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Continuous time random walks model anomalous diffusion. Coupling allows the magnitude of particle
jumps to depend on the waiting time between jumps. Governing equations for the long-time scaling limits of
these models are found to have fractional powers of coupled space and time differential operators. Explicit
solutions and scaling properties are presented for these equations, which can be used to model flow in porous
media and other physical systems.
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[. INTRODUCTION relation between velocity and sorption strength is either mea-
sured or assumed for many pollutants, including organic sol-
The scaling limit of a random walk often generates a gov-vents and radionuclidg22].
erning equation that is extremely useful, since it can be Space-time coupling blends subdiffusive and superdiffu-
solved in a variety of boundary and initial value problems.sive effects, resulting in a different kind of limiting process
The simplest random walk converges to the familiar Brown-governed by a model equation involving coupled space-time
ian motion with a second-order diffusion equation goVemingfractional derivatives. These equations are useful to model

the probabilistic particle location. However, when some offlOW in porous media and other physical systems character-

the moments of the jump size and/or waiting time diverge, 42€d Py @ link or coupling between the subdiffusive tenden-

Brownian motion is never reached. The diffusion is calledCies caused by particle sticking or trapping, and the superdif-

anomalous in this case, since the growth of the diffusion ma)f/uswe influence of very large particle jumps.

be slower or faster than predicted by Brownian motion. The
continuous time random wallCTRW) method|[1,2] allows Il. THE MASTER LIMIT EQUATION

Qeterminatiop pf' the Ii_miting processes When. .the 'particle Scaling limits and governing equations for CTRW can be
jumps have infinite varianc8—7] and/or the waiting times computed via the Montroll-Weismaster equatiori1,2,16.

between particle jumps have infinite mef@,7-10. When  a random waiting timeJ is followed by a particle jump of

the.jump sizgs and wgiting “”?es are independent, the 99%andom sizey, defining the randontransition vector (Y,J).
erning equation contains fractional-order space and/or tim

L0 L UMAqditional transitions are independent and identically dis-
derivatives[5,8,11-1%. The limit process may be superdif-

tributed, but eaclY andJ may depend on each other. The
fusive or subdiffusive. In this paper we specify the techniqugy asier equation y dep

for determining the limit process and the governing equation
for random walks, where the jump sizes and waiting times P(k,s)= 1—g(s) 1
are linked or coupled. We show that the governing equation ' s 1-p(k,s)
contains fractional powers of grouped space and time deriva-
tive operators and we compute the Green’s function solutiongives the Fourier-Laplace transform-¢k, t—s) of particle
where possible. density P(x,t) in terms of the joint probability density

In the coupled case, the waiting time between jumps afp(x,t) of (Y,J) and the marginal densitg(t)=fp(x,t)dx
fects the size of the subsequent jufi®y16]. These coupled Of the waiting timeJ. A simple uncoupled CTRW with finite
CTRW have been reported in a variety of physical systemgean waiting time and finite variance particle jumps has
[8,17). In hydrodynamics, the coupled motions have beerg(s)=1-s+o(s) and p(k,s)=[1-s+0(s)][1—k?
used to describe transport in chaofi8,19 and turbulent +o0(k?)] for smalls,k. Rescale in time and space by replac-
[20] flows, and flow confined to percolation networl@l].  ing s by cs andk by c*%, and substitute into Eq1). Then,
Long waiting times may be preferentially followed by small asc—0 the higher order terms vanish and
jumps for dissolved pollutants moving through aquifer mate-
rial, since clay particles tend to lower the velocity of mobile P(cY%,cs)—Q(k,s)=
water, and also have large surface charges that strongly sorb s+k?
charged or polar solutes for random amounts of time. A cor-

Inverting the Fourier-Laplace transform of the limit yields
Q(x,t) = (4mt) Y2 X* 50 the scaling limit of this CTRW
*Electronic address: mcubed@unr.edu is a classical Brownian motion. The limit satisfies (
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+k?)Q(k,9=1 and inverting yields the governing equation tion of Y givenJ=1. A heuristic link with the master equa-

(0l 9t— 51 9x?) Q(x,t) = 8(x) (t) for this diffusion. A useful
short-cut is to approximatg(s)~1—s and p(k,s)~1—s
—k? and ignore product terms in E@L), but one must bear

tion (1) can be obtained using(s)~1—s? and p(k,s)~1
—(k,s) for smalls,k in the appropriate space-time rescal-
ing. The Fourier-Laplace symbal(k,s) has a scaling prop-

in mind the proper rescaling in time and space that makesrty cy(k,s) = ¢(cYk,c#s), wherea= B/m is the tail pa-

these terms vanish. Infinite mean waiting times<(8<1)
and symmetric infinite variance jumps {Qx<<2) lead to
g(s)=1—s+o0(sP) and p(k,s)=[1—sP+o(s?)][1—|k|*
+0(|k|%)], and the proper rescaling=c#s and k=c/?k
leads to a scaling limitQ(k,s)=s#"1/(s?+|k|%), whose

rameter of thaunconditionaldistribution of the jump sizé.
Then Eq.(2) leads toQ(k,ct)=Q(c"™k,t), wherem= g/ «,
so this coupled CTRW model is subdiffusive for<1/2,
diffusive for m=1/2, and superdiffusive in the remaining
casem>1/2. We give some example immediately.

stochastic equivalent and fractional-order governing equation

are discussed in Reff7,13-19. This procedure, based on

the master equation, works well for uncoupled CTRWSs be-
cause the densitp(x,t) is a product of the independent

space and time marginals.

