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We compute the asymptotic distribution of the sample covariance matrix for
independent and identically distributed random vectors with regularly varying
tails. If the tails of the random vectors are sufficiently heavy so that the fourth
moments do not exist, then the sample covariance matrix is asymptotically
operator stable as a random element of the vector space of symmetric matrices.
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variation; sample covariance matrix; heavy tails.

1. INTRODUCTION

Suppose that X, X1, X2, X3,... are independent, identically distributed ran-
dom vectors on Rd. In this paper we compute the asymptotic distribution
of the sample covariance matrix

when the distribution of X has heavy tails. When E ||X||4 < cc it is well
known that Mn is asymptotically normal. In this paper we show that,
when X has infinite fourth moments and the distribution of X is regularly
varying, Mn is asymptotically operator stable as a random element of the
vector space of symmetric dxd real matrices. The limiting distribution is
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not necessarily full dimensional on this space, however we prove that the
limit is almost surely invertible. We conclude this paper with an application
to self-normalized sums, where we answer a question posed by Vu et al.(18)

Regular variation(3) is an analytic growth condition used to provide
elegant necessary and sufficient conditions for the central limit theorem to
hold, see Feller(7) XVII.5 for the one variable case. A sequence of linear
operators on Rd is regularly varying with index (-E) if

for all t>0. Here t-E = exp(-Elog t) where exp(A) = I + A + A2/2\ +
A3/3\+ ••• is the usual exponential operator. Let 2ft denote the set of
cr-finite Borel measures on r=Rk — {0}. Topologize by writing [in->[i if
and only if fin(S) -> fj,(S) for relatively compact Borel subsets of F whose
topological boundary has ^-measure zero. Define A^(S) = f 4 ( A ~ 1 S ) . We
say that /j. e 3$ varies regularly with index E if

where An varies regularly with index (-E) and $ e @t cannot be supported
on any d — 1 dimensional subspace of Rd. It follows from the regular varia-
tion of the sequence An that

for all t>0, see Meerschaert.(10)

Operator stable laws(9) are the limiting distributions which appear in
the central limit theorem for heavy tail random vectors. Suppose that Y is
a random vector on Rd whose distribution is full, i.e., not supported on any
d—1 dimensional affine subspace. If there exist linear operators An and
nonrandom vectors an such that

then we say that X belongs to the generalized domain of attraction of Y.
If E || X ||2 < oo then this is the usual central limit theorem with Y multi-
variate normal. Sharpe(16) shows that if (1.5) holds then Y is operator
stable, meaning that if Y, Y1, Y2, Y3,... are iid then for some linear
operators Ln and nonrandom vectors bn we have

for all n. Sharpe also shows that we can take Ln = n- E for some linear
operator E called an exponent of the operator stable law, and that the limit
Y decomposes into a normal component corresponding to the eigenvalues
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of E with real part equal 1/2, and a nonnormal component corresponding
to the eigenvalues with real part exceeding 1/2. Meerschaert(12) shows that
the norming operators An in (1.5) can always be chosen to vary regularly
with exponent (-E) where E is an exponent of the operators stable law.
Meerschaert(11) shows that X belongs to generalized domain of attraction
of a nonnormal operator stable law with exponent E if and only if its dis-
tribution varies regularly with exponent E. In other words (1.3) is a
necessary and sufficient condition for (1.5) to hold with the same norming
operator An, and the index of regular variation of u equals the exponent
of the nonnormal operator stable limit Y. It also turns out (see Theorem 1)
that AnMnA* — Bn>W where An is the same as in (1.3) and Bn is a non-
random centering. If every eigenvalue of E has real part exceeding 1/2, then
Y is nonnormal and the same norming operators An are used for both the
sum and the sample covariance. However the results of Theorem 1 are
more general than that.

