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Governing equations and solutions of anomalous random walk limits
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Continuous time random walks model anomalous diffusion. Coupling allows the magnitude of particle
jumps to depend on the waiting time between jumps. Governing equations for the long-time scaling limits of
these models are found to have fractional powers of coupled space and time differential operators. Explicit
solutions and scaling properties are presented for these equations, which can be used to model flow in porous
media and other physical systems.
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I. INTRODUCTION

The scaling limit of a random walk often generates a g
erning equation that is extremely useful, since it can
solved in a variety of boundary and initial value problem
The simplest random walk converges to the familiar Brow
ian motion with a second-order diffusion equation govern
the probabilistic particle location. However, when some
the moments of the jump size and/or waiting time diverge
Brownian motion is never reached. The diffusion is call
anomalous in this case, since the growth of the diffusion m
be slower or faster than predicted by Brownian motion. T
continuous time random walk~CTRW! method@1,2# allows
determination of the limiting processes when the parti
jumps have infinite variance@3–7# and/or the waiting times
between particle jumps have infinite mean@3,4,7–10#. When
the jump sizes and waiting times are independent, the g
erning equation contains fractional-order space and/or t
derivatives@5,8,11–15#. The limit process may be superdi
fusive or subdiffusive. In this paper we specify the techniq
for determining the limit process and the governing equat
for random walks, where the jump sizes and waiting tim
are linked or coupled. We show that the governing equa
contains fractional powers of grouped space and time der
tive operators and we compute the Green’s function soluti
where possible.

In the coupled case, the waiting time between jumps
fects the size of the subsequent jump@2,16#. These coupled
CTRW have been reported in a variety of physical syste
@8,17#. In hydrodynamics, the coupled motions have be
used to describe transport in chaotic@18,19# and turbulent
@20# flows, and flow confined to percolation networks@21#.
Long waiting times may be preferentially followed by sma
jumps for dissolved pollutants moving through aquifer ma
rial, since clay particles tend to lower the velocity of mob
water, and also have large surface charges that strongly
charged or polar solutes for random amounts of time. A c
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relation between velocity and sorption strength is either m
sured or assumed for many pollutants, including organic s
vents and radionuclides@22#.

Space-time coupling blends subdiffusive and superdif
sive effects, resulting in a different kind of limiting proces
governed by a model equation involving coupled space-t
fractional derivatives. These equations are useful to mo
flow in porous media and other physical systems charac
ized by a link or coupling between the subdiffusive tende
cies caused by particle sticking or trapping, and the super
fusive influence of very large particle jumps.

II. THE MASTER LIMIT EQUATION

Scaling limits and governing equations for CTRW can
computed via the Montroll-Weissmaster equation@1,2,16#.
A random waiting timeJ is followed by a particle jump of
random sizeY, defining the randomtransition vector (Y,J).
Additional transitions are independent and identically d
tributed, but eachY and J may depend on each other. Th
master equation

P~k,s!5
12g~s!

s

1

12p~k,s!
~1!

gives the Fourier-Laplace transform (x°k, t°s) of particle
density P(x,t) in terms of the joint probability density
p(x,t) of (Y,J) and the marginal densityg(t)5*p(x,t)dx
of the waiting timeJ. A simple uncoupled CTRW with finite
mean waiting time and finite variance particle jumps h
g(s)512s1o(s) and p(k,s)5@12s1o(s)#@12k2

1o(k2)# for smalls,k. Rescale in time and space by repla
ing s by cs andk by c1/2k, and substitute into Eq.~1!. Then,
asc→0 the higher order terms vanish and

P~c1/2k,cs!→Q~k,s!5
1

s1k2
.

Inverting the Fourier-Laplace transform of the limit yield
Q(x,t)5(4pt)21/2e2x2/4t, so the scaling limit of this CTRW
is a classical Brownian motion. The limit satisfiess
©2002 The American Physical Society02-1
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1k2)Q(k,s)51 and inverting yields the governing equatio
(]/]t2]2/]x2)Q(x,t)5d(x)d(t) for this diffusion. A useful
short-cut is to approximateg(s)'12s and p(k,s)'12s
2k2 and ignore product terms in Eq.~1!, but one must bea
in mind the proper rescaling in time and space that ma
these terms vanish. Infinite mean waiting times (0,b,1)
and symmetric infinite variance jumps (0,a,2) lead to
g(s)512sb1o(sb) and p(k,s)5@12sb1o(sb)#@12ukua
1o(ukua)#, and the proper rescalings5c1/bs and k5c1/ak
leads to a scaling limitQ(k,s)5sb21/(sb1ukua), whose
stochastic equivalent and fractional-order governing equa
are discussed in Refs.@7,13–15#. This procedure, based o
the master equation, works well for uncoupled CTRWs
cause the densityp(x,t) is a product of the independen
space and time marginals.

