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Abstract. In this paper we develop generalized d’Alembert’s formulas for ab-

stract fractional integro-differential equations and fractional differential equa-
tions on Banach spaces. Some examples are given to illustrate our abstract

results, and the probability interpretation of these fractional d’Alembert’s for-

mulas are also given. Moreover, we also provide d’Alembert’s formulas for
abstract fractional telegraph equations.

1. Introduction

It is well-known that the solution of traditional wave equation on the line

(1.1)

{
utt(t, x) = uxx(t, x), t > 0, x ∈ R
u(0, x) = φ(x), ut(0, x) = ψ(x)

is given by d’Alembert’s formula

(1.2) u(t, x) =
1

2
[φ(x+ t) + φ(x− t)] +

1

2

∫ x+t

x−t
ψ(y)dy.

Including a forcing function, the solution of the wave equation on the line

(1.3)

{
wtt(t, x) = wxx(t, x) + f(t, x), t > 0, x ∈ R
w(0, x) = 0, wt(0, x) = 0

is given by the Duhamel’s principle formula

w(t, x) =

∫ t

0

r(t, x, τ)dτ,

where r(t, x, τ) is the solution of wave equation

(1.4)

{
rtt(t, x, τ) = rxx(t, x, τ), t > 0, x ∈ R
r(τ, x, τ) = 0, rt(τ, x, τ) = f(τ, x)

The fractional Duhamel’s principle formula was obtained by [3, 34].
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It is also of interest to know a fractional version of the d’Alembert formula.
Next we rewrite (1.1) as an integral equation, which is more easily generalized to
the fractional case. By integrating the wave equation (1.1) twice with respect to t,
we get the following integro-differential equation

u(t, x) = φ(x) + tψ(x) +

∫ t

0

(t− s)uxx(s, x)ds.

One possible generalization of the above equation to fractional order 1 ≤ α ≤ 2 is

(1.5) u(t, x) = φ(x) +
tα/2

Γ(1 + α
2 )
ψ(x) +

1

Γ(α)

∫ t

0

(t− s)α−1uxx(s, x)ds.

Fujita studied the above equation in [10] and showed that the unique solution is
given by

(1.6) u(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))] +

1

2
E

∫ x+Yα/2(t)

x−Yα/2(t)

ψ(y)dy,

where Yα/2(t) = sup0≤s≤tXα(s), and Xα(t) (1 ≤ α ≤ 2) is a càdlàg stable process

with characteristic function E exp{iξXα(t)} = exp{−t|ξ|2/αe−(πi/2)(2−2/α)sgn(ξ)}.
Yα/2(t) can also be regarded as the inverse of an α/2 stable subordinator [24, 26].
When α = 2, the expression (1.6) reduces to d’Alembert’s formula (1.2). Fujita

also mentioned that E[φ(x± Yα/2(t))±
∫ x±Yα/2(t)

0
ψ(y)dy] are solutions for

(1.7) u±(t, x) = φ(x)±
∫ x

0

ψ(y)dy ± 1

Γ(α/2)

∫ t

0

(t− s)α/2−1u±x (s, x)ds,

respectively, and the solution of (1.5) can be decomposed as u(t, x) = 1
2 (u+(t, x) +

u−(t, x)).
Next we convert the integro-differential equation (1.5) to a fractional differential

equation. See Section 2 for the definition of fractional derivatives, fractional inte-
grals, and the special functions gα(t). We refer to [15, 25, 30, 32] for more details
on fractional derivatives and fractional differential equations. Now if u satisfies the
equation (1.5), then by differentiating it with respect to t for α/2-times in the sense
of Caputo fractional derivatives and by using the identity Dα

t 1 = 0, we have

D
α/2
t u(t, x) = D

α/2
t (u(t, x)− φ(x))

= D
α/2
t (g1+α/2(t)ψ(x) + (Jαt uxx)(t, x))

= ψ(x) + (J
α/2
t uxx)(t, x),

and next differentiating for α/2-times again we get

D
α/2
t (D

α/2
t u(t, x)) = D

α/2
t (ψ(x) + (J

α/2
t uxx)(t, x))

= D
α/2
t (J

α/2
t uxx)(t, x)) = uxx(t, x).

This suggests an α-order differential equation D
α/2
t D

α/2
t u = uxx. It is also in-

teresting to consider the integro-differential equation Dα
t u = uxx, because Dα

t =

D
α/2
t D

α/2
t holds only under some special conditions.

Motivated by the above observations, we will first consider d’Alembert’s formula
for abstract fractional integro-differential equation in the form of

(1.8) u(t) = φ+
tα/2

Γ(1 + α/2)
ψ +

1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds, t > 0
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on a Banach space. It is known that the well-posedness of equation (1.8) is equiv-
alent to the existence of an α-times resolvent family for A2. Thus the theory of
fractional resolvent families will be our main tool. The notion of resolvent families
was first introduced by Prüss [31] to study Volterra integral equations, and then
developed systematically by Bajlekova [4] for fractional Cauchy problems. The
fractional resolvent families can be considered as generalizations of C0-semigroups
and cosine operator functions [2, 8, 29]. The d’Alembert formula for wave equa-
tion is in fact the decomposition of a cosine operator function, see for example [16,
Chapter III]. For its fractional analogue we will use the decomposition theorem for
fractional resolvent families [22], i.e. our Lemma 2.6. Thanks to this lemma, we
are able to give the solution of (1.8) in Theorem 2.8 and decompose the solution as
u = 1

2 (u+ + u−), where u± are solutions to

(1.9) u±(t, x) = φ(x)±A−1ψ ± 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au±(s, x)ds.

respectively, when ψ is in the range of the operator A. When A = ∂
∂x , then (1.9) is

the same as (1.7). The corresponding fractional differential equations for (1.8) and
(1.9) are {

D
α/2
t D

α/2
t u(t) = A2u(t), t > 0

u(0) = φ, D
α/2
t u(0) = ψ

and {
D
α/2
t u±(t) = ±Au±(t), t > 0

u±(0) = φ±A−1ψ

respectively.
In Theorems 2.11 and 2.13 we will construct the d’Alembert formula for the

more general equation

u(t) = φ+
tβ

Γ(1 + β)
ψ +

1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds, t > 0

or its corresponding fractional differential equation{
Dα−β
t Dβ

t u(t) = A2u(t), t > 0

u(0) = φ, Dβ
t u(0) = ψ.