The exponent E governs the tail behavior and hence the moments of X.
If every eigenvalue of E has real part exceeding 1/2 then X has infinite
second moments, and the asymptotics of the sum in (1.5) are nonnormal.
Asymptotics of the sample covariance (1.1) are dominated by squared
terms, so in order to obtain normal asymptotics we need finite fourth
moments. If the eigenvalues of E have real part exceeding 1/4 then the
fourth moments of X are infinite, and the asymptotics of the sample
covariance matrix will be nonnormal, the case considered in this paper.
If the eigenvalues of E have real part between 1/4 and 1/2, then the sum
has normal asymptotic's but the sample covariance matrix does not. In this
case X has finite second moments, and the central limit theorem shows that
(1.5) holds with An = n - 1 / 2 I instead of the norming operators from (1.3).

2. ASYMPTOTIC BEHAVIOR OF THE SAMPLE
COVARIANCE MATRIX

In this section we compute the asymptotic distribution of the sample
covariance matrix (1.1) when the distribution of X is regularly varying with
infinite fourth moments. We begin by recalling a few facts about regular
variation and limit theorems in Rd. Define A =max{T(a)} and 1 =
min{9?(oc)} where a ranges over the eigenvalues of E. Meerschaert,(10)

[Thm. 4.3] together with a uniform version of Seneta(14) [Thm. A.2] (see
also Meerschaert,(11) Lemma 2) shows that if n is regularly varying with
exponent E then the moment functions
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are uniformly R—O varying whenever r\ < 1/A < 1/A < £, which means that
for any S > 0 there exist real constants m, M, r0 such that

for all ||0|| = 1, all t>1 and all r > r 0 . A uniform version of Feller(7)

[p. 289] yields that for some positive real constants A, B, t0 we have

for all ||0|| = 1 and all t> t 0 .
We will also employ standard results on infinitely divisible laws and

convergence of triangular arrays, see Araujo and Gine(1) or Tortrat.(17)

Suppose that Y, Y1, Y2, Y3,... are independent, identically distributed
random vectors on some finite dimensional real vector space V. We say
that y is infinitely divisible if for each n there exists a nonrandom vector
aneV such that Y, + ••• + Yn and Y+an are identically distributed. The
characteristic function of an infinitely divisible Y can be written uniquely in
the form

where a e V, Q( t) is a nonnegative definite quadratic form on V, and </> is
a cr-fmite Borel measure on V — { 0 } which satisfies

The measure <j> is called a Levy measure and the triple \_a, Q,(j>~\ is called
the Levy representation of Y. If the distribution ft of X is regularly varying
then the limit measure $ in (1.3) is also the Levy measure of the limit Y
in (1.5), see Meerschaert.(11) If X, X1, X2, X3,... are independent random
vectors on V with common distribution /u then the standard criteria for
convergence of triangular arrays implies that (1.5) holds with Y having no
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normal component if and only if (1.3) holds for some Levy measure (j>
along with

We can always choose

and then Y is infinitely divisible with Levy representation [a, 0, </>].
Let Md denote the vector space of d x d symmetric matrices with real

entries together with the norm \\A\\ = <A, A>1/2 where

and Ay the ij element of A. Define T: Rd-» Md by Tx = xx' and for any
linear operator A on Rd let LA(B) =ABA* where A* is the transpose of A.
It is easy to check that L - l = L A - 1 , LA(Tx) = T(Ax) and <Tx, Ty> =
<x, y> 2 . Since Tx is a polynomial in x it is open and continuous. Since the
matrix Tx has rank one, the mapping T is not onto, but it is easy to check
that the image of T spans Md. Since the sample covariance matrix

is the sum of i.i.d. random elements of the vector space Md, we can apply
the convergence criteria for triangular arrays of random vectors, along with
regular variation, to compute the asymptotic distribution of Mn.

Theorem 1. Suppose that n is regularly varying with exponent E and
(1.3) holds. If every eigenvalue of £ has real part exceeding 1/4 then

for some nonrandom Bn, where W is infinitely divisible on ,Md with Levy
representation [C, 0, TD].

