write Vn(t)=P[ �Sn¿a2n t] =P[
∑

X 2
i − n �X 2

n¿a2n t]6P[
∑

X 2
i ¿a2n t=2] + P[n �X 2

n¿
a2n t=2]. Apply Lemma 2. The large deviations theorem of Heyde (1967) yields that
P[n �X 2

n¿a2n t=2]=P[(
∑

Xi)2¿na2n t=2]=P[|∑Xi|¿an
√

nt=2]6C0nP[|X |¿an
√

nt=2]=
C0nV0(an

√
nt=2)6C0nV0(an

√
nt0=2) for all n¿1 and t¿t0. But nV0(an

√
nt0=2)=

nV0(an) · V0(an
√

nt0=2)=V0(an) where nV0(an)6C1 and V0(an
√

nt0=2)=V0(an)6
A(nt0=2)−�=2+� by Potter’s theorem. Then Eq. (2.5) holds for n¿1 and t¿t0 with C =
(K0 +C1A)2�=2−�. Enlarge C if necessary so that Ct−�=2+�¿1 for all 0¡t¡t0 to �nish
the proof.

Lemma 4. De�ne Vn(t) as in Lemma 3. Then

Ên=
1
2ln n

∫ ∞

a−2
n

Vn(s)
ds
s
: (2.6)

Recall that �Sn=
∑
(Xi − �X n)2 and that Y (2) is stable so it has a density. From

Lemma 1 we obtain Vn(t)=P[ �Sn¿a2n t]→P[Y (2)¿t] for all t¿0 as n→∞. Since
t−�=2P[Y (2)¿t]→K ′ as t→∞ we also have P[Y (2)¿t]6Kt�=2 for all t¿0. De�ne
Ṽn(t)=P[ �Sn¿t] and integrate by parts to obtain

E(̂n) =
1
2ln n

∫
ln+ �Sn dP

=
1
2ln n

∫
�Sn¿1

ln �Sn dP
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=
−1
2ln n

∫ ∞

1
ln t dṼn(t)

=
−1
2ln n

ln t Ṽn(t)
∣∣∣∣
∞

1
+

1
2ln n

∫ ∞

1
Ṽn(t)

dt
t
;

where the �rst term vanishes since for n �xed Ṽn(t)=Vn(a−2n t)6Ca�−2�
n t−�=2+� by

virtue of Lemma 3. Now, substitute t= a2ns to obtain Eq. (2.6).
Now, we establish (ii). Write an= n1=�‘n and note that ‘n is slowly varying. In view

of Lemma 1 and the fact that Y (2) is stable (so it has a density) we get for every
”¿0 a constant c¿0 such that 1− ”6Vn(c)=P[a−2n

�Sn¿c]61 for all large n. Apply
Lemma 4 to write Ên= In + Jn where

In=
1
2ln n

∫ c

a−2
n

Vn(s)
ds
s

and Jn=
1
2ln n

∫ ∞

c
Vn(s)

ds
s

and compute that

In6
1
2ln n

∫ c

a−2
n

ds
s
=
ln c + 2 ln an

2ln n
=
ln c
2ln n

+
1
�
+
ln ‘n
2ln n

;

while

In¿
1
2ln n

Vn(c)
∫ c

a−2
n

ds
s
¿(1− ”)

(
1
�
+
ln c
2ln n

+
ln ‘n
2ln n

)
:

Then as n→∞ we have (1−”)=�6 lim inf In6 lim sup In61=�, and since ”¿0 is arbi-
trary it follows that In → 1=�. Recall from the proof of Lemma 4 that Vn(s)→P[Y (2)¿s]
6K s�=2. Then by Lemma 3 we can apply dominated convergence to obtain

∫ ∞

c
Vn(s)

ds
s
→

∫ ∞

c
P[Y (2)¿s]

ds
s
¡∞

and so Jn → 0 which completes the proof of (ii).
The proof of (iii) is quite similar to (ii). Note that E(̂n−1=�)2 =Ê2n−2�−1Ên+�−2

so in view of (ii) it is enough to show that Ê2n → �−2. Integrate by parts to obtain

