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a b s t r a c t

Continuous time random walks impose a random waiting time before each particle jump.
Scaling limits of heavy-tailed continuous time random walks are governed by fractional
evolution equations. Space-fractional derivatives describe heavy-tailed jumps, and the
time-fractional version codes heavy-tailedwaiting times. This paper develops scaling limits
and governing equations in the case of correlated jumps. For long-range dependent jumps,
this leads to fractional Brownian motion or linear fractional stable motion, with the time
parameter replaced by an inverse stable subordinator in the case of heavy-tailed waiting
times. These scaling limits provide an interesting class of non-Markovian, non-Gaussian
self-similar processes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Continuous time random walks (CTRW) separate IID particle jumps {Yn} by IID waiting times {Jn}. CTRW models are
important in applications to geology, physics and finance; see, for example, Berkowitz et al. (2006), Metzler and Klafter
(2004) and Scalas (2004) for more information. If {Yn} and {Jn} are independent, then the CTRW is called decoupled.
Otherwise it is called coupled. Throughout this paper we will only consider decoupled CTRWs with values in R.
In the case of heavy-tailed waiting times, Meerschaert and Scheffler (2004) proved that CTRW scaling limits are

subordinated processes that are self-similar but non-Markovian, and their transition densities are governed by fractional
diffusion equations (see also Meerschaert et al. (2002)). Fractional diffusion equations replace the usual integer-order
derivatives in the diffusion equation by their fractional-order analogues (Miller and Ross, 1993; Samko et al., 1993). Just
as the diffusion equation ∂tu = a∂2x u governs the scaling limit of a simple random walk, the fractional diffusion equation
∂
β
t u = a∂αx u governs the scaling limit of a CTRW with heavy tail jumps P(Yn > r) ∼ r−α for 0 < α < 2 and waiting times

P(Jn > t) ∼ t−β for 0 < β < 1.
This paper develops limit theorems and governing equations for CTRW with correlated (or dependent) jumps Yn =∑
∞

j=0 cjZn−j, where {Zn} are IID and {cn} are real numbers (see Section 2 for precise conditions). These CTRW models are
useful for correlated observations separated by random waiting times, which are common, for example, in finance (Scalas
et al., 2000). Scaling limits of the partial sum process S(t) = Y1 + · · · + Y[t] in the case of long-range dependence include
fractional Brownian motion (FBM) for light-tailed jumps (Davydov, 1970; Whitt, 2002) and linear fractional stable motion
(LFSM) for heavy-tailed jumps (Astrauskas, 1983; Kasahara andMaejima, 1988;Whitt, 2002). Letting T0 = 0, Tn = J1+· · ·+Jn
the time of the nth jump, and Nt = max{n : Tn ≤ t} the number of jumps by time t > 0, the scaling limit of the CTRW S(Nt)
is a FBM or LFSM subordinated to an inverse stable subordinator, which is connected to the local time of a strictly stable
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Lévy process (Meerschaert et al., 2008), or the supremum process of a spectrally negative stable Lévy process (Bingham,
1973). This extends the results of Meerschaert and Scheffler (2004) and Becker-Kern et al. (2004) to the case of dependent
jumps. We also discuss some interesting properties of these self-similar limit processes, and governing equations for their
probability densities.

2. Results

Let {Zn,−∞ < n <∞} denote IID random variables that belong to the strict domain of attraction of some strictly stable
law A with index 0 < α ≤ 2. This means that the sequence of partial sums P(n) = Z1 + · · · + Zn satisfies anP(n) ⇒ A for
some an > 0, see Feller (1971, p. 312–313) or Whitt (2002, p. 114–115). Here⇒ denotes convergence in distribution.
The particle jumps that we consider in this paper are given by the stationary linear process {Yn,−∞ < n <∞} defined

by Yn =
∑
∞

j=0 cjZn−j, where cj are real constants such that
∑
∞

j=0 |cj|
ρ < ∞ for some ρ ∈ (0, α). This condition ensures

that the series
∑
∞

j=0 cjZn−j converges in L
ρ(P) and almost surely (see Avram and Taqqu (1992)). The dependence structure

of the linear process {Yn,−∞ < n < ∞} relies on the sequence {cj}. For example, if E(Zn) = 0 and E(Z2n ) < ∞, then it
can be verified that

∑
∞

n=1 |E(Y0Yn)| < ∞ if
∑
∞

j=0 |cj| < ∞; and
∑
∞

n=1 |E(Y0Yn)| = ∞ if the real numbers cj eventually
have the same sign and

∑
∞

j=0 |cj| = ∞. In the literature, a second-order stationary process {Yn,−∞ < n <∞}with mean
0 is said to be short-range dependent if

