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SPACE-TIME FRACTIONAL DERIVATIVE OPERATORS

BORIS BAEUMER, MARK M. MEERSCHAERT, AND JEFF MORTENSEN

(Communicated by Jonathan M. Borwein)

Abstract. Evolution equations for anomalous diffusion employ fractional
derivatives in space and time. Linkage between the space-time variables leads
to a new type of fractional derivative operator. This paper develops the math-
ematical foundations of those operators.

1. Introduction

In classical diffusion, particles spread in a normal bell-shaped pattern whose
width grows like the square root of time. Anomalous diffusion occurs when the
growth rate or the shape of the particle distribution is different than the classi-
cal model predicts. Anomalous diffusion is observed in many physical situations,
motivating the development of new mathematical and physical models [5, 6, 7, 13,
16, 20]. Some of the most successful models employ fractional derivatives [21, 27]
in place of the usual integer order derivatives in the diffusion equation. One way
to develop physically meaningful models for anomalous diffusion is to derive the
limiting distribution of an ensemble of particles following a specified stochastic pro-
cess. Continuous time random walks [22, 29], where each random particle jump
occurs after a random waiting time, can be used to derive these limits [18, 20, 30].
Very large particle jumps are associated with fractional derivatives in space [14],
while very long waiting times lead to fractional derivatives in time [18, 26]. The
same model equations have also been applied to chaotic dynamics [31] and finance
[10, 28], where empirical evidence [24, 25] shows that the waiting time between
transactions is correlated with the ensuing price jump.

In the continuous time random walk, the size of the particle jumps can depend
on the waiting time between jumps. For these models, the limiting particle distri-
bution is governed by a fractional differential equation involving coupled space-time
fractional derivative operators [3, 19]. This paper develops the mathematical foun-
dations of those operators. In particular, they are shown to be the generators of
certain continuous convolution semigroups, and their domain is identified. The
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general form of the operator in ordinary space-time is also provided. The techni-
cal tools used in this development are semigroups of operators [1, 11, 23], and the
theory of operator stable probability distributions [12, 15].

2. Fractional derivatives and anomalous diffusion

Let C(x, t) denote the relative concentration of particles at location x ∈ R at
time t. The classical diffusion equation ∂tC = 1

2∂
2
xC can be solved using the Fourier

transform c(k, t) =
∫
eikxC(x, t)dx, which converts the diffusion equation to an

ordinary differential equation dc/dt = 1
2 (−ik)2c. The initial condition c(k, 0) ≡ 1

is equivalent to C(x, 0) = δ(x), so that all particles start at position x = 0 at time
t = 0. The solution c(k, t) = exp(− 1

2k
2t) inverts to a normal probability density

with mean zero and standard deviation
√
t. This is also, using the central limit

theorem, the limiting density of a random walk of particle jumps when the jumps
have mean zero and variance one; and hence the standard Brownian Motion model.

If the probability distribution of the particle jumps has symmetric regularly
varying tails with index −α for some 0 < α < 2 (roughly speaking, this means
that the probability of jumping a distance greater than r falls off like r−α), then
the variance is undefined, so the classical central limit theorem does not apply. An
extended central limit theorem [8, 9, 15] implies that the random walk converges
to a stable Lévy motion whose probability density C(x, t) has Fourier transform
c(k, t) = exp(−|k|αt), evidently the solution to dc/dt = −|k|αc with c(k, 0) ≡ 1.
Inverting shows that the particle concentration solves a fractional partial differential
equation ∂tC = ∂α|x|C, where the symmetric fractional derivative operator ∂α|x|
corresponds to multiplication by the symbol −|k|α in Fourier space. This is the
usual fractional power of the second derivative operator. Asymmetric particle jumps
lead to a more general form p∂αx + q∂α−x of the fractional derivative operator [7, 4]
with symbol p(−ik)α+q(ik)α, where p = 1−q is the asymptotic fraction of positive
jumps as the jump size tends to infinity. For symmetric vector jumps a similar
argument leads to ∂tC = ∆α/2

x C using the fractional Laplacian with symbol −‖k‖α;
see [14, 16] for more general forms in Rd. These pseudodifferential operators are
also generators of certain continuous convolution semigroups [2, 11].

