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CLUSTER CONTINUOUS TIME RANDOM WALKS

A. JURLEWICZ, M. M. MEERSCHAERT, AND H.-P. SCHEFFLER

Abstract. In a continuous time random walk (CTRW), a random waiting time
precedes each random jump. The CTRW model is useful in physics, to model
diffusing particles. Its scaling limit is a time-changed process, whose densities solve
an anomalous diffusion equation. This paper develops limit theory and governing
equations for cluster CTRW, in which a random number of jumps cluster together
into a single jump. The clustering introduces a dependence between the waiting
times and jumps that significantly affects the asymptotic limit. Vector jumps are
considered, along with oracle CTRW, where the process anticipates the next jump.

1. Introduction

The continuous time random walk (CTRW) is a useful model from statistical
physics, in which each random particle jump is preceded by a random waiting time.
Mathematically, the CTRW is a random walk subordinated to a renewal process. For
d-dimensional vector jumps, the waiting times and jumps together form an i.i.d. se-
quence of d+1 dimensional random vectors, allowing dependence between the waiting
time and the subsequent jump. The dependence is important in physics, for example,
to ensure that particle velocities do not exceed the speed of light [22]. Coupling can
also arise from clustering, where a random number of waiting times are combined, and
the resulting jump is the sum of the clustered jump variables. This paper develops
limit theory and governing equations for clustered CTRW. Since the waiting time and
the subsequent jump in the cluster CTRW are both random sums, with the same ran-
dom number of summands, the cluster CTRW is coupled, even if the original CTRW
before clustering had no dependence between waiting times and jumps. If the number
of jumps in a cluster has a heavy tail distribution, then the effect of clustering on the
limit distribution, and the governing equation, can be profound. Section 2 introduces
the required concepts from vector limit theory with matrix normalization, since the
problem is inherently multidimensional, with dependence between coordinates. Sec-
tion 3 applies vector limit theory to derive the long-time scaling limit process for
cluster CTRW and cluster oracle CTRW (OCTRW) models. Governing equations
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are developed in Section 4, using the theory of pseudo-differential operators. Finally,
Section 5 contains some examples, to illustrate the results of this paper.

2. Continuous time random walks

Let J1, J2, . . . be nonnegative independent and identically distributed (i.i.d) random
variables that model the waiting times between jumps of a particle. We set T (0) = 0
and T (n) =

∑n
j=1 Jj, the time of the nth jump. The particle jumps are given by i.i.d.

random vectors Y1, Y2, . . . on Rd. Let S0 = 0 and S(n) =
∑n

i=1 Yi, the position of the
particle after the nth jump. For t ≥ 0 let

(2.1) Nt = max{n ≥ 0 : T (n) ≤ t},

the number of jumps up to time t and define

(2.2) S(Nt) =
Nt∑
i=1

Yi

the position of a particle at time t. The stochastic process {S(Nt)}t≥0 is called
a continuous time random walk (CTRW). In some applications, it is also useful to
consider the oracle CTRW

(2.3) S(Nt + 1) =
Nt+1∑
i=1

Yi

which includes one additional jump.
Assume that J1 belongs to the strict domain of attraction of some stable law with

index 0 < β < 1. This means that there exist bn > 0 such that

(2.4) bn(J1 + · · ·+ Jn)⇒ D

where D > 0 almost surely. Here ⇒ denotes convergence in distribution. The dis-
tribution λ of D is strictly stable with index β, meaning that λt = t1/βλ for all
t > 0, where λt is the t-th convolution power of the infinitely divisible law λ and
(aλ){dx} = λ{a−1dx} is the probability distribution of aD for a > 0.

For t ≥ 0 let T (t) =
∑[t]

j=1 Jj and let b(t) = b[t], where [t] denotes the integer part

of t. Then b(t) = t−1/βL(t) for some slowly varying function L(t) and it follows from
Example 11.2.18 of [16] that

(2.5) {b(c)T (ct)}t≥0
f.d.
=⇒ {D(t)}t≥0 as c→∞,

where {D(t)} is a β-stable subordinator such that D(1) = D. Here
f.d.
=⇒ denotes

convergence in distribution of all finite dimensional marginal distributions.
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Assume that (Yi) are i.i.d. Rd-valued random variables independent of (Ji) and that
for some sequence of d× d matrices B(n) with real entries we have

(2.6) B(n)
n∑
i=1

Yi ⇒ A as n→∞.