In particular, when β = α/2, an alternative d’Alembert formula for (1.8) will
be provided. More precisely, the solution of (1.8) can be decomposed as u(t) =
1
2 (v+(t) + v−(t)), where v± are solutions to

v±(t) = φ+
tα/2

Γ(1 + α/2)
ψ ± 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Av±(s)ds, t > 0,

and the corresponding fractional differential equations are{
D
α/2
t v±(t) = ±Av±(t) + ψ, t > 0

v±(0) = φ.

And the d’Alembert formula for fractional differential equation like{
Dα
t u(t) = A2u(t), t > 0

u(0) = φ, ut(0) = ψ
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will also be considered.
Our papers is organized as follows: in Section 2 we will recall some results on

fractional resolvent families and then derive the fractional d’Alembert’s formula for
abstract fractional integro-differential equations and fractional differential equa-
tions on Banach spaces; some concrete examples are given in Section 3 to illustrate
our abstract results, and their probability interpretations are also given; finally in
Section 4 we will give the fractional d’Alembert’s formula for fractional telegraph
equations.

2. d’Alembert’s formula for abstract fractional equations

Let X be a Banach space and A be a closed linear densely defined operator on
X. We begin with the definitions of fractional integrals and derivatives.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 is defined
as

Jαt f(t) := (gα ∗ f)(t) =

∫ t

0

gα(t− s)f(s)ds, f ∈ L1([0,+∞);X), t > 0

where

gα(t) =

{
tα−1

Γ(α) , t > 0,

0, t ≤ 0.

Set moreover J0
t f(t) = f(t).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 is
defined as

RLD
α
t f(t) := Dm

t J
m−α
t f(t), t ∈ (0, T )

form−1 < α ≤ m, m is an integer, f ∈ L1((0, T );X), and gm−α∗f ∈Wm,1((0, T );X),
where

Wm,1((0, T );X) := {f | there exists φ ∈ L1((0, T );X) such that

f(t) =

m−1∑
k=0

ckgk+1(t) + (gm ∗ φ)(t), t ∈ (0, T )}.

The Caputo fractional derivative of order α > 0 is defined as

Dα
t f(t) := Jm−αt Dm

t f(t), t ∈ (0, T )

if f ∈Wm,1((0, T );X). Moreover, we define

RLD
α
t f(0) := lim

t→0
RLD

α
t f(t), Dα

t f(0) := lim
t→0

Dα
t f(t)

if the limits exist.

Now we consider the Volterra equation

(2.1) u(t) = f(t) +

∫ t

0

gα(t− s)Au(s)ds, t ≥ 0

where f(t) is a continuous X-valued function.

Definition 2.3. Let u(t) : R+ → X be continuous.
(1) u(t) is called a strong solution of (2.1) if u(t) ∈ D(A) and (2.1) holds for

t ≥ 0;
(2) u(t) is called a mild solution of (2.1) if (gα ∗ u)(t) ∈ D(A) and u(t) =

f(t) +A(gα ∗ u)(t) for t ≥ 0.
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The solution family for (2.1) is defined by [4, 31].

Definition 2.4. A family {Sα(t)}t≥0 ⊂ B(X) is called an α-times resolvent family
for the operator A (or generated by A) if the following conditions are satisfied:

(1) Sα(t)x : R+ → X is continuous for every x ∈ X and Sα(0) = I;
(2) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A) and t ≥ 0;
(3) the resolvent equation

(2.2) Sα(t)x = x+ (gα ∗ Sα)(t)Ax

holds for every x ∈ D(A).

Remark 2.5. Since A is closed and densely defined, it is easy to show that for all
x ∈ X, (gα ∗ Sα)(t)x ∈ D(A) and

(2.3) Sα(t)x = x+A(gα ∗ Sα)(t)x.

It is shown in [31] that the Volterra equation (2.1) is well-posed if and only if
the operator A generates an α-times resolvent family Sα(t), and the mild solution
to (2.1) is given by

(2.4) u(t) =
d

dt

∫ t

0

Sα(t− s)f(s)ds.

In particular, the mild solution to

(2.5) u(t) = x+

∫ t

0

gα(t− s)Au(s)ds

is given by u(t) = Sα(t)x; in addition, if x ∈ D(A), then u(t) is also a strong
solution. By differentiating (2.5) α-times, we get a fractional equation of α-order

(2.6)

{
Dα
t u(t) = Au(t), t > 0

u(0) = x (ut(0) = 0 if 1 < α ≤ 2).

It is also known that the well-posedness of (2.6) is equivalent to that of (2.1), and
thus is equivalent to the existence of an α-times resolvent family Sα(t) for A. In this
case, the unique mild solution of (2.6) is also given by u(t) = Sα(t)x, For details
we refer to [4].

Now we recall the following result on the generation of fractional resolvent fam-
ilies, which is crucial for our decomposition theorem.

Lemma 2.6. [22] Let 0 < α ≤ 2. Suppose that both A and −A generate α/2-times
resolvent families S+

α/2(t) and S−α/2(t), respectively. Then A2 generates an α-times

resolvent family Sα(t), which is given by Sα(t) = 1
2 [S+

α/2(t) + S−α/2(t)].