If the waiting time distribution between particle jumps is heavy tailed and varies
regularly with index 0 < β < 1 (roughly speaking, the chance of waiting longer than
time t before the next jump falls off like t−β), then the random walk of particle
jumps (distributed as before) converges to a Lévy motion subordinated to an inverse
β-stable subordinator [17, 18]. Assuming that the waiting time and the ensuing
particle jump are independent, the subordinator is independent of the Lévy process,
and the governing equation becomes ∂βt C = ∂α|x|C+C(x, 0)t−β/Γ(1−β) which was
first proposed by Zaslavsky [31] as a model for Hamiltonian chaos. Asymmetric
jumps, or vector jumps, modify the spatial derivative in the same manner as before
[2]. Heavy tailed particle jumps lead to fractional derivatives in space, and heavy
tailed waiting times introduce fractional derivatives in time.

When the waiting times and the particle jumps are dependent random variables,
a different form of the governing equation emerges. The limiting process is still
a Lévy motion subordinated to an inverse stable subordinator, but now the two
processes are dependent. The space-time vector consisting of the waiting time and
the jump has to be treated using operator stable limit theory, since each coordinate
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has a different tail behavior [3]. This leads to a governing equation that employs
a new kind of coupled space-time fractional derivative. Suppose the waiting time
J satisfies P (J > t) = t−β for large t and the symmetric particle jump size Y is
normally distributed with mean zero and variance 2t when the waiting time J = t.
Then the governing equation (∂t − ∂2

x)
βC(x, t) = C(x, 0)t−β/Γ(1 − β) employs a

coupled space-time fractional derivative with Fourier-Laplace symbol (s+k2)β . The
purpose of this paper is to develop the properties of these operators, in order to
establish a mathematical basis for the analysis of these equations. What makes
this problem interesting is that, since space and time are inexorably linked, one
cannot view these evolution equations in the usual manner, as ordinary differential
equations on some abstract function space.

3. Space-time fractional derivatives

Let R+ = [0,∞) and suppose that ν(dx, dt) is a probability distribution on
Rd × R+ with Fourier-Laplace transform

ν̂(k, s) =
∫

Rd×R+

eix·ke−stν(dx, dt).

Let νn = ν ∗ · · · ∗ ν denote the n−fold convolution of ν with itself. We say that ν
is infinitely divisible if for each n = 1, 2, 3, . . . there exists a probability distribution
νn such that νnn = ν. The Lévy representation (e.g., see Lemma 2.1 in [3]) states
that ν is infinitely divisible if and only if we can write ν̂(k, s) = exp(ψ(k, s)) for
some unique continuous function ψ : Rd×R+ → C such that ψ(0, 0) = 0, �(ψ) ≤ 0
and

ψ(k, s) = ik · a− bs− 1
2k · Ak

+
∫

Rd×R+\{(0,0)}

(
eik·xe−st − 1 − ik · x

1 + ‖x‖2

)
φ(dx, dt)

(3.1)

for some uniquely determined (a, b) ∈ Rd × R+, some nonnegative definite d × d
matrix A, and some positive measure φ on Rd×R+ \ {(0, 0)} which is finite on sets
bounded away from the origin and which satisfies

(3.2)
∫

0<‖x‖2+t≤1

(‖x‖2 + t)φ(dx, dt) <∞.

The measure φ is called the Lévy measure of ν, and the unique triple [(a, b), A, φ] is
called the Lévy representation of ν. In this case, we define the (possibly fractional)
convolution power νu to be the infinitely divisible law with Lévy representation
[ua, uA, uφ], so that νu has characteristic function exp(uψ(k, s)) for any u ≥ 0.
Then it follows that νu ∗ νv = νu+v for any u, v ≥ 0.

