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a b s t r a c t

Coupled continuous time random walks (CTRWs) model normal and anomalous diffusion
of random walkers by taking the sum of random jump lengths dependent on the random
waiting times immediately preceding each jump. They are used to simulate diffusion-
like processes in econophysics such as stock market fluctuations, where jumps represent
financial market microstructure like log returns. In this and many other applications,
the magnitude of the largest observations (e.g. a stock market crash) is of considerable
importance in quantifying risk. We use a stochastic process called a coupled continuous
time random maxima (CTRM) to determine the density governing the maximum jump
length of a particle undergoing a CTRW. CTRMare similar to continuous time randomwalks
but track maxima instead of sums. The many ways in which observations can depend on
waiting times can produce an equally large number of CTRM governing density shapes.We
compare densities governing coupled CTRM with their uncoupled counterparts for three
simple observation/wait dependence structures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Random walks have long been used to model behavior of random diffusive-type processes in finance and econophysics
[1]. Price fluctuations are likened to particles undergoing random, though well-behaved, motions and long term market
behavior is represented by sums of particle jumps. Continuous time random walks (CTRWs) generalize classical models
by permitting particle jumps and waiting times between jumps to have arbitrary probability densities and allowing
representation of anomalous (super- or sub-diffusive) behavior. Thus, CTRWs have been used to reproduce the behavior of
price fluctuations in financial markets [2–6]. Recently, coupled CTRWs, in which the size of an observation is dependent on
the length of the preceding waiting period, have been used to describe movement of stock or share prices [7–10], electricity
markets [11], currency exchange [12], and other types of financial data behavior [13]. If the practitioner is interested in the
largest price shock expected in a given interval rather than long term evolution of prices, then extreme value models are
appropriate tools. Extreme events in financial time series have been characterized using the mean first-passage time and
mean exit time of a CTRW [14]. We seek the density governing the maximum price fluctuation.

Classical extreme value models describe the density governing the largest of independent and identically distributed
(i.i.d.) random observations with arbitrary probability density, independent of fixed-length or exponentially distributed
interarrivals. If observations are particle jumps, then these models describe recurrence of the jumps of a particle
undergoing a randomwalk. A generalization to accommodate an arbitrary waiting time between observations was recently
accomplished in Ref. [15]. In this work, we extend that model to allow the distribution of an observation to depend on
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the waiting time before that observation. The purpose of this generalization is to estimate recurrence intervals for random
phenomena that are well modeled by coupled CTRWs. Continuous time random maxima (CTRM) models are stochastic
processes that track the largest observation in a series of events separated by random waiting times. They can be used to
forecast the largest particle observation or price jump with time.

2. Coupled continuous time randommaxima

Our goal is to estimate the density governing the maximum jump length that a particle undergoing a CTRW with i.i.d.
jumps dependent on the i.i.d. waiting times that separate them.We call the space–time stochastic process {Mt}t≥0 a coupled
continuous time random maxima (CTRM) because its form is similar to a CTRW but it tracks jump maxima instead of sums.
Let Jn = i.i.d. duration of interarrivals with density ψ(t), Xn = i.i.d. event magnitudes, Tn = J1 + J2 + · · · + Jn = time
of the nth event, and Nt = max{n : Tn ≤ t} = number of events by time t . To be complete, we also set T0 = 0 and
M0 = −∞. Further let M(n) = max(X1, X2, . . . , Xn) = maximum of the first n observed events and Mt = M(Nt) =

max(X1, X2, . . . , XNt ) =maximumobserved event by time t . The joint density of the coupledwaiting time/eventmagnitudes
is denoted (Xi, Ji) ∼ f (x, t). Thewaiting timedensity is the timemarginal of the transition densityψ(t) =


f (x, t) dx. Using

the inverse relationship between the time until the nth event and the number of events by time t{Nt ≥ n} = {Tn ≤ t} and
the fact that the time between events n and n + 1 is the n + 1st wait Jn+1 we find

P(M(Nt) ≤ x) =

∞−
n=0

P(M(n) ≤ x,Nt = n)

=

∞−
n=0

[P(M(n) ≤ x,Nt ≥ n)− P(M(n) ≤ x,Nt ≥ n + 1)]

=

∞−
n=0

[P(M(n) ≤ x, Tn ≤ t)− P(M(n) ≤ x, Tn+1 ≤ t)]