E(̂2n) =
1

(2ln n)2

∫
�Sn¿1

(ln �Sn)2 dP

=
−1

(2ln n)2

∫ ∞

1
(ln t)2 dṼn(t)

=
2

(2ln n)2

∫ ∞

1
(ln t) Ṽn(t)

dt
t
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and substitute t= a2ns to obtain

Ê2n =
2

(2ln n)2

∫ ∞

a−2
n

ln(a2ns)Vn(s)
ds
s

=
2ln an

ln n
1
2ln n

∫ ∞

a−2
n

Vn(s)
ds
s
+

2
(2ln n)2

∫ ∞

a−2
n

ln(s)Vn(s)
ds
s

= An + Bn:

Since ln an= ln n→ �−1 we get An=(2ln an= ln n)In → 2�−2. Substituting s=et we also
have for any b¿0 that

Bn =
2

(2ln n)2

∫ ∞

−2ln an
tVn(et) dt

=
2

(2ln n)2

∫ −b

−2ln an
tVn(et) dt +

2
(2ln n)2

∫ ∞

−b
tVn(et) dt

= B(1)n + B(2)n ;

where by Lemma 3

|B(2)n |6 2
(2ln n)2

∫ ∞

−b
|t|Ce−(�=2+�)t dt;

which tends to zero as n→∞. Given ”¿0 choose b¿0 so that 1−”6Vn(e−b)61 for
all large n. Then

B(1)n 6
2

(2ln n)2

∫ −b

−2ln an
t dt=

b2 − (2ln an)2

(2ln n)2
→ −1

�2
;

while

B(1)n ¿
2

(2ln n)2
Vn(e−b)

∫ −b

−2ln an
t dt¿(1− ”)

b2 − (2ln an)2

(2ln n)2
→ (1− ”)

−1
�2

and since ”¿0 is arbitrary it follows that B(1)n → −�−2. Then Ê2n =An+Bn → 2�−2−
�−2 which completes the proof of (iii).
To obtain Eq. (2.2) start with Eq. (2.3) and apply the continuous mapping theorem

to get ln �Sn − 2ln an ⇒ ln Y (2). Note that P[| ln �Sn − ln+ �Sn|¿”] =P[ln �Sn¿”; �Sn¡1]=
P[ �Sn¡e−”] =P[a−2n

�Sn¡a−2n e−”]→ 0 as n→∞ in view of Lemma 1, so we also have
ln+ �Sn − 2ln an ⇒ ln Y (2) or equivalently

2ln n
(
ln+ �Sn

2ln n
− 2ln an

2ln n

)
⇒ ln Y (2);

where an= n1=�‘n, and this is equivalent to Eq. (2.2) with cn= ln ‘n= ln n. If X ∈
DONA(�) then ‘n=1 so cn=0. Finally, note that (i) follows immediately from (ii),
(iii), or Eq. (2.2).
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For sake of completeness we now consider the remaining case where X ∈DOA(�)
for �=2. Then the limit law Y is normal, and we have that either EX 2¡∞ and
the central limit theorem applies, or else EX 2I(|X |6t)→∞ is slowly varying and
we can take an= sup{t: nt−2EX 2I(|X |6t)¿1}, bn=EX . In practical applications the
following result is used only to rule out the case of a normal limit, and so we have
not tried to be as comprehensive as in the case 0¡�¡2 which was considered above.
To ensure that the limit in Eq. (2.8) below is well de�ned we can set ln 0=0.

Theorem 2. If X ∈DOA(2) then ̂n → 1
2 in probability; and furthermore:

(i) if the variance �2 of X is �nite then

2ln n(̂n − 1=2) P−→ ln �2; (2.7)

(ii) if the variance of X is in�nite and P[|X |¿t] varies regularly then

2ln n(̂n − 1=2− Cn)⇒ ln |Y0| (2.8)

for some stable law Y0 with index 1 and some Cn
P−→ 0.