To avoid trivial cases, we also assume that the distribution of A is full, i.e., not
supported on any lower dimensional hyperplane. Then we say that the distribution
of Yi belongs to the (strict) generalized domain of attraction of A. Here strict refers
to the fact that we did assume that there are no shifts needed in (2.6). By Theorem
8.1.5 of [16] we can choose the sequence B(n) to vary regularly with some index
−F , meaning that B([λn])B(n)−1 → λ−F as n → ∞ for all λ > 0, where λ−F =
exp(−F log λ) and exp(C) = I +C +C2/2! + · · · is the usual matrix exponential. In
this case we will also write B ∈ RV(−F ). The limit A is (strictly) operator stable with
exponent F , meaning that if (Ai) are i.i.d. with A, then nFA and A1 + · · · + An are
identically distributed for all positive integers n. Moreover, if we define the stochastic

process {S(t)}t≥0 by S(t) =
∑[t]

i=1 Yi it follows from Example 11.2.18 in [16] that

(2.7) {B(c)S(ct)}t≥0
f.d.
=⇒ {A(t)}t≥0 as c→∞,

where {A(t)} has stationary independent increments with A(0) = 0 almost surely
and A(1) = A. If S is a complete separable metric space, let D([0,∞),S) denote the
space of all right-continuous S-valued functions on [0,∞) with limits from the left.
Note that we can assume without loss of generality that sample paths of the processes
{T (t)} and {D(t)} belong to D([0,∞), [0,∞)), and that sample paths of {S(t)} and
{A(t)} belong to D([0,∞),Rd). We can strengthen (2.7) using [17, Theorem 4.1] to
get that

(2.8) {B(c)S(ct)}t≥0 ⇒ {A(t)}t≥0 as c→∞,

in the J1 topology on D([0,∞),Rd).
Define the hitting time process of the stable subordinator {D(t)}t≥0 by

(2.9) E(t) = inf{x ≥ 0 : D(x) > t}.

For x, t ≥ 0 we have

(2.10) {E(t) ≤ x} = {D(x) ≥ t}.

Since b varies regularly with index −1/β, there exists another regularly varying func-

tion b̃ with index β such that 1/b(b̃(c)) ∼ c as c → ∞. Here we use the notation
f ∼ g for positive functions f, g if and only if f(c)/g(c) → 1 as c → ∞. Define

B̃(c) = B(b̃(c)). Recall from (2.2) that S(Nt) is the CTRW random variable that
gives the location of a particle at time t > 0. Then [17, Theorem 4.2] shows that

(2.11) {B̃(c)S(Nct)}t≥0 ⇒ {A(E(t))}t≥0 in D([0,∞),Rd) as c→∞
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in the M1-topology. Let gβ(t) denote the smooth density of D. Using (2.10) it is not
hard to show that E(t) has a density

(2.12) ft(x) =
t

β
x−1−1/βgβ(tx−1/β)

for any t > 0, see [17, Corollary 3.1]. Since A(t) is operator stable, it also has a smooth
density p(x, t) for all t > 0, see [9, Theorem 4.10.2]. Then a simple conditioning
argument shows that the CTRW limit process A(E(t)) in (2.11) has a density

(2.13) h(x, t) =
t

β

∫ ∞
0

p(x, u)gβ(tu−1/β)u−1/β−1du

for all t > 0.
The linear operators Ttf(x) =

∫
f(x− y)p(y, t) dy form a strongly continuous con-

volution semigroup with generator L = limt↓0 t
−1(Tt−T0), and q(x, t) = Ttf(x) solves

the abstract Cauchy problem ∂tq(x, t) = Lq(x, t); q(x, 0) = f(x) for any initial con-
dition f(x) in the domain of the generator L, see for example [6, 7, 20]. Theorem
5.1 in [17] shows that the CTRW limit density h(x, t) in (2.13) solves the fractional
Cauchy problem

(2.14) ∂βt h(x, t) = Lh(x, t) + δ(x)
t−β

Γ(1− β)
.

Here ∂βt h(t, x) is the Riemann-Liouville fractional derivative, which can be defined

as the inverse Laplace transform of sβh̃(x, s) when h̃(x, s) =
∫∞

0
e−sth(x, t) dt is the

usual Laplace transform in the time variable. Hence CTRW scaling limits are related
to time-fractional differential equations, and the power-law index of the waiting times
equals the order of the fractional time derivative.