Proof. Rewrite (2.10) in the form
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and note that Tu is the distribution of TX. In order to establish ( 2 . 1 1 ) we
will apply the standard convergence criteria for triangular arrays on the
vector space J/d

s. First we show that T</> is a Levy measure. Since ||Tx||2 =
< Tx, Tx) = <.x, x > 2 = |[x||4 we have

Following Hirsch and Smale(8) [Chap. 6] we compute that for every 6>0
there exists a positive constant M such that H t E | | < M t x - d for all 0 < t > 1.
Fix any c>l and let Q= {x : a < ||x|| <b} where 0 < a < b are chosen so
that the union of all c - k E ( Q ) for k = 0, 1, 2,... contains {x : 0 < ||x|| <1}.
Choose <5>0 such that 1/4 < A - d ' < / , and apply (1 .4) to get

which is finite since 1 —4(/. — S)<0. Since 0{x: ||x|| > 1} < x by assump-
tion, we have shown that T<j> is a Levy measure. Since T is continuous, if
S is a 7^-continuity set then T - 1 S is a (^-continuity set. Then for all such
sets we have nLATn(S) = nTAnn(S} = n A n n ( T - 1 S ) ^ < j > ( T - 1 S ) = T<l>(S).

We have shown that nLA TH -> T(j> where T(j> is a Levy measure. Now
by (2.6) along with the Schwartz inequality, in order to establish ( 2 . 1 1 ) it
will suffice to show that
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for all unit vectors B e. //d
s. First suppose that B=Tb for some b e Rd. Then

where rn=\\A*b\\ and 0n = A * b / r n . Since A > 1/4 we can apply (2.2) and
(2.3) with 77 = 0 and C = 4 to obtain

where we may choose < S < 4 — 1// so that 2 —(1/2) (1 / / .+ S ) > 0 . Note also
that
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and so (2.12) holds whenever B= Tb. Choose {bk} unit vectors such that
{Tbk} spans Md

s. Note that \\Tb\\ = 1 if and only if \\b\\ = 1. Now for any
Be.Md

s we can write B = X ckTbk and then

where rnk = \\A*bk\\ and Onk = A*bk/rnk. Then as before we have
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as n->oo. Since 2-(1/2)(1/A + d ) > 0 we see that (2.12) holds, and so
(2.11) holds as well.

Corollary 1. In Theorem 1, we can take Bn = 0 when every eigen-
value of E has real part exceeding 1/2. We can take Bn — nAnEXX'A*
when every eigenvalue of E has real part less than 1/2.

Proof. Given a unit vector b e Rd let B = Tb and use (2.7) with a = 0
to write

where rn= \\A*b\\ and On = A*b/r n . If every eigenvalue of £ has real part
exceeding 1/2 then (2.3) applies with n = 0 and £ = 2 and so

for C = A - 1 m - 1 < l > { x : \\x\\ > 1} and S0=1 - (1/2)(1//t+ <)')> 0, for all unit
vectors b e Rd. Taking R > 0 arbitrarily small, we see that the convergence
(2.10) still holds when Bn = 0.

as « —» oo. Then
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If every eigenvalue of E has real part less than 1/2 then (2.2) holds
with C = 4 and (2.3) holds with r\ = 0 and C = 4, or n = 2 and C = 4. Choose
t0, A, B so that both hold, and use (2.7) to write Bn = nAnEX iX' iA*-!n„
where

so that for any unit vector b e Rd we have

where
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as n-> oo, where rn= \\A*b\\ and 0n = A*b/rn as before. Choose {bk} an
orthonormal basis for Rd and note that if \\y\\2 > R then <y, bk}