Proof. In the �nite variance case it is well known that �Sn=n→ �2 in probability. Then
Eq. (2.7) follows easily, which in turn implies that ̂n → 1

2 in probability. In the remain-
ing case we have as in the proof of Theorem 1 that a−2n

∑
(X 2

i − b(2)n )⇒ Y0 where the
limit is 1 stable, a2n varies regularly with index 1, and b(2)n =EX 2I(X 26a2n). Without
loss of generality, we can assume that EX =0, and then na−2n

�X 2
n → 0 in probability

which implies that a−2n ( �Sn−nb(2)n )⇒ Y0. Since na−2n b(2)n →∞ is slowly varying it is not
hard to check that ln |Zn|= ln n→ 0 in probability where Zn=( �Sn−nb(2)n )= �Sn. It follows
that Eq. (2.8) holds with Cn=(ln |Zn| − ln ‘n)= ln n, and again this implies consistency.
Next, we generalize the results of the Theorem 1 to the case where the normalized

partial sums are only stochastically compact. Suppose that X; X1; X2; X3; : : : are inde-
pendent, identically distributed random variables on R1 which belong to the domain
of semistable attraction of some (b; c) semistable random variable Y . This means that
there exists kn →∞ with kn+1=kn → c¿1, ãn¿0 and b̃n such that

ã−1n (X1 + · · ·+ Xkn)− b̃n ⇒ Y (2.9)

and we will write X ∈DOSA(�) where �= log c= log b. This is the most general frame-
work in which an i.i.d. sum of random variables can be usefully approximated by a
limit distribution. In the special case ãn= n1=� we say that X belongs to the domain of
normal semistable attraction of Y and we write X ∈DONSA(�). Assume that 0¡�¡2
so that Y is nonnormal. Then P[|X |¿t] =O(R(t)) where R varies regularly with index
−�, see Shimizu (1970). Also, E|X |�=∞ for all �¿�, see Sche�er (1994). Thus, the
parameter � measures tail thickness. Although the normalized sequence of partial sums
converges in distribution only along a subsequence, the following embedding result
shows that the entire sequence is stochastically compact.
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Lemma 5. Suppose that X ∈DOSA(�) with 0¡�¡2 and Eq. (2.9) holds, where the
distribution � of the limit Y is (b; c) semistable. Then there exist an regularly varying
with index 1=� and bn such that akn = ãn and a−1n (X1+ · · ·+Xn−nbn) is stochastically
compact; with every limit point of the form �−1=��� for some �∈ [1; c].

Proof. Since � is the limit distribution of a triangular array, it is in�nitely divisible.
Then for any �¿0 we can de�ne the convolution power �� to be the probability
distribution with characteristic function  (t)�, where  (t) is the characteristic function
of �. Write n= �nkpn where kpn6n¡kpn+1 . Since kn+1=kn → c it follows that �n is
relatively compact and every limit point lies in [1; c]. De�ne

an= �1=�n ãpn and bn= �1−1=�n b̃pn :

Since Y is (b; c) semistable we have ãn+1=ãn → b and then it is easy to check using
b= c1=� that an varies regularly with index 1=�. Given any subsequence choose a further
subsequence along which �n → �∈ [1; c]. Let � denote the distribution of X , and use
characteristic functions to check that a−1n �n ∗ �(bn)→ �−1=��� along this subsequence.

Theorem 3. If X ∈DOSA(�) for some 0¡�¡2 then:
(i) ̂n

P−→ 1=�;
(ii) E(̂n)→ 1=�;
(iii) E(̂n − 1=�)2→ 0;

and furthermore the sequence 2ln n(̂n−1=�− cn) is stochastically compact with limit
set {ln Y (�): 16�6c} where L(Y (�))= �−2=���2 for some (b

2; c) semistable distribution
�2 and some cn → 0 (if X ∈DONSA(�) we can take cn=0).