=

∞−
n=0

[P(M(n) ≤ x, Tn ≤ t)− P(M(n) ≤ x, Tn + Jn+1 ≤ t)]

=

∞−
n=0

[
P(M(n) ≤ x, Tn ≤ t)−

∫
∞

0
P(M(n) ≤ x, Tn ≤ t − τ)ψ(τ) dτ

]
, (1)

where the integral in the last line of (1) includes the probability of all possible waiting times between jumps n and n + 1.
Note that the distribution of M(Nt) has an atom at x = −∞, equal to the probability P(Nt = 0) = P(J1 > t) that the first
observation has not yet occurred by time t . Let F(x, t) =

 x
−∞

f (u, t) du and define the CDF–Laplace (C–L) transform of f to
be

f̄ (x, s) =

∫
∞

0
e−stF(x, t) dt = E[e−sJ I(X ≤ x)],

which at x = ∞ is the Laplace transform of ψ and at s = 0 is the CDF of X . While the density of a sum is the convolution
(product in transform space) of the individual summand densities, the cumulative distribution function (cdf) governing the
maxima of a set of i.i.d. random variables is the product of the individual cdfs. This is reflected by the fact that the density
of (M(n), Tn) has C–L transform

E[e−sTn I(Mn ≤ x)] = E


n∏

i=1

e−sTi I(Mi ≤ x)


=

n∏
i=1

E[e−sTi I(Mi ≤ x)] = f̄ (x, s)n

which is also true for n = 0.
Next, integrate by parts to get∫

∞

0
e−stP(M(n) ≤ x, Tn ≤ t) dt = E

[∫
∞

0
e−st I(M(n) ≤ x, Tn ≤ t) dt

]
= E

[
s−1

∫
∞

0
e−st I(M(n) ≤ x|Tn = t)ψ(t) dt

]
= s−1

∫
∞

0
E

I(M(n) ≤ x)e−sTn |Tn = t


ψ(t) dt

= s−1E

I(M(n) ≤ x)e−sTn


= s−1 f̄ (x, s)n (2)
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by conditioning on Tn = t . LetM(x, t) = P(M(Nt) ≤ x) and take Laplace transforms in (1) to get

M̃(x, s) =

∞−
n=0


s−1 f̄ (x, s)n − s−1 f̄ (x, s)nψ̃(s)


=

1 − ψ̃(s)
s

1
1 − f̄ (x, s)

, (3)

since
∑

∞

i=0 r
i
= 1/(1 − r), provided that |r| < 1. Multiplying both sides of (3) by 1 − f̄ (x, s) and inverting the Laplace

transform yields that

M(x, t)−

∫ t

0
F(x, t − τ)M(x, τ ) dτ =

∫
∞

t
ψ(τ) dτ , (4)

and therefore for each x,M(x, t) is the solution of a Volterra integral equation (4) of the second kind [16].
This master equation for coupled CTRM reduces to the master equation for uncoupled CTRM when event magnitudes

with distribution function Fe(x) and interarrivals are uncorrelated so that F̄(x, s) = Fe(x)ψ̃(s) [15]:

L[P(M(Nt) ≤ x)] =
1 − ψ̃(s)

s
1

1 − Fe(x)ψ̃(s)
(5)

or

M(x, t)− Fe(x)
∫ t

0
ψ(t − τ)M(x, τ ) dτ =

∫
∞

t
ψ(τ) dτ . (6)

Solutions to uncoupled CTRMwith Poissonian interarrivals are exactly solvable, regardless of event magnitude distribu-
tion Fe(x). In these cases, classical extreme value distributions (Gumbel and Frechet) arise in the scaling limit depending on
the tail behavior of Fe(x). If interarrivals are heavy-tailed and independent of event magnitude, the densities governing the
largest events can be calculated by transforming classical extreme value densities with a subordination integral [15].

3. Examples

Here we demonstrate the effect of a coupled wait/observation density on the probability distribution function (pdf) of
themaxima predicted by the CTRMmodel, where observationsmay represent financial returns or actuarial claims. Coupling
combinations are unlimited. If the Laplace transform in (3) is knownexactly one cannumerically invert the Laplace transform
directly. In general, the densities governing themaximumvalue (Eq. (4)) do not exist in closed form and have to be computed
numerically. Numerical techniques for solving Volterra integral equations will give good approximations to the solution.
Here,weuse a basic steppingmethod to generate densities (Appendix); formore refinednumericalmethods, see for example
Ref. [17].