Coupled CTRWs present a more difficult challenge, sin
the densityp(x,t) does not decompose into a product of t
marginals, making the appropriate rescaling more subtle.
mathematical analysis in Ref.@23# resolves this difficulty
using operator stable limit theory@24–26# for the joint ~pos-
sibly dependent! space-time random vector (Y,J). The re-
sulting master limit equation

Q~k,s!5
sb21

c~k,s!
~2!

gives the scaling limit of any coupled CTRW with infinit
mean waiting time (0,b,1). Inverting Eq.~2! leads to the
governing equation

cS i
]

]x
,

]

]t DQ~x,t !5d~x!
t2b

G~12b!
~3!

involving a coupled space-time fractional derivative ope
tor. The Lévy representation@26# gives the Fourier-Laplace
symbol of this operator as

c~k,s!5E
0

`E
2`

`

~12e2steikx!,~x,t !dxdt ~4!

in terms of the Le´vy density ,(x,t) ~also called the jump
intensity @27,28#! of the space-time limit process. Assumin
that (Y,J) obeys a general limit theorem, the Le´vy density
decomposes into

,~x,t !5t2mf ~ t2mx!f1~ t !, ~5!

where f (x) can be any probability density,f1(t)
5Kbt2b21 is the Lévy density of theb-stable subordinato
(K is a constant!, andm.b/2 is the coupling parameter tha
links the jump size and waiting time. Formula~4! is valid
when m.b, f (x) is symmetric, or*x f(x)dx50. An ex-
tended form of Eq.~4! applies in other cases@23# and is not
listed here for brevity. For an uncoupled CTRW, a differe
form ~10! of the Lévy density applies~shown in a later sec
tion!.

Many different coupled CTRW models converge to t
same limit, and every possible limit can be obtained usin
simple CTRW, whereJ has a stable density with Laplac
transformg(s)5e2sb

and the conditional density ofY given
J5t is t2mf (t2mx), so thatf (x) is theconditionaldistribu-
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tion of Y given J51. A heuristic link with the master equa
tion ~1! can be obtained usingg(s)'12sb and p(k,s)'1
2c(k,s) for small s,k in the appropriate space-time resca
ing. The Fourier-Laplace symbolc(k,s) has a scaling prop-
erty cc(k,s)5c(c1/ak,c1/bs), wherea5b/m is the tail pa-
rameter of theunconditionaldistribution of the jump sizeY.
Then Eq.~2! leads toQ(k,ct)5Q(cmk,t), wherem5b/a,
so this coupled CTRW model is subdiffusive form,1/2,
diffusive for m51/2, and superdiffusive in the remainin
casem.1/2. We give some example immediately.

III. COUPLED GOVERNING EQUATIONS AND
SOLUTIONS

Shlesingeret al. @3# consider a coupled CTRW mode
where particle jump sizeY is normal mean zero with vari
ance 2t when the waiting timeJ5t. The master limit equa-
tion reveals the governing equation for the CTRW limit a
its explicit solution. Since the space-time limit of (Y,J) only
depends on the tail behavior, any CTRW with a similar b
havior will lead to the same limit. The conditional density
Y given J5t is (4pt)21/2e2x2/4t5t2mf (t2mx) with f (x)
5(4p)21/2e2x2/4 and m51/2. Using this form in Eq.~5!,
along with *0

`(12e2st)f1(t)dt5sb and F@ f (x)#5e2k2
,

the Lévy representation~4! gives c(k,s)5(s1k2)b in the
simplest caseKG(12b)51. Here,a52b and the uncondi-
tional distribution ofY is symmetrica stable. The coupling
produces a finite variance limit even though the individu
jumps have infinite variance. Formula~3! gives the coupled
governing equation

S ]

]t
2

]2

]x2D b

Q~x,t !5d~x!
t2b

G~12b!
.

Inverting Eq.~2! usingL@ tq21#5s2q/G(q) gives

Q~x,t !5E
0

t

~4pu!21/2e2x2/4ut21b~ t21u!du, ~6!

where b(u)5ub21(12u)2b/G(b)G(12b) is a beta den-
sity. The integral~6! is a mixture of Gaussian densitie
whose random variance is governed by ab density. This
model is diffusive sincem51/2, but the plume has a shar
non-Gaussian peak atx50 ~Fig. 1! due to the infinite mean
(b,1) waiting times. Asb↑1 the particle location density
converges to the limiting (b51) Gaussian case~Fig. 2!.

Shlesingeret al. @3# also consider a more general coupl
CTRW model with f (x)5(4p)21/2e2x2/4 and an arbitrary
coupling parameterm.b/2. Then a5b/m,2, and the
jump sizeY is tail equivalent to ana-stable random variable
In this case, similar calculations@23# give

c~k,s!5E
0

`

~12e2ste2k2t2m
!f1~ t !dt, ~7!

which cannot be written in closed form, but it is easy
verify directly thatQ(x,ct)5c2mQ(c2mx,t), showing that
this CTRW is subdiffusive form,1/2, diffusive in the origi-
nal casem51/2, and superdiffusive whenm.1/2 @23#.
2-2
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Here, the master limit equation provides analytical verific
tion of asymptotic results in Ref.@3#.