Infinitely divisible distributions can be used to define convolution semigroups.
Let L1

ω(Rd×R+) for ω ≥ 0 denote the collection of measurable functions for which
the integral and hence the norm

‖f‖ω :=
∫ ∞

0

∫
Rd

e−ωt|f(x, t)| dx dt

exists. With this norm, which we will call the L1
ω-norm, L1

ω(Rd × R+) is a Banach
space. Clearly, L1(Rd×R+) ⊂ L1

ω(Rd×R+) with proper containment unless ω = 0,
in which event the two functions spaces are identical. Further, if f ∈ L1(Rd×R+),
then ‖f‖ω ≤ ‖f‖1.
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A family of bounded linear operators {T (t) : t ≥ 0} on a Banach space X , such
that T (0) is the identity operator and T (u+v) = T (u)T (v) for all u, v ≥ 0, is called
a semigroup of bounded linear operators on X . If ‖T (u)f‖ ≤ M‖f‖ for all f ∈ X
and all u ≥ 0, then the semigroup is uniformly bounded; if in this case M ≤ 1 we
also speak of a contraction semigroup. If T (un)f → T (u)f in X for all f ∈ X
whenever un → u, then the semigroup is strongly continuous. It is easy to check
that {T (u) : u ≥ 0} is strongly continuous if T (u)f → f in X for all f ∈ X as
u ↓ 0. A semigroup on a Banach lattice is called positive, if f > 0 implies that
T (u)f ≥ 0 for all u > 0. A strongly continuous positive contraction semigroup is
also called a Feller semigroup. The next result shows that any infinitely divisible
law on Rd × R+ defines a Feller semigroup on L1

ω(Rd × R+).

Proposition 3.1. Let ν be an infinitely divisible law on Rd × R+ and define

(3.3) T (u)f(x, t) =
∫ t

0

∫
Rd

f(x− y, t− s)νu(dy, ds)

for all f ∈ L1
ω(Rd × R+) and all u ≥ 0. Then the family of linear operators

{T (u)}u≥0 has the following properties valid for all f ∈ L1
ω(Rd × R+):

(a) T (u+ v)f = T (u)T (v)f for all u, v ≥ 0,
(b) T (0)f = f ,
(c) f > 0 implies that T (u)f > 0 for all u > 0,
(d) ‖T (u)f‖ω ≤ ‖f‖ω for all u ≥ 0,
(e) lim

u↓0
‖T (u)f − f‖ω = 0.

Proof. The points (a), (b), and (c) follow immediately from the definition of ν being
infinitely divisible. Point (d) follows from Fubini’s theorem:

‖T (u)f‖ω =
∫ ∞

0

e−ωt
∫

Rd

∣∣∣∣
∫ t

0

∫
Rd

f(x− y, t− s)νu(dy, ds)
∣∣∣∣ dx dt

≤
∫ ∞

0

∫
Rd

∫ ∞

s

e−ωt
∫

Rd

|f(x− y, t− s)| dx dt νu(dy, ds)

≤ ‖f‖ω.
Point (e) is a bit more delicate. We first show that (e) holds for an indicator

function on a rectangle, i.e., let f(x, t) = IQ(x, t) = I((x, t) ∈ Q) where the rec-
tangle Q = {(x, t) ∈ Rd × R+ : a0 ≤ t ≤ b0, ai ≤ xi ≤ bi for i = 1, . . . , d} for some
a, b ∈ R+ × Rd. Then∫ ∞

0

∫
Rd

|T (u)f(x, t)|dx dt =
∫ ∞

0

∫
Rd

∣∣∣∣
∫ t

0

∫
Rd

f(x− y, t− s)νu(dy, ds)
∣∣∣∣ dx dt

=
∫ ∞

0

∫
Rd

∫ ∫
(y,s)+Q

dx dt νu(dy, ds)(3.4)

=
∏

0≤i≤d
(bi − ai)

for all u ≥ 0. Since ν is infinitely divisible we have that νu ⇒ ν0 as u ↓ 0 (e.g.,
see Corollary 3.1.4 in [15]), which means that νu(B) → ν0(B) for all Borel subsets
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B ⊆ Rd×R+ such that ν0(∂B) = 0.1 Since ν0 is the point mass at zero, ν0(∂B) = 0
if (0, 0) �∈ ∂B. Then for all (x, t) ∈ Rd × R+ with xi �= ai, bi for i = 1, . . . , d and
t �= a0, b0, we obtain that

lim
u→0+

T (u)f(x, t) = lim
u→0+

νu((x, t) −Q) = ν0((x, t) −Q) = f(x, t).