∑
∞

n=1 |E(Y0Yn)| < ∞ and long-range dependent otherwise. Even though in this
paper we are primarily interested in particle jumps with heavy-tailed distributions and typically E(Y 2n ) = ∞, we will, by
analogy, call the linear process {Yn,−∞ < n <∞} short-range dependent if

∑
∞

j=0 |cj| <∞, and long-range dependent if∑
∞

j=0 |cj| = ∞.
Let Jn > 0 be IID waiting times that are independent of {Zn}, Tn = J1 + · · · + Jn the time of the nth particle jump, and

Nt = max{n : Tn ≤ t} the number of jumps by time t > 0. Let S(0) = 0 and S(n) = Y1 + · · · + Yn denote the location of
the particle after n jumps, so that the continuous time random walk (CTRW) S(Nt) gives the location of the particle at time
t > 0. Suppose that Jn belongs to the domain of attraction of some stable law D with index 0 < β < 1 and D > 0 almost
surely. Hence bnTn ⇒ D for some norming constants bn > 0. Let b(t) = b[t] and take b̃(t) an asymptotic inverse of the
regularly varying function 1/b(t), so that tb(b̃(t))→ 1 as t →∞ (Meerschaert and Scheffler, 2004).
Let {A(t), t ≥ 0} and {D(t), t ≥ 0} be strictly stable Lévy processes with A(1) = A,D(1) = D, respectively. Note that

{D(t), t ≥ 0} is a stable subordinator of index β , hence its sample functions are almost surely strictly increasing (Bertoin,
1996, p. 75). Therefore, the inverse or hitting time process of {D(t), t ≥ 0},

Et = inf{x > 0 : D(x) > t}, ∀t ≥ 0
is well defined and the sample function t 7→ Et is strictly increasing almost surely.
Our first result shows that the CTRW scaling limit in the case of short-range dependence is quite similar to the case of

independent jumps studied by Meerschaert and Scheffler (2004).

Theorem 2.1. Under the conditions of this section, suppose that 0 < α < 2, cj ≥ 0 and
∑
∞

j=0 c
ρ

j < ∞ for some ρ ∈ (0, α)
with ρ ≤ 1, and that one of the following holds:
(a) 0 < α ≤ 1; or
(b) cj = 0 for all but finitely many j; or
(c) 1 < α < 2, cj is monotone and

∑
∞

j=0 c
ρ

j <∞ for some ρ < 1.
Then we have

w−1a
[b̃(c)]S(Nct)⇒ A(Et) (2.1)

as c →∞ in the M1 topology on D([0,∞),R), wherew =
∑
j cj.

In view of Theorem 1 in Avram and Taqqu (1992), the convergence in (2.1) cannot be strengthened to the J1 topology.
Note that the processes {A(t), t ≥ 0} and {Et , t ≥ 0} are independent and self-similar. The latter means that, for every
constant c > 0

{A(ct), t ≥ 0} d= {c1/αA(t), t ≥ 0}
and

{Ect , t ≥ 0}
d
= {cβEt , t ≥ 0},

where d=means equality in all finite-dimensional distributions. It follows immediately that the scaling limit {A(Et), t ≥ 0}
in (2.1) is self-similar with index β/α. When 0 < β ≤ 1/2, the inner process Et in (2.1) is also the local time at zero of a
strictly stable Lévymotion (Meerschaert et al., 2008).When 1/2 ≤ β < 1, the inner process Et is also the supremumprocess
of a stable Lévy motion with index 1/β and no negative jumps (Bingham, 1973).
Let ∂βt g(t) denote the Caputo fractional derivative, the inverse Laplace transform of sβ g̃(s) − sβ−1g(0) where g̃(s) =∫
∞

0 e
−st g(t) dt is the usual Laplace transform of g . Let ∂α

±xf (x) denote the Liouville fractional derivative, the inverse Fourier
transform of (±ik)α f̂ (k), where f̂ (k) =

∫
∞

−∞
e−ikxf (x) ds is the usual Fourier transform. The stable random variable A(t) has
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a smooth density with Fourier transform e−tψ(k) where ψ(k) = a[p(ik)α + q(−ik)α] with 0 ≤ p, q ≤ 1 and p + q = 1
(Meerschaert and Scheffler, 2001). Then the limit A(Et) in (2.1) has a density h(x, t) that solves the fractional diffusion
equation ∂βt h = ap∂αx h+ aq∂

α
−xh, see Meerschaert and Scheffler (2004).