Ill. COUPLED GOVERNING EQUATIONS AND

SOLUTIONS

Shlesingeret al. [3] consider a coupled CTRW model,

Coupled CTRWs present a more difficult challenge, sincevhere particle jump siz&' is normal mean zero with vari-
the densityp(x,t) does not decompose into a product of the@nce 2 when the waiting timeJ=t. The master limit equa-
marginals, making the appropriate rescaling more subtle. Thon reveals the governing equation for the CTRW limit and

mathematical analysis in Ref23] resolves this difficulty
using operator stable limit theof4—24 for the joint (pos-
sibly dependentspace-time random vectoiY(J). The re-
sulting master limit equation

st

p(k,s)

gives the scaling limit of any coupled CTRW with infinite
mean waiting time (8:8<1). Inverting Eq.(2) leads to the
governing equation

Q(k,s)= 2)

t=A8

T(1-B) ®

d
w( Pt at)Q(X =00 F7=5

involving a coupled space-time fractional derivative opera-

tor. The Lery representatioi26] gives the Fourier-Laplace
symbol of this operator as
z//(k,s)=f f (1—e St ¢(x,t)dxdt (4)
0 —

in terms of the Ley density ¢(x,t) (also called the jump

intensity[27,28) of the space-time limit process. Assuming

that (Y,J) obeys a general limit theorem, the \Wyedensity
decomposes into

XD =t"Tf(t7"X) pa(1), )

where f(x) can be any probability density,d4(t)
=KpBt A 1is the Lavy density of theB-stable subordinator

(K is a constant andm> B/2 is the coupling parameter that

links the jump size and waiting time. Formu(d) is valid
when m> g, f(x) is symmetric, orfxf(x)dx=0. An ex-
tended form of Eq(4) applies in other casd23] and is not

listed here for brevity. For an uncoupled CTRW, a different

form (10) of the Levy density appliegshown in a later sec-
tion).

Many different coupled CTRW models converge to the

its explicit solution. Since the space-time limit of (J) only
depends on the tail behavior, any CTRW with a similar be-
havior will lead to the same limit. The conditional density of
Y given J=t is (4t) Y2 ¥M=t"Mf (M) with f(x)

= (4m) Y2e~x** and m=1/2. Using this form in Eq(5),
along with [3(1—e )¢, (t)dt=s? and f[f(x)]ze*kz,
the Levy representation(4) gives (k,s)=(s+k?)? in the
simplest cas&T'(1— B)=1. Here,a=23 and the uncondi-
tional distribution ofY is symmetrica stable. The coupling
produces a finite variance limit even though the individual
jumps have infinite variance. Formuld) gives the coupled
governing equation

&

B
E‘;) QX,1)=6(X) =77+

t=h
-

Inverting Eq.(2) using £[t91]=s"9T(q) gives

Q(x,t)=fot(47-ru)‘”ze‘le“”t‘lb(t‘lu)du, (6)

where b(u)=uf"}(1—u) "#IT(B)T'(1—B) is a beta den-
sity. The integral(6) is a mixture of Gaussian densities
whose random variance is governed hyBadensity. This
model is diffusive sincen=1/2, but the plume has a sharp
non-Gaussian peak at=0 (Fig. 1) due to the infinite mean
(B<1) waiting times. AsBT1 the particle location density
converges to the limitingg4=1) Gaussian cas@-ig. 2).
Shlesingeeet al.[3] also consider a more general coupled

CTRW model with f(x)=(4m) Y% *** and an arbitrary
coupling parametem> /2. Then a=B/m<2, and the

jump sizeY is tail equivalent to am-stable random variable.
In this case, similar calculatio3] give

w(k,S) = f:<1—e*3te*k2t2””>¢1<t>dt, @)

same limit, and every possible limit can be obtained using @hich cannot be written in closed form, but it is easy to

simple CTRW, where] has a stable density with Laplace verify directly thatQ(x,ct)=c "Q(c~

transformg(s)=e ~%” and the conditional density of given
J=tist M (t”™x), so thatf(x) is theconditionaldistribu-

Mx,t), showing that
this CTRW is subdiffusive fom<1/2, diffusive in the origi-
nal casem=1/2, and superdiffusive whem>1/2 [23].