3. Cluster CTRW

Now we define a new CTRW by clustering the space-time random vectors Xi =
(Yi, Ji). Assume that the i.i.d. cluster size random variables Mi, independent of (Xi),
take values on the nonnegative integers. Suppose that (Mi) belongs to the strict
domain of attraction of some stable law Z with index 0 < γ < 1 (see definition (2.4)),
and note that in this case we have E(Mi) =∞. Let C(n) =

∑n
i=1Mi with C(0) = 0

and define

Vn =

C(n)∑
i=C(n−1)+1

Xi

so that Vn is a sequence of IID space-time jumps formed by summing Mn consecutive
space-time jumps from the original CTRW. Write Vi = (Y M

i , JMi ) so that JM1 , JM2 , . . .
are nonnegative i.i.d. random variables that model the waiting times between jumps
of a particle in the cluster CTRW model. Set TM(0) = 0 and TM(n) =

∑n
j=1 J

M
j ,

the time of the nth jump. The particle jumps are given by the i.i.d. random vectors
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Y M
1 , Y M

2 , . . . on Rd. Let SM(0) = 0 and SM(n) =
∑n

i=1 Y
M
i , the position of the

particle after the nth jump in the cluster CTRW. For t ≥ 0 let

(3.1) NM
t = max{n ≥ 0 : TM(n) ≤ t},

the number of jumps up to time t and define

(3.2) SM(NM
t ) =

NM
t∑

i=1

Y M
i

the position of a particle at time t. The stochastic process {SM(NM
t )}t≥0 is called

a cluster CTRW. The waiting time JMi and the subsequent jump Y M
i are dependent

random variables, since they both depend on the cluster size Mi, so that the cluster
CTRW is a special case of the coupled CTRW considered in [3, 19]. In certain
applications it is also useful to consider the cluster oracle CTRW SM(NM(t) + 1), in
which one additional jump is included. In finance, the OCTRW represents the price
at the next available trading time [12]. In geophysics, the OCTRW can represent
the accumulated energy released during the next earthquake, or volcanic eruption,
or the magnitude of the next flood event. The cluster CTRW and cluster OCTRW
were introduced to model dielectric relaxation phenomena [25]. They both provide
the model covering whole range of the observed (typical, as well as less typical) two-
power-law relaxation behavior [11, 25, 26]. The clustering procedure is considered
here as a stochastic generalization of the renormalization-group transformation idea,
appearing frequently in physics and material science [5, 28], and applied to random
walks in [23, 24]. The goal of this paper is to study scaling limits and governing
equations for the cluster CTRW and cluster OCTRW.

Since Mi belongs to the strict domain of attraction of some stable law Z with index
0 < γ < 1, there exist qn > 0 such that

(3.3) qn(M1 + · · ·+Mn)⇒ Z

where Z > 0 almost surely. Note that we can choose qn in (3.3) so that E[e−sZ ] = e−s
γ
.

For t ≥ 0 let C(t) =
∑[t]

j=1Mj. Then q(t) = q[t] varies regularly with index −1/γ, and

it follows from Example 11.2.18 of [16] that

(3.4) {q(c)C(ct)}t≥0
f.d.
=⇒ {Z(t)}t≥0 as c→∞

where {Z(t)} is a γ-stable subordinator such that Z(1) = Z. Define

K(t) = max{n ≥ 0 : C(n) ≤ t}
Recall that {Nt ≥ m} = {T (m) ≤ t}. Then

K(Nt) = max{n ≥ 0 : C(n) ≤ Nt} = max{n ≥ 0 : T (C(n)) ≤ t} = NM
t .

so that we can also write the clustered CTRW SM(NM
t ) = S(C(K(Nt))) and the

clustered OCTRW SM(NM
t + 1) = S(C(K(Nt) + 1)). Note that C(K(t)) is itself a

tightly coupled CTRW, with jumps equal to the waiting times. This process has been
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extensively studied in connection with the generalized arc sine distributions, see for
example [4, 6]. Define the inverse process

R(t) = inf{x > 0 : Z(x) > t}

to the stable subordinator Z(t). Let U(t) = Z(R(t)−) and O(t) = Z(R(t)), the so-
called undershoot and overshoot processes for the stable subordinator {Z(t)}. Recall

from Section 2 that B̃(c) = B(b̃(c)).

Theorem 3.1. Assume that (Ji) are i.i.d. satisfying (2.4), (Yi) are i.i.d. satisfying
(2.6) and (Mi) are i.i.d. satisfying (3.3). We also assume that (Ji), (Yi) and (Mi)
are independent. Then, using the notations above, the cluster CTRW scaling limit is
given by

(3.5) {B̃(c)SM(NM
ct )}t≥0

f.d.
=⇒ {A(U(E(t)))}t≥0

as c→∞. Also, the cluster OCTRW scaling limit is given by

(3.6) {B̃(c)SM(NM
ct + 1)}t≥0

f.d.
=⇒ {A(O(E(t)))}t≥0

as c→∞.