Since νu is a probability measure for all u, we can apply the Dominated Convergence
Theorem over the finite rectangle Q and obtain∫ ∫

Q

|T (u)f(x, t)− f(x, t)| dx dt =
∫ ∫

Q

|νu((x, t)−Q)− ν0((x, t)−Q)| dx dt → 0

and thus,
∫ ∫

Q
T (u)f(x, t) dx dt → ∫ ∫

f(x, t)dx dt =
∏

0≤i≤d(bi − ai). In light of
(3.4), this implies that∫ ∫

(x,t) �∈Q
|T (u)f(x, t) − f(x, t)| dx dt =

∫ ∫
(x,t) �∈Q

|T (u)f(x, t)| dx dt→ 0.

Hence,
∫ ∫ |T (u)f(x, t)− f(x, t)|dx dt → 0 so that (e) holds for indicator functions

f with the L1 norm in place of the L1
ω norm. Since ‖f‖ω ≤ ‖f‖1 whenever f ∈

L1(Rd ×R+), (e) holds for any indicator function f . Then it follows easily that (e)
holds for any simple function f =

∑n
j=1 αjIQj with the L1

ω norm.
Clearly, simple functions are dense in L1

ω for any ω ≥ 0, as they are all L1 spaces
just endowed with a different measure. Now for any f ∈ L1

ω(Rd × R+) there exists
gn =

∑
αjIQj with ‖gn − f‖ω < n−1. Using the triangle inequality,

‖T (u)f − f‖ω ≤ ‖T (u)f − T (u)gn‖ω + ‖T (u)gn − gn‖ω + ‖gn − f‖ω.
Now (d) yields ‖T (u)f − T (u)gn‖ω ≤ ‖f − gn‖ω ≤ n−1 and thus

‖T (u)f − f‖ω ≤ n−1 + ‖T (u)gn − gn‖ω + n−1.(3.5)

Since we have shown that

lim
u↓0

‖T (u)gn − gn‖ω = 0(3.6)

for any choice of n, we have established point (e). �
For any strongly continuous semigroup {T (u) : u > 0} on a Banach space X we

define the generator

(3.7) Lf = lim
u→0+

T (u)f − f

u
in X

meaning that ‖u−1(T (u)f − f)−Lf‖ → 0 in the Banach space norm. The domain
D(L) of this linear operator is the set of all f ∈ X for which the limit in (3.7) exists.
Then D(L) is dense in X , and L is closed, meaning that if fn → f and Lfn → g in
X , then f ∈ D(L) and Lf = g (see, for example, [23], Cor. I.2.5). In the following
theorem we characterize the generator of the semigroup defined in equation (3.3).
For any g ∈ L1

ω(Rd × R+) the Fourier-Laplace transform

ĝ(k, s) :=
∫

R+

∫
Rd

eik·xe−stg(x, t) dx dt

is defined for all k ∈ Rd and s > ω.

1Here ∂B denotes the topological boundary of B, i.e. ∂B = B̄ \ Bo where B̄ is the closure of
B, defined as the intersection of all closed sets containing B, and Bo is the interior of B, defined
as the union of all open sets contained in B.
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Theorem 3.2. Suppose that T is defined by equation (3.3) in Proposition 3.1 and
set X = L1

ω(Rd×R+). Let L be the generator of this strongly continuous semigroup.
Then L̂f(k, s) = ψ(k, s)f̂(k, s) for all f ∈ D(L), where ψ(k, s) is given by (3.1),
and

D(L) = {f ∈ X : ∃ h ∈ X with ψ(k, s)f̂(k, s) = ĥ(k, s)}.
Furthermore, if Σ denotes the subset of L1

ω(Rd × R+) whose weak first- and
second-order spatial derivatives, as well as weak first order time derivatives, are in
L1
ω(Rd × R+), then Σ ⊂ D(L) and for f ∈ Σ we have

Lf(x, t) = −a · ∇f(x, t) + b
∂f

∂t
(x, t) +

1
2
∇ · A∇f(x, t)

+
∫

Rd×R+\{(0,0)}

(
H(t− s)f(x− y, t− s) − f(x, t) +

∇f(x, t) · y
1 + ‖y‖2

)
φ(dy, ds),

(3.8)

where H(t) is the Heaviside step function and φ is from (3.1).