060102-2



RAPID COMMUNICATIONS

GOVERNING EQUATIONS AND SOLUTIONS OF . .. PHSICAL REVIEW E 66, 060102ZR) (2002

1

0.8

0.6

Q0
Qx,t)

0.4

0.2

-4 -2 0 2 4 0.1 1 . 10 100
FIG. 3. Particle densitie®(x,t) for a coupled CTRW with (x)

FIG. 1. Particle densitieQ(x,t) in the coupled CTRW model  siandard Cauchy angl=1/2 in Eq.(9) retain the Cauchy power law
(6) with B=1/2 have sharp peaks at=0 due to infinite mean 4.

waiting times.

Here, the master limit equation provides analytical verifica- w(k,s)zf [1—e S (tY7k) ] ¢y (1) dt. (8)
tion of asymptotic results in Ref3]. 0
Another CTRW[29-31 considers a tight coupling with
|Y|=J, so thatf(x)=[&(x—1)+8(x+1)]/2, m=1, and
the tail parameter of is a= 3. The variablgY]| is « stable
but Y is not. Here, the [Dey density (5) is €(x,t)
=(1/2)[ 5(x—1t) + 6(x+1)]p4(t), the Fourier-Laplace sym-
bol (4) reduces toj(k,s) =[(s—ik)?+ (s+ik)?]/2, and Eq.

If f(x) is a y-stable density thefi(k)=e~ 2 with y,(k)
=Cp(—ik)”+C(1—p)(ik)? sof(t¥k)=e 2N Here,C
is a positive constant and<Op=<1 is the weight on forward
versus backward jump§.e., the skewne$s Then i(K,s)
=[s+ ¢,(k)]# and the governing equation for#1 is

. B _
(3) gives d Y 7 S(x)t A
g a_p;_(l—p)a — Q(X,t)zm,
. a)ﬁ+< p) a)f’ t 2500t F X (=)
gt ox gt ox Qb= raa-p)- in the simplest cas€I'(1—y)=1. Inverting Eq.(2) gives

t
— -1/ -1/ -1 -1
Sincem=1 this ballistic CTRW scales linearly with time Q(X,t)—fou YEFum M)t "b(t" u)duy, 9)

[31]. Recently, Barkaj32] computedQ(k,s) for this model

by completely different methods. That paper also developgyhere b(u)=uﬁ‘1(1—u)‘5/1“(,8)1“(1—,8) is a beta den-
exact preasymptotic CTRW solutions, investigates rates ofity. Equation(9) reduces to the forni6), when y=2 and
convergence 'to the Iong—time Iim'it, and discusses the probf(x):(4ﬁ)—1/2e—x2/4_ When y=1 and f(x)== (1
lem of obtaining governing equations in the case A<2. +x2)1 (a standard Cauchy formula (8) evaluates to

A wide variety of coupled governing equations can be, | ‘o (st k)2 d then Eq(9) sol
obtained and solved in a similar manner. If the coupling pa_lﬂ( ,8)=(s+k|)” and then Eq(9) solves

rameter m=1/y, then a=1yg, the Levy density €(x,t) J J?
=t~ Yt %) ¢,(t), and Eq.(4) leads to 7V~ 2

1

B 8

QU =805

using|k|= V= (—ik)Z. The overall shape is similar to Fig. 1
but in this case the diffusing particle density has power law
0.8 tails (Fig. 3.

0.6 IV. THE UNCOUPLED CASE

Q(x.b)

For uncoupled CTRW limits the coupled form of thevye
density(5) is replaced by

€(x,1)=8(x) p1(1) + 6(1) do(X), (10

since for independent components the vye density
must be concentrated on the coordinate §2333. Here,
the spatial component ¢,(x)=Cpax™ * *H(x)+C(1
—p)a|x| " * H(—x) is the Lavy density of anx-stable ran-
FIG. 2. Particle densitieQ(x,t) in the coupled CTRW model ~dom variablg23], andH(x) is the Heaviside indicator func-
(6) (shown here at=1) converge to a Gaussian g$1. tion. Now Eq.(4) gives y(k,s)=sP—(—ik)® for the com-
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pletely skewed casp=1, using the constant&I (1— 3) V. SUMMARY

=1 andCI'(1~-a)=1. Then Eq(3) becomes Coupled CTRWs link the waiting time between particle

P “« t= 4 jumps with the ensuing jump size. Operator stable central
ﬁ_ % Qx, )= 5(X)my limit theory for coupled space-time jump vectors leads to a
master limit equation(2) for the Fourier-Laplace transform
fof CTRW scaling limit densities. Inverting reveals governing
equations that employ coupled space-time fractional deriva-
. tive operators. Explicit analytical solutions and scaling prop-
N —1By,,—-1B-1 erties are available for many cases of interest. Coupled
Q(x,t)= Bfo q(x,t)g(tu"*)u du (11) space-time equations are useful models for flow in porous
media and other physical systems, where the delay between
to this fractional Cauchy problerf84] is the inverse [ey  particle jumps affects the subsequent jump magnitude.
transform[14] of the Green'’s function solutiog(x,t) to the
Cauchy problemaq(x,t)/dt=Lq(x,t) [13,15, where the ACKNOWLEDGMENTS
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which is equivalent to the fractional kinetic equation o
Zaslavsky[7,13]. The explicit solution
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