3.1. Exponential waiting times and jump distributions

Example 1. Here we assign an exponential distribution with mean 1/λt = 10 to the waiting times Ji between observations.
We also assign the same distribution, exponential with mean 1/λx = 10, to the observations Yi that occur at the end of
each waiting time. We compare the pdf of the maximum observation in two very different cases: (a) observations Yi are
independent of waiting times Ji; and (b) observations are coupled to length of the waiting times by Yi = Ji. Since Ji are
exponential,Nt has a Poisson distributionwithmeanλt t in this example. Then case (a) represents themaximumobservation,
M(Nt), for a compound Poisson process with exponential jumps. Since Yi has exponential tails, the pdf ofM(Nt) is governed
at late time by a Gumbel density [18]. In fact, for x ≥ 0 we have

P(M(Nt) ≤ x) = E(P(M(Nt) ≤ x|Nt))

=

∞−
n=0

P(M(Nt) ≤ x|Nt = n)P(Nt = n)

=

∞−
n=0

P(Mn ≤ x)P(Nt = n)

=

∞−
n=0

(1 − e−λxx)ne−λt t (λt t)
n

n!

= e−λt t
∞−
n=0

[(λt t)(1 − e−λxx)]n

n!

= e−λt te(λt t)(1−e−λxx)

= e−λt te−λxx
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Fig. 1. The density governingmaximumobservation size at time=100 for a CTRMwith exponential observation length equal to the preceding independent
exponential (λ = 1/10)waiting times (solid line) has thinner tails and a higher peak than the density for the analogous uncoupled model (dashed line).

which is exactly the Gumbel formula. If x ≤ 0 then we have P(M(Nt) ≤ x) = e−λt t sinceM(Nt) = −∞when Nt = 0, which
happens with probability P(J1 > t) = e−λt t in this example. The only difference between the Gumbel and the pdf ofM(Nt)
in this example is that the probability assigned to x < 0 under the Gumbel pdf is concentrated at x = −∞ in the pdf of
M(Nt). Since this probability tends to zero as t increases, the asymptotic distribution ofM(Nt) is exactly Gumbel.

Fig. 1 shows that pdf of the largest observation at t = 100. The coupled pdf has thinner tails and higher peak than the
uncoupled model, reflecting the decreased probability of large or small observations when event magnitude is tied to the
preceding waiting time. The atom P(J1 > 100) = e−10 is negligible in this case.

Example 2. Now suppose that the waiting times Ji between observations have a standard Pareto distribution with tail
parameter β = 0.7: P(Ji > t) = (1 + t)−0.7 for t > 0. As in Example 1, we compare pdfs that arise from the CTRM model
if: (a) observations Yi have Pareto (β = 0.7) distribution independent from that of the waiting times; and (b) observations
Yi are equal to the preceding waiting time Ji. Fig. 2 compares the pdf for each case at time t = 100. Both densities have a
peak at zero. The density for the uncoupled CTRM decreases monotonically from the peak at zero, following the decay of the
observation density. In comparison, the coupled CTRM density is bimodal.

Example 3. The evolution of LIFFE bond future prices was modeled in Ref. [7] using a coupled CTRW for the tick-by-tick
data: the early waiting times between trades can be fit a Pareto distribution with β = 0.74 and C = 0.061, using the Hill
estimator [19]. The corresponding log returns can be modeled by

Yi = J1/2i Zi (7)

where Zi are normal with mean zero and standard deviation 0.000040, independent of the waits Ji. This implies that the log
returns are drawn from a mean zero Gaussian distribution with variance proportional to the preceding waiting time. This
coupling, originally proposed by Shlesinger [20], provides that large observations tend to follow long waiting times, which
also controls the rate Yi/Ji of price change. Fig. 3 compares the density governing themaxima under thismodel (solid line) to
the uncoupled model (dotted line) with returns of the form Yi = P1/2

i Zi, where Pi is independent of Ji, with the same Pareto
distribution. The independence of Pi and Ji, leading to price returns that are uncoupled fromwaiting times, is the only change
from the coupled model. Although the graphs appear similar, the probability of a log return greater than 0.001 during the
first 500 s of trading is 1.8% in the coupled model, versus 11.2% in the uncoupled model.