Remark 2.7. (1) If A generates a C0-group then, by the subordination principle for
fractional resolvent families [4, Theorem 3.1], both A and −A generate α/2-times
resolvent families. Thus the generator of a C0-group satisfies the assumptions in
the above lemma.

(2) Let 1 < α < 2. Suppose that there is some θ > 0 with 0 < θ < min{π2 ,
π
α−

π
2 }

such that

σ(A) ⊂ {z ∈ C :
α

2
(
π

2
+ θ) ≤ | arg z| ≤ π − α

2
(
π

2
+ θ)} =: Γα,θ
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and for every θ′ > θ, there is a constant Mθ′ such that

‖z(z −A)−1‖ ≤Mθ′ , z ∈ C− Γα,θ′ .

This is equivalent to saying that both A and −A are sectorial operators with angle
π− α

2 (π2 +θ). Then by [21, Lemma 2.7], both A and −A generate bounded analytic

α/2-times resolvent families of angle θ, and A2 also generates a bounded analytic
α-times resolvent family of angle θ. The converse is also true by [6, Proposition 5.6].
For the case that α = 2, we recall the fact that the generator of an analytic cosine
function is always a bounded operator. It is interesting here to mention a result
of Fattorini [9]: on a UMD space X, if A2 generates a bounded cosine function,
then A generates a C0-group. It is not clear whether a similar result holds for the
generator of a fractional resolvent family.

Let us begin with the d’Alembert formula for an abstract version of (1.5).

Theorem 2.8. Let 1 < α ≤ 2. Suppose that both A and −A generate α/2-times
resolvent families S+

α/2(t) and S−α/2(t) on X, respectively. Suppose also that φ ∈ X,

ψ ∈ R(A) and ψ = AΨ for some Ψ ∈ D(A). Then the unique mild solution of the
following integro-differential equation

(2.7) u(t) = φ+
tα/2

Γ(1 + α
2 )
ψ +

1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds.

is given by

(2.8) u(t) =
1

2
[S+
α/2(t)φ+ S−α/2(t)φ] +

1

2
[S+
α/2(t)Ψ− S−α/2(t)Ψ].

And the solution u can be decomposed as u = 1
2 (u+ + u−), where u+ and u− are

mild solutions to

(2.9) u+(t) = φ+ Ψ +
1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au+(s)ds, t > 0,

and

(2.10) u−(t) = φ−Ψ− 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au−(s)ds, t > 0,

respectively. Moreover, the corresponding fractional differential equation for (2.8)
is

(2.11)

{
D
α/2
t D

α/2
t u(t) = A2u(t), t > 0

u(0) = φ, D
α/2
t u(0) = ψ,

and the fractional differential equation corresponding to (2.9) and (2.10) are

(2.12)

{
D
α/2
t u+(t) = Au+(t), t > 0

u+(0) = φ+ Ψ.

and

(2.13)

{
D
α/2
t u−(t) = Au−(t), t > 0

u−(0) = φ−Ψ.

respectively.
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Proof. Suppose that u+ and u− are mild solutions of (2.9) and (2.10) respectively.

Then J
α/2
t u+, J

α/2
t u− ∈ D(A) and the integral equation

u+ = φ+ Ψ +AJ
α/2
t u+

and

u− = φ−Ψ−AJα/2t u−

hold. Thus,

u+ + u− = 2φ+AJ
α/2
t (u+ − u−)

= 2φ+AJ
α/2
t [2Ψ +AJ

α/2
t (u+ + u−)];

since Ψ ∈ D(A), this implies that Jαt (u+ + u−) ∈ D(A2) and

u+ + u− = 2φ+ 2J
α/2
t ψ +A2Jαt (u+ + u−).

Therefore, the function u := 1
2 (u+ + u−) is the mild solution for (2.7). Moreover,

since both A and −A generate α/2-times resolvent families,

u+(t) = S+
α/2(t)(φ+ Ψ), u−(t) = S−α/2(t)(φ−Ψ),

this gives the representation (2.8). The uniqueness of the mild solution follows from
the well-posedness of the integro-differential equation

u(t) = y +
1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds.

where y ∈ X, which is guaranteed by Lemma 2.6. The corresponding fractional
differential equations can be derived by differentiation for fractional times. �

Remark 2.9. (1) When α = 2 and A = d/dx on the line, then

S+
1 (t)φ(x) = φ(x+ t), S−1 (t)φ(x) = φ(x− t),

Ψ(x) =
∫ x

0
ψ(y)dy, and

S+
α/2(t)Ψ(x)− S−α/2(t)Ψ(x) =

∫ x+t

0

ψ(y)dy −
∫ x−t

0

ψ(y)dy =

∫ x+t

x−t
ψ(y)dy.

Hence the formula (2.8) is exactly the classical d’Alembert formula (1.2). Thus (2.8)
can be considered as the d’Alembert formula for the abstract integro-differential
equation (2.7).

(2) When A = d/dx on the line, the equations (2.9) and (2.10) are the same as
Fujita’s equation (1.7), so our decomposition can be viewed as the abstract version
of Fujita’s decomposition.

(3) When α = 2, our expression (2.8) reduces to the formula (1.13) in [16,
Chapter 3] given by Krein.

By Lemma 2.6 we can also derive the following result for more general fractional
integro-differential equations.