2 > R/d for
some k= 1,..., d. Then

as n -> co, where rnk = | |A*bk|| and 9nk = A*bk/rnk. Then

for all unit vectors b e Rd, where d1 = -1 +(1/2)(4- 1//1 +6) <0 for
L<1/2 and C1 = (B + B d 3 - ( 1 / 2 ) ( 4 - 1 / A + S ) ) M A - 1 ( / > { x : ||x||> 1}. Taking
R>0 arbitrarily large, we see that the convergence (2.10) still holds when
Bn =nAnEXX'A*
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Remarks. Theorem 1 gives the asymptotic distribution of the uncen-
tered sample covariance matrix Mn. In applications one often uses the
centered sample covariance matrix

where Xn = n 1(X1 + • • • + Xn) is the sample mean. Both Mn and nFn have
the same asymptotics, see Meerschaert and Scheffler(13) where we prove
this for the more general case of moving averages of i.i.d. random vectors.
The asymptotic theory established in this paper is the foundation for the
statistical applications appearing there. The regular variation condition in
Theorem 1 is sufficient but not necessary. Regular variation includes a
balancing condition on the tails of the measure /u which is stronger than
necessary. For example in the one variable case we only need P[|X| >x]
regularly varying for the sample variance to be asymptotically stable, but
we need an additional balanced tails condition for the sum to be
asymptotically stable. Theorem 1 is new even in the special case where An

are all diagonal. In this case Y is "marginally stable" meaning that the
marginals of Y are all stable laws, with possibly different stable indices.
When An are scalar multiples of the identity our result agrees with that of
Davis et al.(5) and Davis and Marengo(6) but even here our approach
provides additional information. In this case the limit W is multivariable
stable with spectral measure TK where K is the spectral measure of the
stable limit Y in (1.5), see the example at the end of Section 3 for an
illustration.

3. THE LIMITING DISTRIBUTION

In this section we show that the limit W in Theorem 1 is operator
stable, and we compute its exponent. We prove that W is almost surely
invertible, but we provide an example to show that W need not have full
dimension in the vector space Md

s.

Lemma 1. The limit W in (2.10) is operator stable with exponent '(,
where £M = EM+ME*.

Proof. Let \I/=T^> denote the Levy measure of W. Since W has no
normal component it suffices to show that t\f/ = tty for all t > 0. But til/ =
tTij> = Tt<j) = TtE(/> = L,ET(j> = LtE\li for all t > 0. Since L,E is a one-parameter
subgroup it can be written in the form t = exp(<!; log t) for some element £
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of the tangent space of GL(Md
s). Then £ is the derivative of exp(s^) at

s = 0, and since

as s -> 0 we see that £,M = EM + ME*.

Theorem 2. If every eigenvalue of £ has real part exceeding 1/2 then
the limiting random matrix W in Theorem 1 is invertible with probability
one.

Proof. Define L = span{supp(t^)} so that L is a linear subspace of
Md and T<l> is full on L. Since W is full and operator stable on L, a result
of Sharpe shows that W has a density on L.

Define Md( + ) = {Me,Md: 0 ' M O > O M 0 e R d } and let L + = L n
Md( + ). Since T ( X i ) M d ( + ) almost surely we have Mn = £n=1 T ( X i ) e
Md

s( + ) almost surely and so AnMnA* e Md
s( +) almost surely. Since

Md
s( + ) is a closed subset of Md we get using the Corollary of Theorem 1 that

P[ We Md
s( + )] > lim s u p n « , P[A n M n A* e Md

s( +)] by the Portmanteau
theorem, and so P[ We Md

s( + )] = 1.
Since (j> is full on Rd we can choose T1,..., Td linearly independent in Rd

with all 0,e supp(0). Otherwise span{supp(<^)} has dimension less than d
and $ would not be full. Then TO,e L+ for all i=1,..., d, and TO1,..., T9d

are linearly independent in L. If not then we can write 0 = £d= 1 c,iT$,-
where not all ci = 0, Suppose for example that c1 + 0. Then 0 =
C L c i T O i ) d 1 = '£ci<,ei,Oly 0i but c 1 < 0 1 , 6 1 > which contradicts the
linear independence of O1,..., Qd.

Lemma 2. supp(TV) = T supp(^).