Next we consider the CTRW scaling limit for heavy-tailed particle jumps with long-range dependence. To simplify the
presentation, we assume an = n−1/α (domain of normal attraction) and power-law weights; namely cj ∼ c0jH−1−1/α as
j→∞, for some c0 > 0. Consequently, we have

∑
∞

j=0 |cj| <∞ if and only if 0 < H < 1/α. Hence, the case 0 < H < 1/α
means the stationary sequence {Yn} has short-range dependence, while the case 1/α < H < 1 means {Yn} has long-range
dependence. The scaling limit of CTRW with short-range dependence has been partially covered by Theorem 2.1. The rest
of the cases are treated in Theorems 2.2 and 2.3.
We will make use of the following definition. Given constants α ∈ (0, 2) and H ∈ (0, 1), the α-stable process

{Lα,H(t), t ∈ R} defined by

Lα,H(t) =
∫

R

[
(t − s)H−1/α+ − (−s)H−1/α+

]
A(ds) (2.2)

is called a linear fractional stablemotion (LFSM)with indicesα andH . In the above, a+ = max{0, a} for all a ∈ R, 0H−1/α = 0
and {A(t), t ∈ R} is a two-sided strictly stable Lévy process of index α with A(1) = A given at the beginning of Section 2
(namely, n−1/αP(n) ⇒ A as n → ∞). Because of this, {Lα,H(t), t ∈ R} defined by (2.2) differs from the LFSM in Theorem
4.7.2 in Whitt (2002) by a constant factor. Note that, when H = 1/α, Lα,H(t) = A(t) for all t ≥ 0. When H 6= 1/α, the
stochastic integral in (2.2) is well defined because∫

R

∣∣∣(t − s)H−1/α+ − (−s)H−1/α+

∣∣∣α ds <∞.
See Example 3.6.5 or Section 7.4 in Samorodnitsky and Taqqu (1994).
By (2.2), it can be verified that {Lα,H(t), t ∈ R} is H-self-similar with stationary increments (Samorodnitsky and Taqqu,

1994, Proposition 7.4.2). However, for H 6= 1/α, it does not have independent increments. LFSM is an α-stable analogue
of fractional Brownian motion and its probabilistic and statistical properties have been investigated by several authors. In
particular, it is known that
(i) If 1/α < H < 1 (this is possible only when 1 < α < 2), then the sample paths of {Lα,H(t), t ∈ R} are almost surely
continuous.

(ii) If 0 < H < 1/α, then the sample paths of {Lα,H(t), t ∈ R} are almost surely unbounded on every interval of positive
length.

We refer the reader to Theorem 12.4.1 and Example 10.2.5 in Samorodnitsky and Taqqu (1994) for more information.

Theorem 2.2. We assume the setting of this section. If 1 < α < 2, 1/α < H < 1, and cj ∼ c0jH−1−1/α as j → ∞ for some
c0 > 0, then as c →∞

[b̃(c)]−HS(Nct)⇒ K1 Lα,H(Et) (2.3)

in the J1 topology on D([0,∞),R), where K1 = c0α/(Hα − 1).

The topology on D([0,∞),R) in Theorem 2.2 is stronger than that in Theorem 2.1, thanks to the fact that Lα,H(t) is a.s.
continuous whenever 1/α < H < 1.
Observe that the case when 0 < H < 1/α and the constants cj (j ≥ 0) are not all non-negative is left uncovered by

Theorems 2.1 and 2.2. Because of Property (ii) of {Lα,H(t), t ∈ R}, the limiting process does not belong to the function space
D([0,∞),R). Nevertheless, we have the following theorem.

Theorem 2.3. We assume the setting of this section. If 0 < α < 2, 0 < H < 1/α, cj ∼ c0jH−1−1/α as j→∞ for some c0 > 0,
and

∑
∞

j=0 cj = 0, then

[b̃(c)]−HS(Nct)
f .d.
−→ K1 Lα,H(Et) (2.4)

as c →∞, where
f .d.
−→means convergence of all finite-dimensional distributions and K1 = c0α/(Hα − 1).

It is interesting to note that the constants in Theorems 2.2 and 2.3 are determined by c0, α and H in the same way. But
K1 is positive when 1/α < H < 1, and is negative when 0 < H < 1/α.
It follows from the self-similarity and the independence of {Lα,H(t), t ∈ R} and {E(t), t ≥ 0} that the scaling limits in

(2.3) and (2.4) are self-similar with index Hβ . When 1/α < H < 1, it can be seen that {Lα,H(Et), t ≥ 0} has continuous
sample functions almost surely. However, if 0 < H < 1/α, then {Lα,H(Et), t ≥ 0} is almost surely unbounded on every
interval of positive length. It would be interesting to further study the properties of the process {Lα,H(Et), t ≥ 0}.
We mention that both Theorems 2.2 and 2.3 can be extended to {Zn} in the strict domain of attraction of A and {cj}

regularly varying at∞ with index H − 1 − 1/α, using a slightly different normalization in (2.3) depending on an and the
probability tail of Zn, compare Astrauskas (1983).
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Finally we consider the case α = 2. If {A(t), t ∈ R} in (2.2) is replaced by ordinary two-sided Brownian motion, then
(2.2) defines a fractional Brownian motionWH = {WH(t), t ∈ R} on R of index H , which is a Gaussian process with mean
zero and covariance function

E[WH(t)WH(s)] =
1
2

[
|t|2H + |s|2H − |t − s|2H

]
.