Proof. The proof is quite similar to Theorem 1 above, and so we only sketch the argu-
ment. Apply Lemma 5 and let � denote the L�evy measure of �. Since X ∈DOSA(�)
we also have X 2 ∈DOSA(�=2). Moreover, the standard convergence criteria for tri-
angular arrays can be used to check that if an

∑
Xi − bn converges in distribution

along a subsequence to �−1=��� then a−2n
∑

X 2
i ⇒ Y (�) along the same subsequence.

The limit distribution is �−2=���2 where �2 is (b2; c) semistable with L�evy measure
�2(t;∞)=�{x: |x|¿√

t}. Recall that �Sn −
∑

X 2
i =−n �X 2

n and argue as before that
na−2n

�X 2
n → 0 in probability. Then a−2n

�Sn is stochastically compact with limit points Y (�).
Note that ln Y (�)= ln n→ 0 in probability uniformly in �∈ [1; c]. The argument for (ii)
and (iii) is similar to Theorem 1 above, using the fact that P[|X |¿t] =O(R(t)) where
R varies regularly with index −�. If a−2n

�Sn ⇒ Y (�) along a subsequence, the continu-
ous mapping theorem applies to yield −2ln an + ln+ �Sn ⇒ ln Y (�), which is equivalent
to the asserted stochastic compactness result with cn= ln ‘n= ln n where an= n−1=�‘n.
If X ∈DONSA(�) then ‘n=1 so cn=0. Finally, note that (i) follows easily from
(ii) or (iii).
Next, we show that our estimator is consistent and asymptotically log stable even

for dependent data. Suppose that Z; Z1; Z2; Z3; : : : are independent, identically distributed
random variables on R1. We consider the in�nite moving average Xt =

∑
j cjZt−j where
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Z ∈DOA(�) for some 0¡�¡2. As before we let �Sn=
∑
(Xi − �X n)2 where �X n= n−1∑

Xi is the sample mean and the sums are taken over i=1; : : : ; n. Davis and Resnick
(1985) show that in this case a−2n

�Sn ⇒ Y (2) where an varies regularly with index 1=�
and Y (2) is centered stable with index �=2 and skewness 1.

Theorem 4. If Xt =
∑

cjZt−j where Z ∈DOA(�) for some 0¡�¡2 then ̂n
P→ 1=�

and furthermore

2ln n(̂n − 1=�− cn)⇒ ln Y (2) (2.10)

for some �=2 stable law Y (2) and some cn → 0 (if Z ∈DONA(�) we can take cn=0).

Proof. Since Y (2) is stable it has a density, and since it has skewness 1 it is almost
surely positive. Then continuous mapping applied to the result of Davis and Resnick
(1985) yields −2ln an + ln �Sn ⇒ ln Y (2). The remaining argument is exactly the same
as in Theorem 1.
Our estimator is also consistent and asymptotically log stable even for nonstation-

ary time-series models. Consider the periodic moving average Xt =
∑

cj(t)Zt−j where
Z ∈DOA(�) for some 0¡�¡2 and cj(t) are all periodic with the same period �.
Anderson and Meerschaert (1997) show that in this case a−2n

�Sn ⇒ Y (2) where an

varies regularly with index 1=� and Y (2) is centered stable with index �=2 and skew-
ness 1.

Theorem 5. If Xt =
∑

cj(t)Zt−j where Z ∈DOA(�) for some 0¡�¡2 and cj(t) are

all periodic with the same period �¿1 then ̂n
P−→ 1=� and furthermore,

2ln n(̂n − 1=�− cn)⇒ ln Y (2) (2.11)

for some �=2 stable law Y (2) and some cn → 0 (if Z ∈DONA(�) we can take cn=0).