Theorem 2.10. Let 0 < α ≤ 2, f be a continuous function on X which is in
W 1,1([0, T ], X) for every T > 0, and A a densely defined closed operator on X. If
the two Volterra equations

(2.14) u+
α/2(t) = f(t) +

1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au+
α/2(s)ds, t ≥ 0
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and

(2.15) u−α/2(t) = f(t)− 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au−α/2(s)ds, t ≥ 0

are well-posed, then the Volterra equation

(2.16) uα(t) = f(t) +
1

Γ(α)

∫ t

0

(t− s)α−1A2uα(s)ds, t ≥ 0

is also well-posed. Moreover, the unique mild solution of (2.16) is given by

uα(t) =
1

2
(u+
α/2(t) + u−α/2(t)),

where u+
α/2(t) and u−α/2(t) are mild solutions of (2.14) and (2.15), respectively.

Proof. The well-posedness of (2.14) and (2.15) implies that both A and −A gen-
erate α/2-times resolvent families on X, and we then denote them by S+

α/2(t) and

S−α/2(t) respectively. By Lemma 2.6 A2 generates α-times resolvent family Sα(t),

and therefore the Volterra equation (2.16) is also well-posed. By (2.4) we have the
mild solution for (2.14) and (2.15) are given by

u+
α/2(t) = S+

α/2(t)f(0) +

∫ t

0

S+
α/2(t− s)f ′(s)ds

and

u−α/2(t) = S−α/2(t)f(0) +

∫ t

0

S−α/2(t− s)f ′(s)ds,

respectively, and the mild solution for (2.16) is given by

uα(t) = Sα(t)f(0) +

∫ t

0

Sα(t− s)f ′(s)ds,

therefore our claim follows from the fact that Sα(t) = (S+
α/2(t) + S−α/2(t))/2. �

As a consequence of Theorem 2.10, we have the next decomposition of the solu-
tions to the following integro-differential equations mentioned in Introduction, and
also for their corresponding fractional equations with Caputo derivatives.

Theorem 2.11. Let 1 < α ≤ 2, α/2 ≤ β ≤ α. Suppose that both A and −A
generate α/2-times resolvent families S+

α/2(t) and S−α/2(t) on X, respectively. Then

for φ, ψ ∈ X, the integro-differential equation

(2.17) u(t) = φ+
tβ

Γ(1 + β)
ψ +

1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds, t > 0

has a unique mild solution which is given by

(2.18) u(t) =
1

2
(S+
α/2(t)φ+ S−α/2(t)φ) +

1

2
(Jβt S

+
α/2(t)ψ + Jβt S

−
α/2(t)ψ),

and u(t) can be decomposed into

u(t) =
1

2
(u+(t) + u−(t)),

where u+(t) and u−(t) are mild solutions to

(2.19) u+(t) = φ+
tβ

Γ(1 + β)
ψ +

1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au+(s)ds
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and

(2.20) u−(t) = φ+
tβ

Γ(1 + β)
ψ − 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Au−(s)ds

respectively. Moreover, when β = 1, (2.18) is

(2.21) u(t) =
1

2
[S+
α/2(t)φ+ S−α/2(t)φ] +

1

2

∫ t

0

[S+
α/2(s)ψ + S−α/2(s)ψ]ds,

which gives the unique mild solution to the fractional equation

(2.22)

{
Dα
t u(t) = A2u(t), t > 0

u(0) = φ, u′t(0) = ψ;

if β 6= 1, (2.18) gives the unique mild solution to the fractional equation

(2.23)

{
Dα
t u(t) = A2u(t) + tβ−α

Γ(β−α+1)ψ, t > 0

u(0) = φ, Dβ
t u(0) = ψ.

In both cases u+(t) and u−(t) given by (2.19) and (2.20), respctively, are mild
solutions to

(2.24)

{
D
α/2
t u+(t) = Au+(t) + tβ−α/2

Γ(β−α/2+1)ψ, t > 0

u+(0) = φ,

and

(2.25)

{
D
α/2
t u−(t) = −Au−(t) + tβ−α/2

Γ(β−α2 +1)ψ, t > 0

u−(0) = φ,

respectively. If φ ∈ D(A2) and ψ ∈ D(A), then both the above mild solutions are
strong solutions.

Proof. By taking f(t) = φ + tβ

Γ(1+β)ψ in Theorem 2.10, we have that the mild

solution to (2.17) is given by

u(t) = Sα(t)φ+

∫ t

0

Sα(t− s)s
β−1

Γ(β)
ψds = Sα(t)φ+ (Jβt Sα)(t)ψ.

This gives (2.18) since Sα(t) = 1
2 (S+

α/2(t)φ+ S−α/2(t)). Equations (2.22) and (2.23)

follow by differentiating (2.17) α-times, and (2.24), (2.25) hold by differentiating
(2.19), (2.20) α/2-times, respectively.

Now for φ ∈ D(A2) and ψ ∈ D(A), we need only show that u(t) is a strong
solution of (2.17). Indeed, by the resolvent equation (2.2) and Remark 2.5 we have

u(t) = Sα(t)φ+ (Jβt Sα)(t)ψ

= φ+ (gα ∗ Sα)(t)A2φ+ Jβt (ψ +A2(gα ∗ Sα)(t)ψ)

= φ+
tβ

Γ(β + 1)
ψ + (gα ∗A2Sα)(t)φ+ Jβt A

2(gα ∗ Sα)(t)ψ.