Proof. If f ∈ D(L) ⊂ L1
ω(Rd × R+), then the Fourier-Laplace transform f̂(k, s)

exists. Since the Fourier-Laplace transform of a convolution is a product,

T̂ (u)f(k, s) = exp(uψ(k, s))f̂(k, s)

for (k, s) ∈ Rd × (ω ,∞). The Fourier-Laplace transform is a continuous operator
in the sense that ‖f̂ − ĝ‖∞ ≤ ‖f−g‖ω for any f, g ∈ X . Hence it follows from (3.7)
that

(3.9) L̂f(k, s) = lim
u→0+

exp(uψ(k, s)) − 1
u

f̂(k, s) = ψ(k, s)f̂(k, s)

for all f ∈ D(L) and (k, s) ∈ Rd × (ω ,∞).
Conversely, let f ∈ X be such that ψ(k, s)f̂(k, s) = ĥ(k, s) for some h ∈ X . Then

g := λf − h ∈ X for all λ > 0. Furthermore, it is a basic fact of semigroup theory
(see, e.g., [23], Thm. I.5.2) that the resolvent operator (λI − L)−1 is a bounded
linear operator for all λ > 0 and maps X into D(L). Let q = (λI − L)−1g. Then
λq − Lq = g and λq̂(k, s) − ψ(k, s)q̂(k, s) = ĝ(k, s). Thus

q̂(k, s) =
ĝ(k, s)

λ− ψ(k, s)
=
λf̂(k, s) − ψ(k, s)f̂(k, s)

λ− ψ(k, s)
= f̂(k, s).

Hence q = f and therefore, f ∈ D(L).
Finally, we establish the form of the generator L in equation (3.8). Let

‖f‖Σ = ‖f‖ω +
d∑
i=1

‖ ∂f
∂xi

‖ω +
d∑

i,j=1

‖ ∂2f

∂xi∂xj
‖ω + ‖∂f

∂t
‖ω.

We assume that f is defined to be zero for t < 0 and suppress the Heaviside function
H written in (3.8). First assume f is continuously differentiable twice in x and once
in t. Using a Taylor series expansion on x,

f(x− y, t) − f(x, t) + y · ∇f(x, t) = y ·
∫ 1

0

(1 − r)Mx−ryy dr,

where Mx is the Hessian matrix of f evaluated at (x, t). It is easy to check that∫ ∫
e−ωt|f(x− y, t) − f(x, t) +

y · ∇f(x, t)
1 + ‖y‖2

| dx dt ≤ C‖f‖Σ
‖y‖2

1 + ‖y‖2
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for some constant C. Similarly, using a Taylor series expansion on t∫ ∫
e−ωt|f(x, t− s) − f(x, t)| dx dt ≤ D‖f‖Σ

s

1 + s

for some constant D.
Using the Fubini theorem—tacitly adding and subtracting f(x− y, t) so we can

utilize the preceding estimates—we see that∫ ∫
e−ωt

(∫
|f(x− y, t− s) − f(x, t) +

y · ∇f(x, t)
1 + ‖y‖2

|φ(dy, ds)
)
dx dt

=
∫ (∫ ∫

e−ωt|f(x− y, t− s) − f(x, t) +
y · ∇f(x, t)
1 + ‖y‖2

| dx dt
)
φ(dy, ds)

≤ ‖f‖Σ

(
C

∫ ‖y‖2

1 + ‖y‖2
φ(dy, ds) +D

∫
s

1 + s
φ(dy, ds)

) ≤ K‖f‖Σ

(3.10)

for some constant K in view of (3.2). Thus (3.8) is well defined for all f satisfying
the stated regularity conditions.

Since (−ikj)f̂(k, s) is the Fourier-Laplace transform of ∂f(x, t)/∂xj , sf̂(k, s) is
the (distributional) Fourier-Laplace transform of ∂f(x, t)/∂t and f(x− y, t− s) has
Fourier-Laplace transform exp(ik · y) exp(−st)f̂(k, s), it follows that the right-hand
side of (3.8) has Fourier-Laplace transform ψ(k, s)f̂(k, s).