Proof. The proof is identical to that of Theorem 4, using Anderson and Meerschaert
(1997) in place of Davis and Resnick (1985).
The limit distribution of our estimator ̂n in Eq. (2.2) has a nonzero mean, and in

practical applications it is advantageous to correct for this. By recentering our estimator
so that the limit has mean zero we arrive at

�̂n=
+ ln+

∑n
i=1(Xi − �Xn)2

2(+ ln n)
; (2.12)

where �Xn= n−1(X1 + · · ·+Xn) is the sample mean, 
:= 0:5772 is Euler’s constant, and

ln+(x)= max{ln x; 0}. Our next result shows that �̂n and ̂n have the same asymptotics.
In the special case where n−1=�

∑
i (Xi − bn)⇒ Y and the stable limit Y has scale

�2 = 1, we will write X ∈DONA(�; 1). If X ∈DONA(�) this can always be arranged
by a simple rescaling of the data.
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Theorem 6. If X ∈DOA(�) for some 0¡�¡2 then:
(i) �̂n

P−→ 1=�;
(ii) E(�̂n)→ 1=�;
(iii) E(�̂n − 1=�)2→ 0; and furthermore; for some c̃n → 0 we have

2ln n(�̂n − 1=�− c̃n)⇒ ln Y0; (2.13)

where Y0 is �=2 stable and E ln Y0 = 0 (if X ∈DONA(�; 1) we can take c̃n=0).

Proof. Kanter (1975) showed that a centered stable law Y (2) with index �= �=2, skew-
ness 1, and scale factor �2 = 1 is identically distributed with (a(�)=W )(1−�)=� where W
is exponential with mean 1, a(�)= sin((1 − �)�)(sin(��))�=(1−�)=(sin �)1=(1−�), and �
is uniform over [0; �]. Then it is easy to compute that E ln Y (2) = (1 − �)=�. (Sev-
eral di�erent parameterizations of the family of stable laws are commonly used. The
dispersion C and scale factor � of a �-stable law are related to the alternative scale
factor �2 by ��

2 =�(1 − �)C = ��= cos(��=2), see for example, Weron, 1996.) Now,
compute that �̂n=An + Bn̂n where

An=


2(+ ln n)
→ 0 and Bn=

2ln n
(+ ln n)

→ 1

as n→∞. It follows easily that (ii) and (iii) hold. Apply Eq. (2.2) and de�ne Y0 =
Y (2)=C where lnC =E ln Y (2). Then Y0 is also centered stable with the same index,
scale, and skewness and furthermore, E ln Y0 = 0. Note that the norming constants an

can always be chosen so that the limit Y (2) in Eq. (2.2) has �2 = 1. (Altering an also
changes cn.) Now, 2( + ln n)(�̂n − 1=� − c̃n)⇒ ln Y0 is algebraically equivalent to
Eq. (2.2) where c̃n= cn ln n=(+ln n)= ln ‘n=(+ln n). If X ∈DONA(�; 1) then ‘n=1
so c̃n=0. Since ( + ln n)= ln n→ 1 this is equivalent to Eq. (2.13). Consistency (i)
follows immediately from (ii), (iii), or Eq. (2.13).
Finally, we obtain asymptotic con�dence intervals for 1=�. We restrict our attention

to the case X ∈DONA(�). Note that the con�dence intervals are asymmetric, since the
limit in Eq. (2.2) or Eq. (2.13) is skewed. Precise quantiles for stable distributions
with skewness 1 can be obtained from the tables of McCulloch and Panton (1997).

Theorem 7. Under the conditions of Theorem 1; for any 0¡q¡p¡1 we have

P
[
̂n −

ln yp

2ln n
6
1
�
6̂n −

ln yq

2ln n

]
→p− q (2.14)

as n→∞ where P[Y (2)6yq] = q.