To show that u is a strong solution it remains to show that (Jβt Sα)(t)ψ ∈ D(A2)

and then Jβt A
2Jαt Sα(t)ψ = Jαt A

2Jβt Sα(t)φ by the closedness of the operator A.
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Since β ≥ α/2, by the semigroup properties of Riemann-Liouville integrals and the
resolvent equation,

(Jβt Sα)(t)Aψ =
1

2
(Jβt S

+
α/2(t)Aψ + Jβt S

−
α/2(t)Aψ)

=
1

2
J
β−α/2
t (J

α/2
t S+

α/2(t)Aψ + J
α/2
t S−α/2(t)Aψ)

=
1

2
J
β−α/2
t (S+

α/2(t)ψ − ψ + ψ − S−α/2(t)ψ)

=
1

2
J
β−α/2
t (S+

α/2(t)ψ − S−α/2(t)ψ),

and this implies that (Jβt Sα)(t)ψ ∈ D(A2). �

Remark 2.12. (1) When α = 2, β = 1 and A = d/dx on the line, then

S+
1 (t)φ(x) = φ(x+ t), S−1 (t)φ(x) = φ(x− t),

and∫ t

0

[S+
α/2(s)ψ(x) + S−α/2(s)ψ(x)]ds =

∫ t

0

[ψ(x+ s) + ψ(x− s)]ds =

∫ x+t

x−t
ψ(y)dy,

so the formula (2.18) is exactly the classical d’Alembert’s formula (1.2). It is there-
fore reasonable to call (2.18) the d’Alembert formula for (2.17).

(2) When β = 1, the equation (2.17) becomes

(2.26) u(t) = φ+ tψ +
1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds.

The identity for u in (2.21) could be considered as the d’Alembert formula for
Volterra equation (2.26).

(3) When β = α/2, then (2.17) is in fact (2.7). The formula

u(t) =
1

2
(S+
α/2(t)φ+ S−α/2(t)φ) +

1

2
(J
α/2
t S+

α/2(t)ψ + J
α/2
t S−α/2(t)ψ)

is then an alternative d’Alembert formula for (2.7), and a generalization of (1.6).
Their difference will be clarified in Remark 2.14.

(4) The α-order equation{
Dα
t u(t) = A2u(t), t > 0

u(0) = φ, u′t(0) = 0

is equivalent to the sequential α-order equation{
D
α/2
t D

α/2
t u(t) = A2u(t), t > 0

u(0) = φ, D
α/2
t (0) = 0;

their corresponding integral equation is

u(t) = φ+
1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds.

The solution is given by u(t) = 1
2 (S+

α/2(t)φ+ S−α/2(t)φ).

On the other hand, motivated by the analysis in the Introduction, we connect
the integro-differential equation (2.17) with a fractional differential equation of
sequential Caputo derivatives [30].
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Theorem 2.13. Let 1 < α ≤ 2 and α/2 ≤ β ≤ α. Suppose that both A and
−A generate α/2-times resolvent families S+

α/2(t) and S−α/2(t) on X, respectively.

Suppose also that φ ∈ D(A2) and ψ ∈ D(A). Then (2.18) gives a strong solution
to the sequential α-order Cauchy problem

(2.27)

{
Dα−β
t Dβ

t u(t) = A2u(t), t > 0

u(0) = φ, Dβ
t u(0) = ψ.

Proof. Note that for φ ∈ D(A2) by applying the resolvent equation (2.2) twice we
have

S±α/2(t)φ = φ± (gα/2 ∗ S±α/2)(t)Aφ

= φ± (gα/2 ∗ 1)(t)Aφ+ (gα/2 ∗ gα/2 ∗ S±α/2)(t)A2φ

= φ± gα/2+1(t)Aφ+ (gα ∗ S±α/2)(t)A2φ,

thus S±α/2(t)φ are β-order differentiable and

Dβ
t S
±
α/2(t)φ = ±gα/2+1−β(t)Aφ+ (gα−β ∗ S±α/2)(t)A2φ.

By summing the above two identities we get

Dβ
t (S+

α/2(t)φ+ S−α/2(t)φ) = gα−β ∗ (S+
α/2 + S−α/2)(t)A2φ,

from which it follows that Dβ
t (S+

α/2(t)φ + S−α/2(t)φ) is (α − β)-order differentiable

and

Dα−β
t Dβ

t (S+
α/2(t)φ+ S−α/2(t)φ) = (S+

α/2 + S−α/2)(t)A2φ

= A2(S+
α/2(t)φ+ S−α/2(t)φ),

(2.28)

since A commutes with S±α/2(t). For ψ ∈ D(A), as in the proof of Theorem 2.11 we

have (Jβt S
+
α/2(t)ψ + Jβt S

−
α/2(t)ψ) ∈ D(A2) and

(2.29) A2(Jβt S
+
α/2(t)ψ + Jβt S

−
α/2(t)ψ) = J

β−α/2
t (S+

α/2(t)Aψ − S−α/2(t)Aψ).

On the other hand, since

Jβt S
±
α/2(t)ψ = gβ+1(t)ψ ± Jβ+α/2

t S+
α/2(t)Aψ,

we have

Dβ
t J

β
t S
±
α/2(t)ψ = ψ ± Jα/2t S+

α/2(t)Aψ = S±α/2ψ,

and thus

(2.30) Dα−β
t Dβ

t (Jβt S
+
α/2(t)ψ + Jβt S

−
α/2(t)ψ) = J

β−α/2
t (S+

α/2(t)Aψ − S−α/2(t)Aψ).

Combining (2.28), (2.29) and (2.30) we have proven that u(t) defined by (2.18) is
a strong solution of (2.27), where the initial conditions are easy to check. �

Remark 2.14. As a direct consequence, we have the following sequential fractional
differential equation corresponding to (2.7):{

D
α/2
t D

α/2
t u(t) = A2u(t), t > 0

u(0) = φ, D
α/2
t u(0) = ψ.
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The solution can be decomposed as half of the sum of the solutions to{
D
α/2
t u+(t) = Au+(t) + ψ, t > 0

u+(0) = φ,

and {
D
α/2
t u−(t) = −Au−(t) + ψ, t > 0

u−(0) = φ.