Proof of Lemma 2. If y $ supp(TP) then there exists a Ac,$d closed
with y$A and T(j>(Ac) = Q. Let B = T - 1 A . Since T is continuous B is
closed, and y ^ T B = T T - 1 A = A. Then <j>(Bc) = ( j > ( ( T - 1 A ) c ) = 4 > ( T - 1 A C ) )
= T(/>(AC)=0, so y^Tsupp(^). Conversely if y ^ T supp(^) then for some
B^,Md closed, y$ TB and < ^ ( B C ) = 0. Let A = TB. Since T is an open
mapping, A is closed and y£A. Then B ^ T - 1 T B = T - 1 A so T - 1 (A c ) =
(T-1A)C^BC. Then T^(Ac) =^(T - 1 (A c ) )<<^(B c )=0 so y;^supp(7^).
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Lemma 2 implies that L = span{ 7supp(^)}, and so we can choose
additional 0i e supp(^) as necessary so that T61,,..., T0m form a basis for L.
Note that m>d and all TO ie L+. Define S= {M e L + : M singular} and
let M0 = TfJ1+ ... +T0m. For all nonzero x e Rd we have x1M0x =
Y ix'T0 ix = jr(x,Oi')

2>0 since 01,..., Om span Rd, so M0 is positive
definite. Additionally if M e L+ and c> 0 then M + cM0 is positive definite
because x'(M + cM0) x = x'Mx +cx 'M 0 x>cx 'M 0 x>0 whenever x^O.
Now define V={M e L: <M, M 0 >=0}, VM={M + tM0: t e R } , and SM

= Sr\ VM. If both M+t 1 Mo and M + t2M0 were in SM then (assuming
t 2 > t 1 ) M+ t2M0 = (M+ t 1 M 0 ) + (t2 — t1) M0 would be positive definite,
and hence nonsingular, which is a contradiction. Then SM can contain at
most one point, and so SM has Lebesgue measure zero in VM for all M e V.
Then the Fubini theorem implies that S has Lebesgue measure zero in L.
Since W has a density on L we have P[ We S] = 0. Now P[ W singular] =
P [We S] + P[ W^ Md( + )] = 0 + 0 = 0 which concludes the proof.

Example 1. The following example shows that the limit W in
Theorem 1 is not necessarily full. Suppose we are on R2 and that the Levy
measure c/> of the limit Y in (1.5) is concentrated on the positive coordinate
axes with (j){ t e i : t > r} = r -a for i = 1, 2 where 0 < a < 2. Then 7 is full and
operator stable on R2 with exponent E = <x~'/, but W is not full. In par-
ticular if we write

then T(I>{N: <M, N> ^0} = ^ { y : <M, Ty>0} = < / > { y : 2 y 1 y 2 ^ 0 } =0
since </> is supported on the set {y: y 1y2 = 0} • In this case Y is actually
multidimensional stable with index a and the spectral measure of Y is the
sum of the unit masses at the points e1, e2. Then W is multivariable stable
with index a/2 on Md

s and its spectral measure is the sum of the unit
masses at the points e 1 e ' , e2e'2. Also WeL almost surely where
L= span{supp(T</>)} =span{e1e'1, e2e'2}.

4. SELF-NORMALIZED SUMS

Assume that X, X1, X2, X3,... are i.i.d. on Rd with common distribu-
tion n and that n belongs to the strict generalized domain of attraction of
some full operator stable law v on Rd with no normal component. This
means that
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where An is some linear operator on Rd, Sn = Zn
=1 Xi and Y has distribu-

tion v. Then ^ varies regularly with exponent E where every eigenvalue of
E has real part exceeding 1/2, and in fact nAnju-+tj> where </> is the Levy
measure of v, and E is an exponent of v. Let Mn = En=1 X i X' , denote the
sample covariance matrix and apply Theorem 1 and Corollary 1 to see that

where W is an operator stable symmetric random matrix. By Theorem 2 we
see that W is almost surely invertible. Then weak convergence implies that
P[AnMnA* invertible]-» 1 as «->cc. Since Y is full, convergence of
types(2) implies that An is invertible for all large n, and so the probability
that M-l exists tends to one as n —> oo. To avoid complicated notation we
will assume henceforth, without loss of generality, that Mn is invertible
with probability one. We will write M1 to denote the symmetric square
root of the nonnegative definite symmetric matrix Mn.