Another CTRW@29–31# considers a tight coupling with
uYu5J, so that f (x)5@d(x21)1d(x11)#/2, m51, and
the tail parameter ofY is a5b. The variableuYu is a stable
but Y is not. Here, the Le´vy density ~5! is ,(x,t)
5(1/2)@d(x2t)1d(x1t)#f1(t), the Fourier-Laplace sym
bol ~4! reduces toc(k,s)5@(s2 ik)b1(s1 ik)b#/2, and Eq.
~3! gives

F S ]

]t
1

]

]xD b

1S ]

]t
2

]

]xD bGQ~x,t !5
2d~x!t2b

G~12b!
.

Since m51 this ballistic CTRW scales linearly with tim
@31#. Recently, Barkai@32# computedQ(k,s) for this model
by completely different methods. That paper also devel
exact preasymptotic CTRW solutions, investigates rates
convergence to the long-time limit, and discusses the pr
lem of obtaining governing equations in the case 1,b,2.

A wide variety of coupled governing equations can
obtained and solved in a similar manner. If the coupling
rameter m51/g, then a5gb, the Lévy density ,(x,t)
5t21/g f (t21/gx)f1(t), and Eq.~4! leads to

FIG. 1. Particle densitiesQ(x,t) in the coupled CTRW mode
~6! with b51/2 have sharp peaks atx50 due to infinite mean
waiting times.

FIG. 2. Particle densitiesQ(x,t) in the coupled CTRW mode
~6! ~shown here att51) converge to a Gaussian asb↑1.
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c~k,s!5E
0

`

@12e2stf ~ t1/gk!#f1~ t !dt. ~8!

If f (x) is a g-stable density thenf (k)5e2c2(k) with c2(k)
5Cp(2 ik)g1C(12p)( ik)g so f (t1/gk)5e2tc2(k). Here,C
is a positive constant and 0<p<1 is the weight on forward
versus backward jumps~i.e., the skewness!. Then c(k,s)
5@s1c2(k)#b and the governing equation forgÞ1 is

S ]

]t
2p

]g

]xg
2~12p!

]g

]~2x!gD b

Q~x,t !5
d~x!t2b

G~12b!
,

in the simplest caseCG(12g)51. Inverting Eq.~2! gives

Q~x,t !5E
0

t

u21/g f ~u21/gx!t21b~ t21u!du, ~9!

where b(u)5ub21(12u)2b/G(b)G(12b) is a beta den-
sity. Equation~9! reduces to the form~6!, when g52 and
f (x)5(4p)21/2e2x2/4. When g51 and f (x)5p21(1
1x2)21 ~a standard Cauchy!, formula ~8! evaluates to
c(k,s)5(s1uku)b and then Eq.~9! solves

S ]

]t
1A2

]2

]x2D b

Q~x,t !5d~x!
t2b

G~12b!
,

usinguku5A2(2 ik)2. The overall shape is similar to Fig.
but in this case the diffusing particle density has power l
tails ~Fig. 3!.

IV. THE UNCOUPLED CASE

For uncoupled CTRW limits the coupled form of the Le´vy
density~5! is replaced by

,~x,t !5d~x!f1~ t !1d~ t !f2~x!, ~10!

since for independent components the Le´vy density
must be concentrated on the coordinate axes@23,33#. Here,
the spatial component f2(x)5Cpax2a21H(x)1C(1
2p)auxu2a21H(2x) is the Lévy density of ana-stable ran-
dom variable@23#, andH(x) is the Heaviside indicator func
tion. Now Eq.~4! gives c(k,s)5sb2(2 ik)a for the com-

FIG. 3. Particle densitiesQ(x,t) for a coupled CTRW withf (x)
standard Cauchy andb51/2 in Eq.~9! retain the Cauchy power law
tails.
2-3
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pletely skewed casep51, using the constantsKG(12b)
51 andCG(12a)51. Then Eq.~3! becomes

S ]b

]tb
2

]a

]xaD Q~x,t !5d~x!
t2b

G~12b!
,

which is equivalent to the fractional kinetic equation
Zaslavsky@7,13#. The explicit solution

Q~x,t !5
t

bE0

`

q~x,t !g~ tu21/b!u21/b21du ~11!

to this fractional Cauchy problem@34# is the inverse Le´vy
transform@14# of the Green’s function solutionq(x,t) to the
Cauchy problem]q(x,t)/]t5Lq(x,t) @13,15#, where the
spatial derivative operator L5p]a/]xa1(1
2p)]a/](2x)a, when CG(12a)51. Scaling properties
for uncoupled CTRW limits and extensions to vector jum
are discussed in@9,15#. The integral~11! is a scaled mixture
of stable densities governed by a Mittag-Leffler density,
contrast to the beta density that governs the scale mixt
~6! and ~9! for coupled CTRW limits.
n
du

a

et

, i
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V. SUMMARY

Coupled CTRWs link the waiting time between partic
jumps with the ensuing jump size. Operator stable cen
limit theory for coupled space-time jump vectors leads to
master limit equation~2! for the Fourier-Laplace transform
of CTRW scaling limit densities. Inverting reveals governin
equations that employ coupled space-time fractional der
tive operators. Explicit analytical solutions and scaling pro
erties are available for many cases of interest. Coup
space-time equations are useful models for flow in por
media and other physical systems, where the delay betw
particle jumps affects the subsequent jump magnitude.
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