Theorem 2.4 gives the CTRW scaling limit for light-tailed particle jumps with long-range dependence.

Theorem 2.4. We assume the setting of this section. If α = 2, E(Zn) = 0, E(Z2n ) < ∞,
∑
∞

j=0 c
2
j < ∞, Var(S(n)) = σ

2
n varies

regularly at∞with index 2H for some 0 < H < 1, and E
(
S(n)2ρ

)
≤ K2

[
E(S(n)2)

]ρ for some constants K2 > 0 and ρ > 1/H,
then as c →∞

σ−1
[b̃(c)]
S(Nct)⇒ WH(Et) (2.5)

in the J1 topology on D([0,∞),R).

Note that it is not difficult to provide examples of sequences of IID randomvariables {Zn} and real numbers {cj} that satisfy
the conditions of Theorem 2.4, see Davydov (1970) and Giraitis et al. (2003). It follows from the results of Taqqu (1975) that
the conclusion of Theorem 2.4 still holds if the linear process {Yn} is replaced by the stationary sequence {g(ξn)}, where {ξn}
is a stationary Gaussian sequence with mean 0, variance 1 and long-range dependence, and g ∈ L2(e−x

2/2dx) is a function
with Hermite rank 1.
Theorem 2.4 contains the case H = 1/2 whereWH(t) = A(t) is a standard Brownian motion. This includes the situation

of mean zero finite variance particle jumps, and heavy-tailed waiting times between jumps. In this case, the CTRW scaling
limit A(Et) has a density h(x, t) that solves the time-fractional diffusion equation ∂

β
t h = a ∂2x h, seeMeerschaert and Scheffler

(2004). Since {WH(ct), t ≥ 0}
d
= {cHWH(t), t ≥ 0}, the scaling limit in (2.5) is self-similar with index Hβ . Some results on

large deviation and sample path regularity have recently been obtained for {WH(Et), t ≥ 0} in Meerschaert et al. (2008).
In the case of finite mean waiting times, the CTRW scaling limit is essentially the same as for the underlying random

walk. If µ = E(Jn) < ∞, then µNt/t → 1 almost surely as t → ∞, and a simple argument along the lines of the proof of
Theorem 2.1 shows that w−1a[c]S(Nct) ⇒ A(t/µ) in the M1 topology on D([0,∞),R). Theorems 2.2–2.4 can be extended
similarly.
An easy argument with Fourier transforms shows that the density h(x, t) of Lα,H(t) solves ∂th = αHtαH−1[ap∂αx h +

aq∂α
−xh]. A similar argument shows that the density ofWH(t) solves ∂th = 2Ht

2H−1a∂2x h. An interesting open question is to
establish the governing equation for the CTRW scaling limit in (2.3) and (2.5). This is not as simple as replacing the first time
derivative by a fractional derivative in the governing equation for the outer process, since the t variable also appears on the
right-hand side, so that Theorem 3.1 of Baeumer and Meerschaert (2001) does not apply.

3. Proofs

The proofs in this section are based on invariance principles for stationary sequences with short- or long-range
dependence (see, for example,Whitt (2002)) and the CTRW limit theory developed inMeerschaert and Scheffler (2004). Due
to the non-Markovian nature of the CTRW scaling limits in this paper, standard subordination methods cannot be applied
directly. Insteadwe apply continuousmapping-type arguments to prove Theorems 2.1, 2.2 and 2.4. The proof of Theorem2.3
is quite different and relies on a criterion for the convergence of all finite-dimensional distributions of composite processes
established by Becker-Kern et al. (2004).
Recall that Jn > 0 are IID waiting times, Tn = J1 + · · · + Jn the time of the nth particle jump, and Nt = max{n : Tn ≤ t}

the number of jumps by time t > 0. Since Jn belongs to the domain of attraction of some stable law Dwith index 0 < β < 1
and D > 0 almost surely, with bnTn ⇒ D for some norming constants bn > 0, the sequence bn varies regularly with index
−1/β (see, e.g., Feller (1971)). Then the asymptotic inverse b̃(t) of 1/b varies regularly with index β , see Seneta (1976).
Recall that the stable Lévy motion {D(x), x ≥ 0}with D(1) = D is a stable subordinator of index β and thus is almost surely
strictly increasing (Bertoin, 1996, p. 75). Its inverse or hitting time process Et = inf{x > 0 : D(x) > t} is almost surely
strictly increasing with continuous sample paths, has moments of all orders, and its increments are neither stationary nor
independent (Meerschaert and Scheffler, 2004). Bingham (1971) shows that Et has a Mittag-Leffler distribution, and gives a
differential equation that governs its finite-dimensional distributions.