Proof. Take q̃(c) regularly varying with index γ such that 1/q(q̃(c)) ∼ c as c → ∞.
In view of (3.3), it follows from [17, Corollary 3.4] that {q̃(c)−1K(ct)} ⇒ {R(t)} in
the J1 topology on D([0,∞), [0,∞)). Then it follows from [13, Theorem 3.1] with
q(q̃(c)) ∼ 1/c that

{c−1C(K(ct) + 1)} ⇒ {O(t)} and {c−1C(K(ct))} ⇒ {U(t)}

as c → ∞ in the J1 topology on D([0,∞),R). Note that the sample paths of the
process {U(t)} are modified at jumps, to make it right continuous. From Bertoin [4,
III, Theorem 4] or [13, Example 5.2] we get P (O(t) > t) = P (U(t) < t) = 1 for any
t > 0. Then P (U(t) < t < O(t)) = 1 for any t > 0, since the intersection of two events
of probability one also has probability one. If U(t) < t < O(t) then Z(x−) < t < Z(x)
where x = R(t), which implies that x = R(t′) for all Z(x−) < t′ < Z(x), so that both
U(t′) and O(t′) remain constant in a neighborhood of t. It follows that every t > 0 is
almost surely a continuity point of U(t) and O(t). Then it follows from [27, Theorem
11.6.6] that

(3.7) {c−1C(K(ct) + 1)} f.d.
=⇒ {O(t)} and {c−1C(K(ct))} f.d.

=⇒ {U(t)}.

Note that since (Mi) and (Yi) are independent, (2.7) along with (3.7) implies

{(B(c)S(ct), c−1C(K(ct) + 1))} f.d.
=⇒ {(A(t), O(t))}

along with

{(B(c)S(ct), c−1C(K(ct)))} f.d.
=⇒ {(A(t), U(t))}.
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Then, arguing as in the proof of Theorem 4.1 in [2], using a transfer theorem, we get

{(B(c)S(c c−1C(K(ct) + 1)))} f.d.
=⇒ {A(O(t))}

as well as

{(B(c)S(C(K(ct))))} f.d.
=⇒ {A(U(t))}.

By [17, Theorem 3.2] we have {b̃(c)−1Nct}
f.d.
=⇒ {E(t)}. Then another application of

[2, Proposition 4.1] yields (3.5) and (3.6). �

Remark 3.2. Recall that a stochastic process {X(t)} is operator self-similar with
exponent P if

{X(ct)} f.d.= {cPX(t)} for all c > 0,

see for example the recent book of Embrechts and Maejima [15]. If P = pI, we also say
that {X(t)} is self-similar with index p. Hudson and Mason [8] showed that {A(t)} is
operator self-similar with exponent F , where F is an exponent of the operator stable
law A. Proposition 3.1 in [17] shows that {E(t)} is self-similar with index β, and
it follows from [13, Corollary 3.3] that both {U(t)} and {O(t)} are self-similar with
index 1. Then a simple conditioning argument yields

{A(U(E(ct)))} f.d.= {A(U(cβE(t)))} f.d.= {A(cβU(E(t)))} f.d.= {cβFA(U(E(t)))}
and similarly for A(O(E(t))), so that both limits in Theorem 3.1 are operator self-
similar with exponent βF . Recall that

A(t)
d
= tFA

since A is strictly operator stable. From [17, Corollary 3.1] we get

E(t)
d
= (D/t)−β

where D is stable with index 0 < β < 1. From [13, Example 5.2] we get that

U(t)
d
= tB and O(t)

d
= t/B

where B has a beta density with parameters γ and 1 − γ (i.e., generalized arc sine
distribution). Then we also have

B̃(c)SM(NM
ct )⇒ tβFBFD−βFA

B̃(c)SM(NM
ct + 1)⇒ tβFB−FD−βFA

(3.8)

for each t > 0. This extends results in [10, 11, 25, 26] to the case of vector jumps.

Recall that the operator stable random vector A(t) has a smooth density p(x, t),
and that the inverse subordinator E(t) has density ft(x) given by (2.12) in terms of
the density gβ(t) of D. Example 5.2 in [13] shows that U(t) has density

(3.9) c(x, t) =
xγ−1(t− x)−γ

Γ(γ)Γ(1− γ)
, 0 < x < t
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and O(t) has density

(3.10) a(x, t) =
x−1

Γ(γ)Γ(1− γ)

(
t

x− t

)γ
, x > t.

Corollary 3.3. Under the assumptions of Theorem 3.1, the cluster CTRW limit
A(U(E(t))) has density

(3.11) pU(x, t) =

∫ ∞
0

∫ ∞
0

p(x, u)c(u, s)fs(t) du ds

and the cluster OCTRW limit A(O(E(t))) has density

(3.12) pO(x, t) =

∫ ∞
0

∫ ∞
0

p(x, u)a(u, s)fs(t) du ds.