Lemma 3. A n M 1 is uniformly tight.

Proof. Note that for A e , M d
s we have ||A||2 = trace(AA*). The con-

tinuous mapping theorem and (4.2) imply that t r d c e ( A n M n A * ) = >
Irace(W). Hence t r a c e ( A n M n A * ) is uniformly tight. But then

for all n and some R>0.

Lemma 4. (a) (AnSn, A n M 1 ) is uniformly tight; (b) (AnSn, AnMnA*)
is uniformly tight.

Proof. For x eR d and M e . M d
s define \\(x, M}\\ = v

/||x||2+ ||M||2.
Then ' P [ | | ( A n S n , A n M 1 ) | | > R ] = P [ | | A n S n | | 2 + | | A n M l | | 2 > R 2 ] <
P [ | | A n S n | | 2 > R 2 / 2 ] + P [ | | A n M l | | 2 > R 2 / 2 ] < E / 2 + c/2 = E for all n and
some R>0 by (4.1) and Lemma 3. The proof of part (b) is similar.

Lemma 5. ( A n S n , A n M a A * ) = > ( Y , W).

Proof. Use the standard convergence criteria for triangular arrays. If
U is a Borel subset of Rd - {0} and V is a Borel subset of ,Md

s- {0} define
<P(Ux V) = < / > ( U r \ T - 1 V } . The sets U x V form a convergence determining
class. Now note that
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so that nLn!^0 where /I is the distribution of (X, X X ' ) on R d ®,M d

and Ln is the linear operator on Rd®JMd defined by Ln(x,M} =
(Anx, AnMA*}. Note that the Levy measure <P of the joint limit is concen-
trated on the set { ( x , xx'): x e R d } . Now in order to establish joint con-
vergence it suffices to show that

for all (x, A)e R d®M d . We use the inner product associated with the
norm in Lemma 2, so that Rd _L Md. Then

and (4.3) follows from the convergence criteria for triangular arrays along
with (1.5) and Theorem 1.

Theorem 3. If (4.1) and (4.2) hold then M - 1 S n is weakly relatively
compact with all limit points of the form K - 1 Y where KK* and W are
identically distributed.

Proof. By Lemma 4 part (a) there exists for every subsequence of the
positive integers a further subsequence along which (A,,Sn, AnM1

n
/2) =>

( Y , K ) for some K. Since ( A n M 1 ) ( A n M 1 ) * = AnMnA* => W while
A n M 1 = > K we see that KK* is identically distributed with W. Then K is
almost surely invertible and the continuous mapping theorem implies that
M- 1 S n = ( A n M 1 ) - 1 ( A n S n ) = > K - 1 Y along this subsequence.



Theorem 4. If (4.1) and (4.2) hold with An = a - 1 I then M - 1 / 2 S W = >
W-1/2Y.

Proof. In this case (4.1) becomes a - 1 S n = > Y and (4.2) reduces to
a-2Mn=> W. Then Lemma 5 yields ( a - 1 s n , a - 2 M n ) = > ( Y, W) where W is
almost surely invertible by Theorem 2. Now the continuous mapping
theorem implies that M - 1 / 2 S n = ( a - 2 M n ) - 1 ( a - 1 S n ) => W - 1 Y .

Remarks. When (1.5) holds with Y multivariable normal,
Sepanski(15) shows that M - 1 S n ^ Y even if E ||x||2 = oo. Vu et al.(18)

extend this result to dependent sequences, and they ask whether the same
convergence holds for nonnormal limits. Theorem 4 show that this is not
the case. We conjecture that we actually get weak convergence in
Theorem 4 in the general case of operator norming, but we have not been
able to prove this. Since the limiting distribution in Theorem 1 is not
always full dimensional, one might ask whether a different norming would
produce a full limit. However even when X has independent stable
marginals their cross-product will not usually belong to any domain of
attraction, see Cline.(4)
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