Proof. Rewrite the event in Eq. (2.14) as ln yq62ln n(̂n − �−1)6 ln yp and use the
weak convergence (2:2) to see that as n→∞ the probability of this event converges
to P[ln yq6 ln Y (2)6 ln yp] =P[yq6Y (2)6yp] =p− q, since the stable limit Y (2) has
a density.
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3. Comparison with Hill’s estimator

Our purpose in this section is to evaluate the performance of our estimator against
that of Hill’s estimator in the context of real-data analysis applications. Hill (1975)
considered the Pareto case P[X¿t] =Ct−� for t¿D where D is known and calculated
that

Ĥ r = r−1
r∑

i=1
ln X(i) − ln X(r+1) (3.1)

is the conditional maximum likelihood estimator of 1=� conditional on X(r+1)¿D where
X(1)¿X(2)¿ · · · are the order statistics of a random sample X1 · · ·Xn. For data which
are approximately Pareto in the tail, one should choose r small enough so that only
the Pareto-like tail is represented. A typical application of Hill’s estimator to real-data
involves 1000–3000 observations and estimates � using the upper 10% of the data or
less, see, for example, Hill (1975), Jansen and de Vries (1991), Loretan and Phillips
(1994), or Resnick and St�aric�a (1995). We consider three commonly used heavy tail
distributions, and compare both estimators in each case. Our overall conclusion is that
our estimator performs about as well as Hill’s estimator in most cases, and substan-
tially better in some cases involving stable data. We also consider a distribution which
belongs to the domain of attraction of a stable law but not to the domain of normal
attraction, and we explain why neither estimator works well in this case. Finally, we
compare asymptotic con�dence intervals for both estimators.
First, we performed 1000 simulation trials in which 1000 standard Pareto random

variables with �=1:5 were generated, and computed both estimators. Using our esti-
mator 1=�̂n we found a sample mean of 1.52, a sample standard deviation of 0.18, and
an interquartile range of [1:42; 1:65]. Using r=50 for Hill’s estimator 1=Ĥ r we found
a sample mean of 1.54, a sample standard deviation of 0.23, and an interquartile range
of [1:38; 1:67]. Using r=100 for Hill’s estimator we found a sample mean of 1.48, a
sample standard deviation of 0.14, and an interquartile range of [1:38; 1:66]. Repeated
simulation for di�erent values of � produced similar results. Our estimator is about
as good as Hill’s estimator in this case. (Note that if the distribution of the data is
known to be Pareto, then r=999 is optimal, which results in much better performance
for Hill’s estimator. We are assuming that the distribution is unknown, so that the
experimenter will choose a value of r between 50 and 100 in order to capture the tail
behavior. Also note that it is not necessary to simulate to obtain the distribution of
Hill’s estimator in the Pareto case, since it was computed by Hill, 1975.)
Hall (1982) calculated that the optimal value of r for Hill’s estimator when applied

to data which satisfy

P[X¿t] =Ct−�(1 + O(t−�)) (3.2)

for �¿0 is r= n2�=(2�+�). One important case in which this formula is valid is the
type II extreme value distribution P[X¿t] = 1 − exp(−Ct−�). A Taylor expansion
shows that Eq. (3.2) holds with �= � and so the optimal value is r= n2=3. We repeated
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Fig. 1. Comparison of interquartile range.

the simulation of the above paragraph with 1000 trials of n=1000 observations using
r=100 for Hill’s estimator. In the case �=0:5 we found a sample mean of 0.49 and
a sample standard deviation of 0.05 for Hill’s estimator while the same simulation
produced a sample mean of 0.51 and a sample standard deviation of 0.08 for our
estimator. The interquartile ranges were [0:46; 0:57] for our estimator and [0:46; 0:53] for
Hill’s estimator. Repeating the simulation with �=1:5 yielded a sample mean of 1.48
and a sample standard deviation of 0.151 for Hill’s estimator while the same simulation
produced a sample mean of 1.55 and a sample standard deviation of 0.177 for our
estimator. The interquartile ranges were [1:44; 1:68] for our estimator and [1:37; 1:57] for
Hill’s estimator. Hill’s estimator performs a bit better in this case, but both estimators
yield good results.
McCulloch (1997) applies Hill’s estimator to simulated stable data, using the sim-