Proof of Theorem 2.1. Corollary 3.4 in Meerschaert and Scheffler (2004) shows that b̃(c)−1Nct ⇒ Et as c → ∞ in the J1
topology on D([0,∞), [0,∞)). Note that b̃(c) → ∞ as c → ∞ since this function is regularly varying at∞ with index
β > 0. Theorem4.7.1 inWhitt (2002) shows that anS(nt)⇒ wA(t) in theM1 topology onD([0,∞),R). Since the J1 topology
is stronger, and since the waiting times {Jn} are independent of {Yn}, we have(

a
[b̃(c)]S(b̃(c)t), b̃(c)

−1Nct
)
⇒ (A(t), Et)

in theM1 topology of the product space D([0,∞),R×[0,∞)). Note that this last statement also follows from Theorem 3.2
in Billingsley (1968).
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Since the process {Et , t ≥ 0} is almost surely strictly increasing and continuous, Theorem 13.2.4 in Whitt (2002) yields

a
[b̃(c)]S

(
b̃(c) · b̃(c)−1Nct

)
⇒ A(Et)

in theM1 topology on D([0,∞),R), which completes the proof. �

Proof of Theorem 2.2. Recall that b̃(c)−1Nct ⇒ Et in the J1 topology on D([0,∞), [0,∞)) (Meerschaert and Scheffler,
2004, Corollary 3.4). Theorem 4.7.2 in Whitt (2002), originally due to Astrauskas (1983), shows that n−HS(nt)⇒ K1 Lα,H(t)
in the J1 topology on D([0,∞),R), where K1 = c0α/(Hα − 1).
Since {Nt , t ≥ 0} is independent of {S(n), n ≥ 1}, we have

([b̃(c)]−HS(b̃(c)t), b̃(c)−1Nct)⇒ (K1 Lα,H(t), Et)

in the product space. Combining this with Theorem 13.2.4 in Whitt (2002) yields (2.5) in the M1 topology. Since both
processes {Lα,H(t), t ≥ 0} and {Et , t ≥ 0} are continuous, and the latter is strictly increasing, one can apply Theorem
13.3.1 in Whitt (2002) to strengthen the conclusion to convergence in the J1 topology. This proves Theorem 2.2. �

Proof of Theorem 2.3. It is sufficient to show that for all integersm ≥ 1, 0 < t1 < · · · < tm, we have

b̃(c)−H
(
S(Nct1), . . . , S(Nctm)

)
⇒ K1

(
Lα,H(Et1), . . . , Lα,H(Etm)

)
(3.1)

as c → ∞. For this purpose, we will make use of Proposition 4.1 in Becker-Kern et al. (2004), which provides a useful
criterion for the convergence of all finite-dimensional distributions of composite processes, and Corollary 3.3 in Kasahara
and Maejima (1988) which is concerned with convergence of finite-dimensional distributions of weighted partial sums of
IID random variables.
We will adopt some notation from Becker-Kern et al. (2004). For t = (t1, . . . , tm) and c > 0, let ρc := ρt

c denote
the distribution of the random vector b̃(c)−1 (Nct1 , . . . ,Nctm), and let ρ := ρt be the distribution of (Et1 , . . . , Etm). Since
b̃(c)−1Nct ⇒ Et in the J1 topology on D([0,∞), [0,∞)) (Meerschaert and Scheffler, 2004, Corollary 3.4), we have ρc ⇒ ρ
as c →∞.
It follows from the definition of {Yn} that, for every x ≥ 0, S(nx) can be rewritten as

S(nx) =
∞∑

j=−∞

(
[nx]−j∑
k=1−j

c̃k

)
Zj, (3.2)

where c̃k = ck if k ≥ 0 and c̃k = 0 if k < 0. Under the assumptions of Theorem2.3,wehave
∑
∞

k=−∞ |̃ck| <∞,
∑
∞

k=−∞ c̃k = 0
and

∞∑
k=n

c̃k ∼ c0
∞∑
k=n

kH−1/α−1 ∼ −
c0α
Hα − 1

nH−1/α

as n→∞. Thus, the conditions of Theorem 5.2 in Kasahara andMaejima (1988) are satisfied withψ(n) = nH−1/α , a = −K1
(recall that K1 = c0α/(Hα − 1)), b = 0 and A = 0. It follows that

n−H S(nx)
f .d.
−→ K1 Lα,H(x) as n→∞. (3.3)

For any x = (x1, . . . , xm) ∈ Rm
+
, let µc(x) be the distribution of b̃(c)−H

(
S(b̃(c)x1), . . . , S(b̃(c)xm)

)
and let ν(x) be the

distribution of K1
(
Lα,H(x1), . . . , Lα,H(xm)

)
. Then for every c > 0, the mapping x 7→ µc(x) is weakly measurable. Since the

linear fractional stable motion {Lα,H(t), t ≥ 0} is stochastically continuous, the mapping x 7→ ν(x) is weakly continuous.
Moreover, it follows from (3.3) that, for every x ∈ Rm

+
, µc(x)⇒ ν(x) as c →∞.