In case of A = ∂/∂x and α = 2, this means that we can decompose the solution of
the traditional wave equation (1.1) into the half sum of solutions to the following
two first-order nonhomogeneous equation{

u+
t (t, x) = u+

x (t, x) + ψ(x)

u+
0 (t, x) = φ(x)

and

{
u−t (t, x) = −u−x (t, x) + ψ(x)

u−0 (t, x) = φ(x).

In other words, Fujita’s decomposition means that one can decompose the solution
of the wave equation into the half sum of

u+(x, t) = φ(x+ t) +

∫ x+t

0

ψ(y)dy and u−(x, t) = φ(x− t)−
∫ x−t

0

ψ(y)dy;

while our decomposition is

u+(x, t) = φ(x+ t) +

∫ x+t

x

ψ(y)dy and u−(x, t) = φ(x− t) +

∫ x

x−t
ψ(y)dy.

Finally in this section, let us consider the Riemann-Liouville fractional differen-
tial equation

(2.31)

{
RLD

α
t u(t) = A2u(t), t > 0

(g2−α ∗ u)(0) = 0, (g2−α ∗ u)′(0) = ψ

with 1 < α ≤ 2. By integration with respect to t for α-times, we get the corre-
sponding integro-differential equation as follows

u(t) =
tα−1

Γ(α)
ψ +

1

Γ(α)

∫ t

0

(t− s)α−1A2u(s)ds.

If A2 generates an α-times resolvent family Sα(t), then the solution u is given by
Jα−1
t Sα(t)ψ [19]. Indeed, it is easy to verify that

u(t) = Jα−1
t Sα(t)ψ

= Jα−1
t (ψ +A2(gα ∗ Sα)ψ)

= gα(t)ψ +A2(gα ∗ Jα−1
t Sα)ψ

= gα(t)ψ +A2(gα ∗ u)(t).

On the other hand,

u(t) = Jα−1
t Sα(t)ψ =

1

2
Jα−1
t (S+

α/2(t) + S−α/2(t))ψ

where Jα−1
t S+

α/2(t)ψ and Jα−1
t S−α/2(t)ψ are solutions of

v(t) =
tα−1

Γ(α)
ψ +

1

Γ(α/2)

∫ t

0

(t− s)α/2−1Av(s)ds.
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and

v(t) =
tα−1

Γ(α)
ψ − 1

Γ(α/2)

∫ t

0

(t− s)α/2−1Av(s)ds.

respectively, and the corresponding Riemann-Liouville fractional equations are

(2.32)

{
RLD

α/2
t v(t) = Av(t) + tα/2−1

Γ(α/2)ψ, t > 0

(g1−α/2 ∗ v)(0) = 0

and

(2.33)

{
RLD

α/2
t v(t) = −Av(t) + tα/2−1

Γ(α/2)ψ, t > 0

(g1−α/2 ∗ v)(0) = 0

respectively.
In summary, we have

Theorem 2.15. Let 1 < α ≤ 2. If both A and −A generate α/2-times resolvent
families S+

α/2(t) and S−α/2(t) on X, respectively, then the unique mild solution of the

α-order Riemann-Liouville fractional Cauchy problem (2.31) with ψ ∈ X is given
by

(2.34) uα(t) =
1

2
(Jα−1
t S+

α/2(t)ψ + Jα−1
t S−α/2(t)ψ) =:

1

2
(u+
α/2(t) + u−α/2(t)),

where u+
α/2(t) and u−α/2(t) are mild solution to (2.32) and (2.33), respectively.

3. Examples

In this section, we will illustrate the interpretation and application of our ab-
stract setting with several examples. The inverse of a standard stable subordinator
will play an important role in our examples, therefore we will give a brief of the
connection with time-fractional differential equation for reader’s convenience. See
[25, 26] for more details.

Throughout this section, we define St as the following processes on {x : x ≥ 0}
for 0 < α ≤ 2:

(i) When 0 < α < 2, St is a standard α/2-stable subordinator, a Lévy process
such that E exp{−λSt} = exp{−tλα/2};

(ii) When α = 2, St is a deterministic continuous process with uniform velocity
1, starting from 0. Indeed, St in this case can be regarded as a degenerate
stable subordinator with density function δ(x − t) and E exp{−λSt} =
exp{−tλ}. For unity, we will use 1-stable subordinator to denote St for
α = 2.

Then the inverse α/2-stable subordinator Yα/2(t) = inf{u > 0 : Su > t} is a
continuous, nondecreasing and nonnegative process with Yα/2(0) = 0, and

E exp{−sYα/2(t)} = Eα/2(−stα/2),

where Eα(t) =
∑∞
n=0

tn

Γ(αn+1) is the Mittag-Leffler function. Denote the probability

density function of Yα/2(t) by ϕα/2(t, ·), then we have

(3.1)

∫ ∞
0

e−λtϕα/2(t, s)dt = λ
α
2−1e−sλ

α/2

.
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From the above identity, it is not hard to show that for a suitable function f the
following holds for λ large enough:

(3.2)

∫ ∞
0

e−λtE[f(Yα/2(t))]dt = λ
α
2−1

∫ ∞
0

f(s)e−sλ
α/2

ds.

On the other hand, since the first-order derivative operator ∂xf(t, x) = fx(t, x)
generates a C0-semigroup given by T (t)φ(x) = φ(x + t), by the subordination
principle for fractional resolvent family [4], for 1 < α < 2, the α/2-times resolvent
family S+

α/2(t) is given by

S+
α/2(t)φ(x) =

∫ ∞
0

ϕα/2(t, s)T (s)φ(x)ds =

∫ ∞
0

ϕα/2(t, s)φ(s+ x)ds,

It follows that∫ ∞
0

e−λtS+
α/2(t)φ(x)dt = λ

α
2−1

∫ ∞
0

φ(s+ x)e−sλ
α/2

ds

from (3.1).
Comparing with (3.2) and using the uniqueness of the Laplace transform, we

have

(3.3) S+
α/2(t)φ(x) = E[φ(x+ Yα/2(t))].