Proof. This is a simple conditioning argument, since the three processes in the limits
in each of (3.5) and (3.6) are independent. �

Remark 3.4. As a simple extension of Theorem 3.1 we can consider waiting times with
a finite mean m = EJ1 <∞. Now (2.4) holds with bn = 1/(nm) by the law of large
numbers, and D(t) = E(t) = t. Then the CTRW limit A(t) has a smooth density
p(x, t) that solves the Cauchy problem ∂tp(x, t) = Lp(x, t). The cluster CTRW limit
is A(U(t)) and the cluster OCTRW limit is A(O(t)). The limit densities are given by
Corollary 3.3 with fs(t) = δ(t− s).

There is another useful way to view the cluster CTRW in terms of coupled ran-
dom sums. Note that SM(n) = S(C(n)) and TM(n) = T (C(n)) are both random
sums, and TM(n) has inverse NM

t = K(Nt). The space-time jumps Xi = (Yi, Ji) are
i.i.d. random vectors in Rd × [0,∞) that belong to the strict generalized domain of
attraction of some full operator stable random vector W = (A,D) with distribution
µ, and

(3.13) (B(n)
n∑
i=1

Yi, bn

n∑
i=1

Ji)⇒ (A,D)

so that

(3.14) {(B(c)S(ct), b(c)T (ct))}t≥0
f.d.
=⇒ {(A(t), D(t))}t≥0 as c→∞

in view of [16, Example 11.2.18]. Note thatW is strictly operator stable with exponent
H = diag(F, 1/β), and that (B(c), b(c)) varies regularly at infinity with index −H.
Next we need an extension of some technical results on operator ν-stable laws from
[14]. Operator ν-stable laws are limits of random sums of i.i.d. random vectors in
the generalized domain of attraction of an operator stable law. Recall that Vi are the
cluster jumps in space-time, each of which is given by a random sum.

Theorem 3.5. Under the above conditions, (Vi) belongs to the strict generalized do-
main of attraction of some full operator stable random vector W (Z) with exponent
(1/γ)H.
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Proof. Recall that (Xi) are in the strict generalized domain of attraction of some

operator stable law W on Rd× [0,∞) with exponent H, and that for SX(t) =
∑btc

i=1Xi

we have

(3.15) {Q(c)SX(ct)} f.d.
=⇒ {W (t)} as c→∞

where {W (t)} is a Lévy process generated by W (1) = W , and Q(c) = (B(c), b(c)) is
regularly varying with index −H. Moreover, for some q ∈ RV(−1/γ) we have (3.4)
where {Z(t)} is a γ-stable subordinator with Z(1) = Z. Note that the random sum

n∑
j=1

Vj =

C(n)∑
i=1

Xi = SX
(
C(n)

)
.

Following the same line of proof as Theorem 3.1, using the transfer theorem from [2],
we get using (3.15) and (3.4) that

(3.16)
{
Q
(
q(c)−1

)
SX
(
q(c)−1 q(c)C(ct)

)} f.d.
=⇒ {W (Z(t))}

as c→∞. Especially, for t = 1 and c = n we get

Q
(
q(n)−1

) n∑
j=1

Vj =⇒ W (Z)

showing that (Vi) belongs to the generalized domain of attraction of W (Z). Using
the self-similarity

W (t)
d
= tHW and Z(t)

d
= t1/γZ,

we get using independence again that

W (Z(t))
d
= W (t1/γZ)

d
= t(1/γ)HW (Z)

showing that W (Z) is operator stable with exponent (1/γ)H. �

The following corollary interprets Theorem 3.5 in terms of regular variation of the
underlying probability measures. Let V = V1. We say that a probability measure µ
varies regularly at infinity with index H if we have

n B(n)µ(dx)→ φ(dx) as n→∞

for some sequence of matrices B ∈ RV(−H), and some sigma-finite Borel measure φ
that is not concentrated on any lower dimensional subspace. Here the convergence
means that n µ{B(n)−1x : x ∈ U} → φ(U) as n → ∞ for Borel sets U that are
bounded away from the origin, and whose boundary has φ-measure zero. In that
case, we write µ ∈ RVM∞(H), see Section 6.1 in [16].

Corollary 3.6. Theorem 3.5 implies that if PX ∈ RVM∞(H), then PV ∈
RVM∞

(
(1/γ)H

)
.
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Proof. By Theorem 8.2.10 of [16] we have X ∈ GDOA(W ) for some full operator
stable W with exponent H and no normal component if and only if PX ∈ RVM∞(H).
Now the result follows from Theorem 3.5. �

Remark 3.7. Let AM(t) = A(Z(t)) and DM(t) = D(Z(t)) and note that (3.16) yields

(3.17)
{

(B(q(c)−1)SX(C(ct)), b(q(c)−1)T (C(ct)))
} f.d.