As in Becker-Kern et al. (2004), we apply a conditioning argument and the independence between the sequences {Yn}
and {Jn} to derive that the distribution of b̃(c)−H

(
S(Nct1), . . . , S(Nctm)

)
can be written as

∫
Rm
+

µc(x) dρc(x), which is a
probability measure on Rm. Similarly, the distribution of the random vector K1

(
Lα,H(Et1), . . . , Lα,H(Etm)

)
can be written

as
∫

Rm
+

ν(x) dρ(x).
Therefore, (3.1) follows from Proposition 4.1 in Becker-Kern et al. (2004) once we verify that, for every x ∈ (0,∞)m,

µc(x(c))⇒ ν(x) for every sequence {x(c)} ⊂ (0,∞)m that satisfies x(c) → x as c →∞.
The last statement is equivalent to

c−H
(
S(cx(c)1 ), . . . , S(cx

(c)
m )
)
⇒ K1

(
Lα,H(x1), . . . , Lα,H(xm)

)
(3.4)

whenever x(c) → x as c → ∞. This is stronger than (3.3), where the fixed time-instants 0 < x1 < x2 < · · · < xm on the
left-hand side are replaced now by x(c)1 , . . . , x

(c)
m . Our proof of (3.4) is a modification of the proof of Theorem 5.2 in Kasahara

and Maejima (1988).
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To this end, we define the step function r 7→ Ac(r) on R by

Ac(r) =


c−1/α

[cr]∑
j=1

Zj if r > 0,

c−1/α
0∑

j=[cr]

Zj if r ≤ 0.

(3.5)

In the above, we use the convention
∑0
j=1 Zj = 0. Then it is known that, as c → ∞, Ac(r) ⇒ A(r) in the J1 topology on

D(R,R). This follows, for example, from Theorem 4.5.3 inWhitt (2002). For any function g onR, as in Kasahara andMaejima
(1988, p. 88), we define∫

∞

−∞

g(r) dAc(r) :=
1
c1/α

∞∑
j=−∞

g
(
j
c

)
Zj. (3.6)

By using (3.2), (3.5) and (3.6) we can rewrite c−HS(cx) (x > 0 and c > 0) as

c−HS(cx) =
1
c1/α

∞∑
j=−∞

1
cH−1/α

(
[cx]−j∑
k=1−j

c̃k

)
Zj

=

∫
R
gc(x, r) dAc(r), (3.7)

where the integrand gc(x, r) (x > 0, r ∈ R) is given by

gc(x, r) =
1

cH−1/α

[cx]−[cr]∑
k=1−[cr]

c̃k

=
1

cH−1/α

(
∞∑

k=−[cr]+1

c̃k −
∞∑

k=[cx]−[cr]+1

c̃k

)
:= g̃c(0, r)− g̃c(x, r). (3.8)

In the above, we have used the fact that
∑
∞

j=−∞ |̃cj| <∞ to derive the second equality.
It follows from (3.7) that (3.4) can be rewritten as{∫

R
gc(x

(c)
i , r) dAc(r)

}m
i=1
⇒

{
K1

∫
R
g(xi, r) dA(r)

}m
i=1
, (3.9)

where g(x, r) = (x− r)H−1/α+ − (−r)H−1/α+ is the function in (2.2).
Now let us fix x = (x1, . . . , xm) ∈ (0,∞)m and an arbitrary sequence {x(c)} ⊂ (0,∞)m that satisfies x(c) → x as c →∞.