This is to say that E[φ(x + Yα/2(t))] gives the unique solution to the fractional
differential equation

(3.4)

{
D
α/2
t u(t, x) = ux(t, x), t > 0, x ∈ R

u(0, x) = φ(x).

Similarly, the unique solution to the fractional differential equation

(3.5)

{
D
α/2
t u(t, x) = −ux(t, x), t > 0, x ∈ R

u(0, x) = φ(x)

is given by

(3.6) S−α/2(t)φ(x) = E[φ(x− Yα/2(t))].

The fundamental solution to equation (3.5) is the probability density function of an
inverse α/2-stable subordinator. Meanwhile, the fundamental solution to equation
(3.4) is the reflected density (x 7→ −x) of an inverse α/2-stable subordinator.

Example 3.1. Let 1 < α ≤ 2. By Theorem 2.8 and the above analysis, the solution
of

(3.7) u(t, x) = φ(x) +
tα/2

Γ(1 + α/2)
ψ(x) +

1

Γ(α)

∫ t

0

(t− s)α−1uxx(s, x)ds

or

(3.8)

{
D
α/2
t D

α/2
t u(t, x) = uxx(t, x), t > 0, x ∈ R

u(0, x) = φ(x), D
α/2
t u(0, x) = ψ(x)

can be represented as

(3.9) u(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))] +

1

2
E

∫ x+Yα/2(t)

x−Yα/2(t)

ψ(y)dy.
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This is the same as Fujita’s formula (1.6). Thus the motion (or the evolution) of
u(t, x) governed by equation (3.8) is mixed with two components: positive direction
and negative direction on line R. The solution of{

D
α/2
t u(t, x) = ux(t, x), t > 0, x ∈ R

u(0, x) = φ(x) +
∫ x

0
ψ(y)dy

gives the motion on positive direction, while the solution of equation{
D
α/2
t u(t, x) = −ux(t, x), t > 0, x ∈ R

u(0, x) = φ(x)−
∫ x

0
ψ(y)dy

gives the motion on negative direction.

The above interpretation, adapted from [24], is consistent with the classical
d’Alembert formula for the one-dimensional wave equation on line: decompose the
wave equation into two transport equations with positive direction and negative
direction. Moreover, the fractional d’Alembert formula indicates the ‘random al-
ternative of direction’ or ‘wander in positive or negative direction’ for the motion
governed by one dimensional fractional wave equation [11].

Example 3.2. Here we consider the following integro-differential equation

(3.10) u(t, x) = φ(x) +
tβ

Γ(1 + β)
ψ(x) +

1

Γ(α)

∫ t

0

(t− s)α−1uxx(s, x)ds

and the corresponding fractional Cauchy problem

(3.11)

{
Dα−β
t Dβ

t u(t, x) = uxx(t, x), t > 0

u(0, x) = φ(x), Dβ
t u(0, x) = ψ(x)

where α/2 ≤ β ≤ α. We will explore the connection between their fractional
d’Alembert solution and its stochastic interpretation.

To start with, we first claim the following formula holds:

(3.12) (gβ ∗ fα/2)(t, y) =

∫ +∞

y

(gβ−α/2 ∗ fα/2)(t, z)dz, t, y > 0.

where fα/2(t, y) is the probability density function of the inverse α/2-stable subordi-
nator Yα/2(t). By the properties of the inverse stable subordinator [25], the Laplace
transform on variable t of the left side is

ĝβ(λ)f̂α/2(λ, y) = λ−β · λα/2−1e−λ
α/2y;

on the other hand, the Laplace transform on variable t of the right side is∫ +∞

0

e−λtdt

∫ +∞

y

(gβ−α/2 ∗ fα/2)(t, z)dz

=

∫ +∞

y

dz

∫ +∞

0

e−λt(gβ−α/2 ∗ fα/2)(t, z)dt

=

∫ +∞

y

λ−β+α/2 · λα/2−1e−λ
α/2zdz

= λ−β · λα/2−1e−λ
α/2y.

Therefore we draw the conclusion by the uniqueness of the Laplace transform.
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Also, the equation (3.12) is formally equivalent to

D
α/2
t (gβ−α/2 ∗ fα/2)(t, y) = − d

dy
(gβ−α/2 ∗ fα/2)(t, y),

which reduces to the governing equation for the inverse α/2-stable subordinator
when β = α/2. The term (gβ−α/2 ∗ fα/2)(t, y) is not probability density if β 6=
α/2. However, for any α/2 ≤ β ≤ α, it is easy to see (gβ−α/2 ∗ fα/2)(t, y)

is positive and could be normalized as (g1+β−α/2(t))−1(gβ−α/2 ∗ fα/2)(t, y), i.e.,∫∞
0

(g1+β−α/2(t))−1(gβ−α/2 ∗ fα/2)(t, y)dy = 1. We denote the corresponding ran-
dom variables by Hβ(t), and note that Hβ(0) = 0 almost surely.

Let S+
α/2(t) and S−α/2(t) be given by (3.3) and (3.6), respectively. By Theorem

2.11, the solution of (3.10) can be represented as

u(t, x) =
1

2
(S+
α/2(t) + S−α/2(t))φ(x) +

1

2
(Jβt S

+
α/2(t)ψ(x) + Jβt S

−
α/2(t)ψ(x)).