=⇒ {(AM(t), DM(t))}
as c→∞. If we define

EM(t) = inf{x > 0 : DM(x) > t}
then it is easy to check that EM(t) = R(E(t)), so that the cluster CTRW limit in
Theorem 3.1 is

(3.18) A(U(E(t))) = A(Z(R(E(t)−))) = AM(EM(t)−)

and the cluster OCTRW limit in Theorem 3.1 is

(3.19) A(O(E(t))) = A(Z(R(E(t)))) = AM(EM(t)).

The convergence (3.17) does not lead directly to the results of Theorem 3.1 because
AM(t), DM(t) are not independent. However, it will be useful in the next section.

4. Governing equations

This section develops governing equations for the cluster CTRW and OCTRW
limits. Since the underlying process is a coupled CTRW, we follow the development
in [3, 13]. For suitable functions f on Rd×R+ we define the Fourier-Laplace transform

(4.1) f̄(k, s) =

∫
Rd

∫ ∞
0

ei〈x,k〉e−stf(x, t)dt dx

where (k, s) ∈ Rd × (0,∞). Similarly, if µ is a bounded Borel measure on Rd × R+,

µ̄(k, s) =

∫
Rd

∫ ∞
0

ei〈x,k〉e−stµ(dx, dt)

is the Fourier-Laplace transform of µ.
Any infinitely divisible distribution is characterized by the Lévy-Khinchin formula.

This concept carries over to the FLT setting [3, Lemma 2.1] so that, if (A,D) is an
infinitely divisible random variable on Rd × R+ with distribution µ, we have

(4.2) µ̄(k, s) = E[e−sD+i〈k,A〉] = e−ψ(k,s)

for all (k, s) ∈ R× R+. We call ψ(k, s) the Fourier-Laplace symbol of (A,D). More-
over, there exist uniquely determined (a, b) ∈ Rd×R+, a positive semi-definite matrix
P on Rd and a measure φ on Rd × R+ \ {(0, 0)} such that

ψ(k, s) = i〈a, k〉+ bs+ 〈k, Pk〉

+

∫
Rd×R+\{(0,0)}

(
1− ei〈k,x〉e−st +

i〈k, x〉
1 + ‖x‖2

)
φ(dx, dt).
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The Lévy measure φ is finite outside every neighborhood of the origin and∫
0<‖x‖2+t≤1

(‖x‖2 + t)φ(dx, dt) <∞.

We denote by φA(dx) = φ(dx,R+) the Lévy measure of A. By setting s = 0 in the
representation (4.2) we see that E[ei〈k,A〉] = e−ψA(k) and we call

(4.3) ψA(k) = i〈a, k〉+ 〈k, Pk〉+

∫
Rd\{0}

(
1− e−i〈k,x〉 +

i〈k, x〉
1 + ‖x‖2

)
φA(dx)

the Fourier symbol of A. Similarly, we let φD(dt) = φ(R, dt) denote the Lévy measure
D. By setting k = 0 in the representation (4.2) we see that E[e−sD] = e−ψD(s) and we
call

(4.4) ψD(s) = bs+

∫ ∞
0

(
1− e−sv

)
φD(dv)

the Laplace symbol of D. If A,D are independent, then ψ(k, s) = ψA(k) + ψD(s).
Given any λ > 0 let L1

λ(Rd × R+) denote the collection of real-valued measurable
functions on Rd × R+ for which the integral and hence the norm

‖f‖λ =

∫ ∞
0

∫
Rd
e−λt|f(x, t)| dx dt

exists. With this norm, L1
λ(Rd × R+) is a Banach space that contains L1(Rd × R+).

The symbol ψ(k, s) defines a pseudo-differential operator ψ(iDx, ∂t) on this space,
and the negative generator of the corresponding Feller semigroup, see [19] for more
details. Theorem 3.2 in [1] shows that the domain of this operator contains any
f ∈ L1

λ(Rd × R+) whose weak first and second order spatial derivatives as well as
weak first order time derivatives are in L1

λ(Rd × R+), and that in this case we have

ψ(iDx, ∂t)f(x, t) = −a∇xf(x, t) + b∂tf(x, t)− 〈∇x, P∇xf(x, t)〉

−
∫

R×R+\{(0,0)}

(
H(t− u)f(x− y, t− u)− f(x, t) +

〈y,∇xf(x, t)〉
1 + ‖y‖2

)
φ(dy, du)

where ∇x = (∂x1 , . . . , ∂xd)
> and H(t) = I(t ≥ 0) is the Heaviside step function. It

follows that ψ(k, s)f̄(k, s) is the Laplace-Fourier transform of ψ(iDx, ∂t)f(x, t) for any
f ∈ L1

λ(Rd × R+).
As in [2, 3, 13, 19] among other works, we say that a function f(x, t) is a mild

solution of a pseudo-differential equation

(4.5) ψ(iDx, ∂t)f(x, t) = g(x, t)

for some distribution g(x, t) if and only if

(4.6) ψ(k, s)f̄(k, s) = ḡ(k, s)

for all k ∈ Rd and s > 0. That is, the Fourier-Laplace transform of f in (4.5) solves
the algebraic equation (4.6).
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Remark 4.1. It is a hard and open analytical problem to derive a general theory of
strong (or weak) solutions of equations of the form (4.5), which goes far beyond the
scope of this paper.