4. Discussion

Coupling of jump and waiting time densities in a CTRW significantly alters the extremal behavior. The coupled CTRM
framework developed in this paper describes the maximum observation in a coupled CTRW. This coupling can significantly
affect the pdf of the maximum jump over a given time interval. An example concerning LIFFE bond futures illustrates the
importance of coupling. In applications to finance, it is sometimes true that the coupling disappears in the long-time limit.
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Fig. 2. The density governing maximum observation size at time = 100 for a CTRM with Pareto observations equal to the preceding independent Pareto
(β = 0.7)waiting times (solid line) is bimodal and has a thinner tail than the density for the analogous uncoupled model (dashed line).

Fig. 3. Comparison of models describing the evolution of LIFFE bond future prices: density of maximum log return by time t = 500 s for a coupled CTRM
with Pareto waits J and log returns Y = J1/2Z where Z is normal vs. the same density for an uncoupled CTRM with Y = P1/2Z where P is independent of
J with the same Pareto distribution. The probability of experiencing a log return greater than 0.001 during the first 500 s of trading is given by the area
under the curve to the right of the arrow in each case.

Thiswas the casewith tick-by-tick data onGeneral Electric stock examined [7]. Although the log returns Yi andwaiting times
Ji show significant dependence, the coupling disappears in the long-time limit. This can only happen when large returns
are correlated with short waiting times, and vice versa. In this case, the maximum can be characterized using traditional
extreme value theory [21–23]. But for strongly coupled CTRW (e.g., when large jumps are correlatedwith longwaiting times)
the coupled CTRM presents a significant improvement over traditional methods. We note that some underlying theory for
coupled CTRMwas already present in the work of Silvestrov and Teugels [24] and Pancheva et al. [25]. The CTRM framework
parallels that of the well known CTRW. Thus, further development for models that use alternate methods of coupling (e.g.
copulas, see Ref. [26]) should be straightforward.

As a specific example of the many, diverse applications of the CTRM framework, this paper presents an application to
finance, based on a model from Ref. [7]. The jumps Yi are log returns of a LIFFE bond future, and the waiting times Ji are the
intervals between trades. Then Nt is the number of trades by time t > 0,M(Nt) is the largest positive log return by time
t , and the CTRM quantifies the risk (or opportunity) of a large price jump in the interval (0, t). It is clear from Fig. 3 that
coupling can significantly decrease this risk. For this reason, ignoring the coupling can lead to a seriously deficient strategy
for assessing the chance of a large price changes, which is in fact considerably less than the uncoupled model suggests.
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5. Conclusions

Inmany applications,magnitude of the largest event and estimates of their recurrence are central to risk analysis. Coupled
CTRMs are randomwalks in space–time that quantify likelihood of the largest observations in a given interval for processes
whose evolutions arewell represented by coupled CTRWs. This paper computes the exact pdf of the CTRM in terms of Laplace
transforms, and develops limit theory to describe the approximate late-time pdf.
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Appendix. Numerical approximation of Volterra equations

In order to approximate the solution to (4), we approximated the convolution integral using Simpson’s rule; i.e. for a
given time step dt and t ≈ n dt ,∫ t

0
F(x, t − τ)M(x, τ ) dτ ≈ dt

n−1−
i=1

F(x, (n − i) dt)M(x, i dt)+
dt
2
F(x, n dt)M(x, 0)+

dt
2
F(x, 0)M(x, n dt). (8)

Hence we step by approximatingM(x, (n + 1) dt)withMn+1(x) satisfying

Mn+1(x) = dt
n−

i=1

F(x, (n − i) dt)Mi(x)+
dt
2
F(x, n dt)M0(x)+

dt
2
F(x, 0)Mn+1(x)+

∫
∞

(n+1)dt
ψ(τ) dτ , (9)

or

Mn+1(x) =


dt

n−
i=1

F(x, (n − i) dt)Mi(x)+
dt
2
F(x, n dt)M0(x)+

∫
∞

(n+1)dt
ψ(τ) dτ


1 −

dt
2
F(x, 0)


. (10)

The density ofM with respect to x needed for the figures can then be obtained by (central) differencing in x.
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