Without loss of generality, we assume |xi− x
(c)
i | is sufficiently small. By Corollary 3.3 in Kasahara andMaejima (1988) (with

f in(·) being taken as gc(x
(c)
i , ·)), the convergence in (3.9) will follow once we verify that for every 1 ≤ i ≤ m the following

conditions are satisfied:

(A1)′ for dr-almost every r ∈ R,

gc(x
(c)
i , rc) −→ K1 g(xi, r) (3.10)

whenever rc → r as c →∞.
(A2)′ for every T > 0, there exists a constant γ > α such that

sup
c≥1

∫
|r|≤T

∣∣∣gc(x(c)i , r)∣∣∣γ dλc(r) <∞, (3.11)

where λc(r) = [cr]/c , and
(A3)′ there exists a constant ε > 0 such that

lim
T→∞

lim sup
c→∞

∫
|r|>T

{∣∣∣gc(x(c)i , r)∣∣∣α−ε + ∣∣∣gc(x(c)i , r)∣∣∣α+ε} dλc(r) = 0. (3.12)

For simplicity of notation, we will from now on omit the subscript i. To verify Condition (A1)′, note that by the property
of {ck}, we have
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lim
c→∞

1
cH−1/α

∞∑
k=[cr]+1

c̃k =
{
−K1rH−1/α if r > 0,
0 if r ≤ 0, (3.13)

and the convergence is uniform in r on every compact set in R \ {0}. For any x ∈ R+ and r ∈ R, we may distinguish three
cases r < 0, 0 < r < x and r > x. By applying (3.13) to (3.8) we derive that, as c → ∞, gc(x, r) → g(x, r) uniformly in
(x, r) on every compact set in {(x, r) : x ∈ R+, r ∈ R \ {0, x}}. This implies that gc(x(c), rc)→ g(x, r) whenever r 6∈ {0, x}
and rc → r as c →∞. Hence (A1)′ is satisfied.
To verify Condition (A2)′, we choose and fix a constant γ > α such that γ (H − 1/α) > −1, say, α < γ <

min{2, α/(1− Hα)}. For any x ≥ 0, consider the integral∫
|r|≤T
|̃gc(x, r)|γ dλc(r) =

∫
|r|≤T

∣∣∣∣∣ 1
cH−1/α

∞∑
k=[cx]−[cr]+1

c̃k

∣∣∣∣∣
γ

dλc(r)

=

∑
|j|≤cT

1
cγ (H−1/α)+1

∣∣∣∣∣ ∞∑
k=[cx]−j+1

c̃k

∣∣∣∣∣
γ

. (3.14)

Let N > 1 be a constant such that |ck| ≤ 2c0kH−1/α−1 for all k ≥ N . We split the summation on the right-hand side of (3.14)
according to whether [cx] − j ≤ N or [cx] − j > N . Thanks to the fact that

∑
k c̃k = 0 we have∑

|j|≤cT ,[cx]−j≤N

1
cγ (H−1/α)+1

∣∣∣∣∣ ∞∑
k=[cx]−j+1

c̃k

∣∣∣∣∣
γ

≤
K3

cγ (H−1/α)+1
(3.15)

for some finite constant K3 > 0 which is independent of x and c. In the above we have also used the fact that there are at
most N + 1 non-zero terms in the summation in j.
On the other hand, we have∑
|j|≤cT ,[cx]−j>N

1
cγ (H−1/α)+1

∣∣∣∣∣ ∞∑
k=[cx]−j+1

c̃k

∣∣∣∣∣
γ

≤ K4
∑

|j|≤cT ,[cx]−j>N

([x] − [j/c])γ (H−1/α)

c

≤ K5

∫
|r|≤T
|x− r|γ (H−1/α) dr (3.16)

for some finite constants K4, K5 > 0 which are independent of x and c. Note that the last integral is convergent because
γ (H − 1/α) > −1. Combining (3.15) and (3.16) yields that for all x ≥ 0∫

|r|≤T
|̃gc(x, r)|γ dλc(r) ≤

K3
cγ (H−1/α)+1

+ K5

∫
|r|≤T
|x− r|γ (H−1/α) dr. (3.17)

Thanks to (3.8) and the cτ -inequality [(a+ b)τ ≤ max(1, 2τ−1)(aτ + bτ )], we have

|gc(x, r)|γ ≤ max{1, 2γ−1}
(
|̃gc(0, r)|γ + |̃gc(x, r)|γ

)
. (3.18)

It follows from (3.17) and (3.18) that for every constant R > 0, all x ∈ [0, R] and all c ≥ 1∫
|r|≤T
|gc(x, r)|γ dλc(r) ≤

4K3
cγ (H−1/α)+1

+ 4K5

∫
|r|≤T
|x− r|γ (H−1/α) dr

≤ 4K3 + K6, (3.19)

where we have use the fact that γ < 2 and where K6 > 0 is a finite constant which depends only on H, α, γ , R and T . Hence
(A2)′ follows from (3.19).
The verification of (A3)′ is similar to the above, but we will not consider g̃c(0, r) and g̃c(x, r) in (3.8) separately. We

choose and fix a constant ε > 0 such that (H − 1 − 1/α)(α − ε) < −1. This is possible because 0 < H < 1. Let x > 0 be
fixed. Then for all T and c sufficiently large (say, T > x), we use (3.8) and our assumption on {cj} to derive that∫