Next we show Σ ⊂ D(L). Let f ∈ Σ. First note that if

L1f(x, t) := −a · ∇f(x, t) − b
∂f

∂t
(x, t) − 1

2
∇ · A∇f(x, t),

then ‖L1f‖ω ≤ B‖f‖Σ for some constant B independent of f . Further, note that
if

L2f(x, t) :=
∫

Rd×R+\{(0,0)}

(
f(x− y, t− s) − f(x, t) +

∇f(x, t) · y
1 + ‖y‖2

)
φ(dy, ds),

then L = L1 − L2 and for f ∈ Σ ∩C∞(Rd × R+),

‖Lf‖ω ≤ ‖L1f‖ω + ‖L2f‖ω ≤ B‖f‖Σ +K‖f‖Σ.(3.11)

Now if f ∈ Σ, there is a sequence {fn}∞n=1 ⊂ Σ ∩ C∞(Rd × R+) such that fn → f
in the norm ‖ · ‖Σ and hence also in the L1

ω norm. Furthermore, since {fn}∞n=1 is
Cauchy in the norm ‖ · ‖Σ, inequality (3.11) implies that {Lfn}∞n=1 is a Cauchy
sequence in the norm ‖ · ‖ω and hence converges to some g ∈ L1

ω(Rd × R+). Since
L is closed, f ∈ D(L), and Lf = g. �

Remark 3.3. Another consequence of T (u) being a strongly continuous semigroup
is that fu(x, t) = T (u)p(x, t) solves the abstract Cauchy problem

(3.12)
d

du
fu = Lfu; f0 = p

for p ∈ D(L). Furthermore, the integrated equation T (u)p = L
∫ u
0
T (v)p dv + p

holds for all p ∈ X (see, for example, [23], Theorem I.2.4). This evolution equation
must be interpreted with care since now fu(x, t) is a function of both space and
time for each u ≥ 0.

Remark 3.4. While some of the conclusions of Theorem 3.2 can be obtained from
the general theory of strongly continuous semigroups [1, 11, 23], we have not seen
any results that entail the time variable as part of the state space. As an additional
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difficulty, the function fu in Remark 3.3 does not even have compact support in
Rd × R+ for any u > 0. Also, note that if p(x, t) is a probability density in x for
each t, then neither p(x, t) nor fu(x, t) has a converging Fourier integral in (x, t).

4. Coupled space-time diffusion equations

In this section we apply the results of Section 3 in combination with the stochastic
process limit theorems in [3] for a coupled continuous time random walk (CTRW). In
the CTRW model, each random waiting time Ji > 0 is followed by a random particle
jump Yi ∈ Rd. We assume that the space-time vectors (Ji, Yi) are independent for
i = 1, 2, 3, . . ., but we allow dependence between Ji and Yi. If Ji has finite mean,
a renewal theorem [8] shows that the number of jumps by time t is asymptotically
constant, so that the limiting process is the same as for a simple random walk
with nonrandom waiting times. On the other hand, if P (J > t) = t−β for some
0 < β < 1 and large t, then under mild conditions (essentially, the probability of a
large jump also falls off like a power law whose index may vary with coordinate) the
random walk of space-time vectors converges to a d+ 1-dimensional operator Lévy
motion {(D(u), A(u))}u≥0, where D(u) is a β-stable subordinator with Laplace
transform e−us

β

. More precisely, if T (n) =
∑n

j=1 Jj is the time of the nth jump
and S(n) =

∑n
i=1 Yi is the position of the particle after the nth jump, then for

some invertible linear operators Au on Rd and bu > 0 we (essentially) assume joint
convergence in distribution {(B(c)S(cu), b(c)T (cu)

)}u≥0 ⇒ {(A(u), D(u)
)}u≥0 as

c → ∞ in a suitable function space. The function fu(x, t) in Remark 3.3 is the
probability density of

(
A(u), D(u)

)
when L is the generator of the associated Feller

semigroup. The number of jumps Nt by time t is the inverse of the process {T (u)}
(since {T (n) ≤ t} = {Nt ≥ n}) which leads to {b̃(c)Nct} ⇒ {E(t)}, where the
inverse process Et = inf{u ≥ 0 : D(u) > t}. Finally the normalized CTRW
{B̃(c)S(Nct)} ⇒ {A(E(t))}, where the limit is a stochastic model for coupled
anomalous diffusion at the macroscopic scale (c→ ∞). A computation in [3] shows
that the probability density of this limit process is