Recall from Theorem 3.5 thatW (Z) = (AM , DM) is an operator stable Lévy process
with exponent (1/γ)H. Next we compute its Fourier-Laplace symbol.

Lemma 4.2. If ψ(k, s) is the Fourier-Laplace symbol of (A,D) then the Fourier-
Laplace symbol of W (Z) = (AM , DM) is given by ψM(k, s) = ψ(k, s)γ.

Proof. Note that we choose qn in (3.3) so that E[e−sZ ] = e−s
γ
. Recall that W (Z) =

(A(Z), D(Z)) with Z = Z(1) and write

E
[
ei〈k,A

M 〉−sDM ] = E
[
E
[
ei〈k,A(Z)〉−sD(Z)|Z

]]
= E

[
e−ψ(k,s)Z

]
= e−ψ(k,s)γ

using the independence of {(A(t), D(t))} and {Z(t)}. �

Recall that the cluster OCTRW limit AM(EM(t)) has a density pO(x, t) given by
(3.12), and the cluster CTRW limit AM(EM(t)−) has a density pU(x, t) given by
(3.11). Also recall that ψA(k) is the Fourier symbol of the operator stable limit for
the (non-clustered) jump variables. The next result gives the governing equations for
the limit densities pO(x, t) and pU(x, t).

Theorem 4.3. Under the assumptions of Theorem 3.1, the cluster CTRW limit den-
sity (3.11) is a mild solution of

(4.7) (ψA(iDx) + ∂βt )γpU(x, t) = δ(x)
t−βγ

Γ(1− βγ)
,

and the cluster OCTRW limit density (3.12) is a mild solution of

(4.8) (ψA(iDx) + ∂βt )γpO(x, t) =
1

Γ(1− γ)

∫ ∞
0

νu(dx)P(D(u) > t)γu−γ−1du

where νu is the probability distribution of the limit A(u) in (2.6).

Proof. We follow the development in [13]. Theorem 3.1 along with Remark 3.7 shows
that AM(EM(t)) is the cluster OCTRW limit, and AM(EM(t)−) is the cluster CTRW
limit. Let ψA(Z)(k) = ψM(k, 0) be the Fourier symbol of A(Z) and let ψD(Z)(s) =
ψM(0, s) be the Laplace symbol of D(Z). Although [13, Theorem 4.1] is stated and
proved in the special case of scalar jumps, the proof extends immediately to vector
jumps. Then it follows that the cluster OCTRW limit has Fourier-Laplace transform

(4.9) p̄O(k, s) =
1

s

ψM(k, s)− ψA(Z)(k)

ψM(k, s)
,

and the cluster CTRW limit has Fourier-Laplace transform

(4.10) p̄U(k, s) =
1

s

ψD(Z)(s)

ψM(k, s)
.
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Since A,D are independent, the operator stable random vector (A,D) has Fourier-
Laplace symbol ψ(k, s) = ψA(k) + sβ, and then it follows from Lemma 4.2 that
ψM(k, s) = ψ(k, s)γ = (ψA(k) + sβ)γ. Then we can rearrange (4.10) to get

(4.11) (ψA(k) + sβ)γ p̄U(k, s) =
1

s
ψD(Z)(s).

Next we want to invert the Fourier-Laplace transforms in (4.11). From [19, Eq.
(3.12)] we get that s−1ψD(Z)(s) is the Laplace transform of φD(Z)(t,∞). Since the
subordinator D(Z) has Laplace symbol ψD(Z)(s) = ψM(0, s) = sβγ, a calculation
similar to [16, Lemma 7.3.7] shows that

(4.12) φD(Z)(t,∞) =
t−βγ

Γ(1− βγ)
.

Then we can invert the Fourier-Laplace transforms in (4.11) to arrive at (4.7).
The argument for (4.8) is similar. From (4.9) we get

(4.13) (ψA(k) + sβ)γ p̄O(k, s) =
1

s

(
ψM(k, s)− ψA(Z)(k)

)
.

The vector version of [13, Lemma 4.6] gives

(4.14)

∫ ∞
0

e−st
∫

R
ei〈k,x〉φW (Z)(dx, (t,∞)) dt =

1

s

(
ψM(k, s)− ψA(Z)(k)

)
,

and then we can invert (4.13) to arrive at

(4.15) (ψA(iDx) + ∂βt )γpO(x, t) = φW (Z)(dx, (t,∞)).