|r|>T
|gc(x, r)|α±ε dλc(r) ≤

∑
|j|>cT

1
c(α±ε)(H−1/α)+1

∣∣∣∣∣ [cx]−j∑
k=1−j

c̃k

∣∣∣∣∣
α±ε

≤

∑
j<−cT

(2c0)α±ε

c(α±ε)(H−1/α)+1

∣∣∣∣∣ [cx]−j∑
k=1−j

kH−1−1/α
∣∣∣∣∣
α±ε

≤ K7

∫
−T

−∞

[
(x− r)H−1/α − (−r)H−1/α

]α±ε
dr, (3.20)
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where K7 > 0 is a finite constant that is independent of x and c. In the above we have used the fact that c̃k = 0 for all k < 0.
Thanks to our choice of ε > 0, we can verify directly that

lim
T→∞

∫
−T

−∞

[
(x− r)H−1/α − (−r)H−1/α

]α±ε
dr = 0. (3.21)

Therefore, condition (A3)′ follows from (3.20) and (3.21). This finishes the proof of Theorem 2.3. �

Finally we prove Theorem 2.4.

Proof of Theorem 2.4. Recall that b̃(c)−1Nct ⇒ Et in the J1 topology (Meerschaert and Scheffler, 2004, Corollary 3.4).
Theorem 4.6.1 in Whitt (2002) shows that, as n → ∞, σ−1n S(nt) ⇒ WH(t) in the J1 topology on D([0,∞),R). This result
is originally due to Davydov (1970), see also Giraitis et al. (2003, p. 276). Since the sequence {Jn} is independent of {Yn}, we
have

(
σ−1
[b̃(c)]
S(b̃(c)t), b̃(c)−1Nct

)
⇒ (WH(t), Et) in the product space, and then continuous mapping along with Theorem

13.3.1 in Whitt (2002) yields (2.5) in the J1 topology. �

4. Discussion

Self-similar processes arise naturally in limit theorems of random walks and other stochastic processes, and they have
been applied to model various phenomena in a wide range of scientific areas including telecommunications, turbulence,
image processing and finance (see, e.g., Embrechts andMaejima (2002)). Themost prominent example is fractional Brownian
motion (FBM). However, many real data sets are non-Gaussian, which motivates the development of alternative models.
Many authors have constructed and investigated various classes of non-Gaussian self-similar processes. Samorodnitsky
and Taqqu (1994) provide a systematic account on self-similar stable processes with stationary increments. Burdzy (1993,
1994) introduced iterated Brownian motion (IBM) which replaces the time parameter of a two-sided Brownian motion by an
independent one-dimensional Brownian motion B = {Bt , t ≥ 0}. In this paper we have shown that the limit processes of
CTRWs with dependent jumps form a wide class of self-similar processes which are different from the existing ones.
When 0 < β ≤ 1/2, the inner process Et in (2.1) or (2.5) is also the local time at zero Lt of a stable Lévy process, and the

iterated process {WH(Lt), t ≥ 0} is called a local time fractional Brownianmotion (LTFBM) inMeerschaert et al. (2008), a self-
similar process with index βH and continuous sample paths. Large deviation and modulus of continuity results for LTFBM
are developed in a companion paper Meerschaert et al. (2008). Strassen-type law of the iterated logarithm has been proved
by Csáki et al. (1997) for local time Brownianmotion (LTBM, the caseH = 1/2). It is interesting to note that our Theorem 2.4
shows that the ‘‘randomly-stopped stationary sequence’’ {(Yn : n ≤ Nt), t ≥ 0} belongs to the ‘‘domain of attraction’’ of
{WH(Lt), t ≥ 0} for all H ∈ (0, 1). This theorem provides a physical interpretation of the process {WH(Lt), t ≥ 0}.
One interesting property of LTBM is that its increments are uncorrelated (this follows by a simple conditioning argument),

but not independent. It has long been recognized that price returns are essentially uncorrelated, but not independent (Baillie
et al., 1996;Mandelbrot, 1963). Hence LTBM, the scaling limit of a CTRWwith (weakly) correlated price jumps,may be useful
tomodel financial price returns. This approach could provide an interesting alternative to the subordinated variance-Gamma
model of Madan and Seneta (1990), Carr et al. (2002) or the FATGBMmodel of Heyde (2002).
LTBM has a close connection to fractional partial differential equations. Meerschaert and Scheffler (2004) and Baeumer

and Meerschaert (2001) showed that the probability density u(x, t) of LTBM solves the fractional Cauchy problem

∂
β
t u(t, x) = ∂

2
x u(t, x). (4.1)

Baeumer et al. (in press) further showed that the density of the iterated Brownian motion solves the same equation (4.1).
As we mentioned at the end of Section 2, the connection between the limit processes in this paper and fractional partial
differential equations remains to be investigated.
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