ulation method of Chambers et al. (1976). He performs 100 trials with n=3000 and
r=50 for various values of � and tabulates the results. These values are chosen to
typify several econometric applications including Loretan and Phillips (1994). We re-
peated that simulation with 100 trials of n=3000 for our estimator and compared to
the results of McCulloch for Hill’s estimator. Fig. 1 compares the simulated interquar-
tile range for both estimators. It is apparent that Hill’s estimator has a signi�cant
bias for 1:5¡�¡2 while our estimator becomes increasingly accurate as � approaches
2. For example, when �=1:8 the median value of Hill’s estimator as calculated by
McCulloch is 2.45 and the interquartile range is [2:21; 2:85]. For our estimator the
median is 1.84 and the interquartile range is [1:80; 1:87]. For �=1:9 the correspond-
ing values are 3.59 and [3:16; 4:00] for Hill’s estimator, and 1.93 and [1:91; 1:94] for
our estimator. Loretan and Phillips argue that certain US stock returns and currency
exchange rate returns cannot be modeled by a stable distribution because Hill’s esti-
mator yields values of � signi�cantly greater than 2 (for a stable law only 0¡�62 are
allowed). McCulloch counters that Hill’s estimator is signi�cantly biased in this case,
yielding estimates of � greater than 2 when the true � is less than 2. Hall (1982) notes
that the value of r in Hill’s estimator should be chosen to balance between bias and
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accuracy. A larger value of r yields more accuracy (i.e. a smaller variance) but larger
bias. For stable data with � near 2.0, the choice of r=50 results in an unacceptably
large bias. Our estimator produces much better results than Hill’s estimator in this case,
and it does not require choosing an appropriate number of order statistics r.
We also compared the two estimators in the case where X¿0 belongs to a stable

domain of attraction but Eq. (3.2) does not apply. Writing G(t)=P[X¿t] we have
from LePage et al. (1981) that the ith largest order statistic X(i) from a sample of size n
is identically distributed with G−1(�i=�n+1) where �i= Z1+ · · ·+Zi and Zi are iid stan-
dard exponential. We set G−1(t)= t−1=�(− ln t) and repeated the simulation described
above using �=1:5 and n=1000. The surprising result was that both estimators pro-
duced estimates of � that were consistently low, generally between 1.0 and 1.1. The
reason for this anomaly can be understood in terms of the LePage representation. The
dominant order statistics correspond to the smallest indices i, for which �i=�n+1 is on
the order of 1

1000 . In the range 0:0005¡t¡0:01 the graph of G−1 lies between that of
t−1 and t−1=1:1 and all three graphs are fairly close together. The data are consistent
with the model P[X¿t] =Ct−� for � ≈ 1:1 and no � estimator is likely to perform
much better than ours in this case. Data analysis will typically give poor estimates of
� in cases where Eq. (3.2) fails to hold. This is also true for stochastically compact
data, using the series representation of Meerschaert and Sche�er (1996).
Finally, we compare asymptotic con�dence bands for both estimators. Assume that

Eq. (3.2) holds with �= � as in the case of the type II extreme value distribution or
the stable distribution. Hall (1982) shows that in this case �

√
r(Ĥ r−1=�)⇒ Z standard

normal as r→∞ with r=n2=3→ 0. Then with probability approximately 1− 2q we will
have that zq=(�

√
r)6Ĥ r − 1=�6z1−q=(�

√
r) where P[Z6zq] = q. Theorem 6 in the

previous section shows that in this case 2ln n(�̂n−1=�)⇒ ln Y0 where Y0 is stable with
index �=2, skewness 1, �2 = 1, and E ln Y0 = 0. Then with probability approximately
1 − 2q we will have that yq=(2ln n)6�̂n − 1=�6y1−q=(2ln n) where P[Y06yq] = q.
The quantiles of Y can be obtained from the tables of McCulloch and Panton (1997).
Setting �=1:5 and r= n2=3 (the optimal rate for Hill’s estimator in this case) we
compare 90% con�dence bands for both estimators as a function of the sample size
n. The results are illustrated in Fig. 2, where we plot the con�dence bands in terms
of � for readability. Once again we conclude that our estimator is about as good as
Hill’s estimator for typical sample sizes. Indeed, the skewness of our estimator is an
advantage when n is small, allowing a one-sided test to reject �=2 at the 95% level
even for reasonably small samples.