(4.1) h(x, t) =
∫ ∞

0

∂β−1

∂tβ−1
fu(x, t)du

and the Fourier-Laplace transform of h is simply

(4.2) ĥ(k, s) =
∫ ∞

0

sβ−1euψ(k,s)du =
sβ−1

ψ(k, s)

since f̂u(k, s) = exp(uψ(k, s)). Then ψ(k, s)ĥ(k, s) = sβ−1, where ψ(k, s) is the
Fourier-Laplace symbol of the generator L. Now suppose that the particle location
at time t = 0 is a random variable X0 with C∞ probability density P (x). Under
the CTRW model, the random particle location at time t > 0 is Zt = X0 +A(Et),
and assuming X0 is independent of everything else, the probability density of Zt is

C(x, t) =
∫
h(x− y, t)P (y)dy.

Then Ĉ(k, s) = ĥ(k, s)p(k), where p(k) =
∫
eik·xP (x)dx is the Fourier transform.

Now
ψ(k, s)Ĉ(k, s) = ψ(k, s)ĥ(k, s)p(k) = sβ−1p(k).
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The right-hand side inverts to t−β

Γ(1−β)P (x), and is thus an element of L1
ω(Rd×R+).

Hence C(x, t) satisfies the conditions of Theorem 3.2 so that C is in the domain of
L and inverting the above equation leads us to conclude that C(x, t) is the unique
Laplace-Fourier transformable solution to the coupled space-time diffusion equation

(4.3) LC(x, t) =
t−β

Γ(1 − β)
P (x).

Remark 4.1. The pseudodifferential operator L in (4.3) with Laplace-Fourier sym-
bol ψ(k, s) can be computed using the Lévy representation (3.1) along with The-
orem 2.2 in [3], which specifies the form of the Lévy measure φ(dx, dt). Several
examples are contained in [3]. In the uncoupled case with symmetric scalar jumps,
the symbol ψ(k, s) = sβ − |k|α corresponds to the uncoupled operator ∂βt − ∂α|x|,
and then (4.3) reduces to the fractional kinetic equation of Zaslavsky [31]. If Y
is normal mean zero variance 2t when J = t, then ψ(k, s) = (s + k2)β and (4.3)
becomes

(4.4) (∂t − ∂2
x)
βh(x, t) = P (x)

t−β

Γ(1 − β)
.

Heavy tailed symmetric jumps lead to a similar form with L = (∂t − ∂α|x|)
β in R1

or L = (∂t − ∆α/2
x )β in Rd.
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Math., Birkhäuser, Basel (2001). MR1882830

[11] E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups. Amer. Math. Soc. Coll.
Publ. 31, American Mathematical Society, Providence (1957). MR0089373 (19:664d)

[12] Z. Jurek and J.D. Mason, Operator-Limit Distributions in Probability Theory, Wiley, New
York (1993). MR1243181 (95b:60018)

[13] J. Klafter, A. Blumen and M.F. Shlesinger, Stochastic pathways to anomalous diffusion, Phys.
Rev. A 35 (1987), 3081–3085. MR0884309 (88d:82132)

http://www.ams.org/mathscinet-getitem?mr=1886588
http://www.ams.org/mathscinet-getitem?mr=1886588
http://www.ams.org/mathscinet-getitem?mr=1874479
http://www.ams.org/mathscinet-getitem?mr=1874479
http://www.ams.org/mathscinet-getitem?mr=2039941
http://www.ams.org/mathscinet-getitem?mr=2039941
http://www.ams.org/mathscinet-getitem?mr=1081295
http://www.ams.org/mathscinet-getitem?mr=1616103
http://www.ams.org/mathscinet-getitem?mr=1616103
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0233400
http://www.ams.org/mathscinet-getitem?mr=0233400
http://www.ams.org/mathscinet-getitem?mr=1882830
http://www.ams.org/mathscinet-getitem?mr=0089373
http://www.ams.org/mathscinet-getitem?mr=0089373
http://www.ams.org/mathscinet-getitem?mr=1243181
http://www.ams.org/mathscinet-getitem?mr=1243181
http://www.ams.org/mathscinet-getitem?mr=0884309
http://www.ams.org/mathscinet-getitem?mr=0884309


2282 BORIS BAEUMER, MARK M. MEERSCHAERT, AND JEFF MORTENSEN
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