It follows from Sato [21, Theorem 30.1] that W (Z) is infinitely divisible with Lévy
measure

(4.16) φW (Z)(dx, dt) =

∫ ∞
0

µu(dx, dt)φZ(du)

where µu is the distribution of (A(u), D(u)) and φZ is the Lévy measure of Z. Since Z
is a standard stable subordinator with Laplace symbol sγ, it follows that φZ(t,∞) =
t−γ/Γ(1− γ). Since A,D are independent, µu(dx, dt) = νu(dx)λu(dt) where νu is the
distribution of A(u) and λu is the distribution of D(u). Then we have

φW (Z)(dx, (t,∞)) =
1

Γ(1− γ)

∫ ∞
0

νu(dx)P(D(u) > t)γu−γ−1du

which can be substituted into (4.15) to obtain (4.8). �

Remark 4.4. As in Remark 3.4, we can consider waiting times with a finite mean.
Then D(t) = t so that ψD(s) = s and ψ(k, s) = s + ψA(k). Lemma 4.2 still holds,
(4.7) still applies with β = 1, and (4.8) simplifies to

(4.17) (ψA(iDx) + ∂t)
γpO(x, t) =

1

Γ(1− γ)

∫ ∞
t

νu(dx)γu−γ−1du
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since P(D(u) > t) = I(u > t) in this case.

5. Examples

Here we provide a few useful examples, to illustrate the results of this paper.

Example 5.1. Suppose that EY1 = 0 and E‖Y1‖2 < ∞ so that (2.6) holds with
B(n) = 2n−1/2M−1/2 where M = E[Y1Y

T
1 ], and A is multivariate normal with covari-

ance matrix 2I. If EJ1 <∞ then as in Remark 4.4 the cluster CTRW limit A(U(t))
has a density

(5.1) pU(x, t) =

∫ ∞
0

p(x, u)c(u, t) du

where p(x, u) = (4πu)−d/2 exp(−‖x‖2/(4u)) is the density of A(u), and c(u, t) is given
by (3.9). The governing equation is

(5.2) (∆ + ∂t)
γpU(x, t) = δ(x)

t−γ

Γ(1− γ)
,

since ψA(k) = −‖k‖2 is the Fourier symbol of the Laplacian ∆ = ∂2
x1

+ · · ·+∂2
xd

. Note
that A(Z) is symmetric stable with index 2γ. If d = 1 we get

(5.3) pU(x, t) =

∫ t

0

1√
4πu

exp

(
−x

2

4u

)
uγ−1

Γ(γ)

(t− u)−γ

Γ(1− γ)
du

which is the same form as Example 5.2 in [3], since clustering induces the same de-
pendence as the variance coupling in [3, Example 5.2]. That same model of variance
coupling was applied in [18] to model price returns for bond futures. Hence this ex-
ample also demonstrates that clustering is sufficient to explain the coupling observed
in that data. The OCTRW limit in dimension d = 1 has density

(5.4) pO(x, t) =

∫ ∞
t

1√
4πu

exp

(
−x

2

4u

)
x−1

Γ(γ)Γ(1− γ)

(
t

x− t

)γ
du

and governing equation

(5.5) (∂2
x + ∂t)

γpO(x, t) =
1

Γ(1− γ)

∫ ∞
t

1√
4πu

exp

(
−x

2

4u

)
γu−γ−1du

which agrees with Example 5.3 in [13]. In the application from [18], the OCTRW
represents the log-price of the bond futures at the next trading time, and the clustering
variable counts the number of trades executed at that time.

Example 5.2. Suppose that (2.6) holds with A symmetric stable, and E[ei〈k,A(u)〉] =
e−uψA(k) with ψA(k) = −‖k‖α for some 0 < α < 2. If EJ1 < ∞ then, as in Remark
4.4, the cluster CTRW limit A(U(t)) has governing equation

(5.6) (∆α/2 + ∂t)
γpU(x, t) = δ(x)

t−γ

Γ(1− γ)
,
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where ∆α/2 is the fractional Laplacian with Fourier symbol ψA(k). Here A(Z) is
symmetric stable with index αγ. For infinite mean waiting times as in Theorem 3.1,
the governing equation is

(5.7) (∆α/2 + ∂βt )γpU(x, t) = δ(x)
t−βγ

Γ(1− βγ)
,

and D(Z) is stable with index βγ. The OCTRW limit has governing equation (4.8)
where νu(dx) is the symmetric stable distribution of A(u). This extends Example 5.4
in [13] to vector jumps.
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