4. Remarks

The main open problem in estimating the tail thickness parameter � is robustness.
If we assume that the data are distributed according to some known heavy tail dis-
tribution like the generalized Pareto, stable, or type II extreme value distribution then
the maximum likelihood estimator (MLE) can be used to estimate the distributional
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Fig. 2. Comparison of 90% con�dence bands.

parameters. The MLE uses all of the data, unlike Hill’s estimator which only uses the
largest order statistics. For type II extreme value distributions the MLE computation
is standard. For generalized Pareto distributions the log-likelihood function has a sin-
gularity, but the MLE can still be computed as a local maximum, see for example,
Hosking and Wallis (1987). For stable laws the problem is complicated by the fact that
the densities cannot be written in closed form. Nolan (1997) has solved this problem
using the integral representation of Zolotarev (1986) for the stable density.
The MLE is closely tailored to a particular distributional form, and there is no

reason to expect robustness against a much wider collection of distributions. Hence,
there is a tradeo� between robustness and e�ciency. The ln n rate of convergence for
our estimator is slow, and this seems unavoidable. Hall (1982) remarks that if we only
assume X ∈DOA(�) for 0¡�¡2 then it is not possible to obtain a rate of convergence
faster than ln n for Hill’s estimator. Hall (1982) also shows that if Eq. (3.2) holds for
some �¿0, then

√
r(Ĥ r−1=�) is asymptotically normal as n→∞, where r= n2�=(2�+�)

yields the optimal rate of convergence. The second-order condition (3:2) is stronger
than assuming X ∈DONA(�), and if �¿0 is small then even for X ∈DONA(�) the
rate of convergence is very slow. The comparison in Fig. 2 assumes �= �. If �¡�
then our estimator compares even more favorably to Hill’s estimator.
Quite a few di�erent methods for estimating the tail index � appear in the literature.

Many of these assume a particular distributional form, for example, the estimators of
Nikias and Shao (1995) and McCulloch (1986) for stable laws or Hosking and Wallis
(1987) for generalized Pareto distributions. Like the MLE, these estimators use all of
the data. Several other estimators are based on the largest order statistics. Dekkers
et al. (1989) present a re�nement of Hill’s estimator based on the �rst and second
sample moments of ln Xi using the largest order statistics. See also Drees (1995),
Falk (1995) and Wei (1995) and others referenced there. We have not attempted a
systematic comparison of our method with any of these alternative tail estimators.
These estimators obtain their robustness from the asymptotics of extreme values, and
they only use a vanishingly small fraction of the data. Our estimator obtains robustness
from the central limit theorem for heavy tail sums, using all of the data. One advantage



M.M. Meerschaert, H.-P. Sche�er / Journal of Statistical Planning and Inference 71 (1998) 19–34 33

of our estimator is that it does not require calculating how many order statistics should
be used.
Various extensions and re�nements of the asymptotic results presented in this paper

are also possible. For example, it is straightforward to obtain convergence results for
�̂n=1=̂n using Theorem 1 above. The convergence �̂n → � in probability is immediate,
and the delta method yields 2ln n(�̂n−�−dn)⇒−�2 ln Y (2) where �−1+cn=(�+dn)−1

so that dn → 0. It is also possible to apply our estimator in cases where we suspect
that 2¡�¡4, as in the applications of Jansen and de Vries (1991) or Loretan and
Phillips (1994). If P[|X |¿x] varies regularly with index � then X 2 ∈DOA(�=2), see
for example, Mandrekar and Meerschaert (1994). So if X has heavy tails with index
2¡�¡4, we can estimate the tail index by applying our estimation procedure to the
squared data.
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