By formula (3.12) we have

Jβt S
+
α/2(t)ψ(x) =

∫ t

0

gβ(t− s)E[ψ(x+ Yα/2(s))]ds

=

∫ t

0

gβ(t− s)
∫ ∞

0

ψ(x+ y)fα/2(s, y)dyds

=

∫ ∞
0

ψ(x+ y)

∫ t

0

gβ(t− s)fα/2(s, y)dsdy

=

∫ ∞
0

ψ(x+ y)

∫ ∞
y

(gβ−α/2 ∗ fα/2)(t, z)dzdy

=

∫ ∞
x

ψ(y)dy

∫ ∞
y−x

(gβ−α/2 ∗ fα/2)(t, z)dz

=

∫ ∞
0

(gβ−α/2 ∗ fα/2)(t, z)dz

∫ x+z

x

ψ(y)dy

= g1+β−α/2(t)E[Ψ(x+Hβ(t))]−
∫ ∞

0

Ψ(y)(gβ−α/2 ∗ fα/2)(t, z)dz

where Ψ(x) =
∫ x

0
ψ(y)dy; similarly we have

Jβt S
−
α/2(t)ψ(x) = −g1+β−α/2(t)E[Ψ(x−Hβ(t))] +

∫ ∞
0

Ψ(x)(gβ−α/2 ∗ fα/2)(t, z)dz.

Therefore,

u(t, x) =
1

2
(S+
α/2(t) + S−α/2(t))φ(x)

+
1

2
g1+β−α/2(t)(E[Ψ(x+Hβ(t))]−E[Ψ(x−Hβ(t))])

=
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))] +

1

2
g1+β−α/2(t)E

∫ x+Hβ(t)

x−Hβ(t)

ψ(y)dy.

Roughly speaking, the fractional d’Alembert’s formula is essentially based on the
properties of the square root of A2f(x) = f ′′(x), rather than the order of the initial
values. The formula and stochastic interpretation are clean and elegant when β =
α/2, because Hβ(t) = Yα/2(t) and g1+β−α/2(t) = 1 in this case. The above formula
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is then consistent with the formula (1.6) of Fujita. However, we are unable to
clarify the interpretation for the other Hβ(t).

As a continuation of Example 3.2, we shall compare two special cases: β = α/2
and β = 1.

Example 3.3. The solution to (3.7) could be represented in two different ways:

u(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))] +

1

2
E

∫ x+Yα/2(t)

x−Yα/2(t)

ψ(y)dy

and

u(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))]

+
1

2

{ 1

Γ(α/2)

∫ t

0

(t− s)α/2−1E[ψ(x+ Yα/2(s)) + ψ(x− Yα/2(s))]ds
}
.

The solution to the integro-differential equation

(3.13) v(t, x) = φ(x) + tψ(x) +
1

Γ(α)

∫ t

0

(t− s)α−1vxx(s, x)ds.

could be represented in two different ways:

v(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))] +

1

2
g2−α/2(t)E

∫ x+H1(t)

x−H1(t)

ψ(y)dy

and

v(t, x) =
1

2
E[φ(x+ Yα/2(t)) + φ(x− Yα/2(t))]

+
1

2

∫ t

0

E[ψ(x+ Yα/2(s)) + ψ(x− Yα/2(s))]ds.

If a more compact form for d’Alembert’s solution is needed, we should choose the
first representation in the case β = α/2, and the second kind representation in the
case β = 1.

We will study the d’Alembert solution to differential-difference equations in the
next example.

Example 3.4. Consider the first-order backward difference operator

(3.14) Aφ(x) = φ(x)− φ(x− 1), φ ∈ C0(R), x ∈ R.

It is clear that A is a bounded operator with ‖A‖ = 2, and A generates a bounded C0-

semigroup etA which is represented as etAφ(x) = et
∑∞
k=0

(−t)kφ(x−k)
k! . Therefore,

A generates an α/2-times resolvent family S+
α/2(t) by the subordination principle:

(3.15) S+
α/2(t)φ(x) =

∫ ∞
0

ϕα/2(t, s)esAφ(x)ds, 0 < α ≤ 2

where ϕα/2(t, ·) is given by (3.1). Analogously, the operator (−A) generates a

bounded C0-semigroup e−tAφ(x) = e−t
∑∞
k=0

tkφ(x−k)
k! and α/2-times resolvent fam-

ily

(3.16) S−α/2(t)φ(x) =

∫ ∞
0

ϕα/2(t, s)e−sAφ(x)ds.
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In other words, S+
α/2(t)φ(x) and S−α/2(t)φ(x) satisfy the equations

(3.17)

{
D
α/2
t u+(t, x) = Au+(t, x), t > 0, x ∈ R

u+(0, x) = φ(x)

and

(3.18)

{
D
α/2
t u−(t, x) = −Au−(t, x), t > 0, x ∈ R

u−(0, x) = φ(x)

respectively.
It is easy to see A2φ(x) = φ(x) − 2φ(x − 1) + φ(x − 2). Next we introduce the

following wave-type differential-difference equation

(3.19)

{
Dα
t u(t, x) = A2u(t, x), t > 0, x ∈ R

u(0, x) = φ(x), ux(0, x) = 0

in which 1 < α ≤ 2. By Theorem 2.11 the solution of equation (3.19) can be
represented as

(3.20) u(t, x) =
1

2
[S+
α/2(t)φ(x) + S−α/2(t)φ(x)].

Next we consider the discrete version of Example 3.4, which is related to the
time-fractional Poisson process [18, 23, 27].

Example 3.5. For 1 < α ≤ 2, consider a wave-type differential-difference equation
on the integers:

(3.21)


D
α/2
t D

α/2
t p(t, k) = p(t, k)− 2p(t, k − 1) + p(t, k − 2), t > 0, k ∈ Z

p(0, 0) = 1

p(0, k) = 0, k 6= 0

D
α/2
t p(0, k) = 0.

The solution for (3.21) can be represented as

(3.22) pα(t, k) =
1

2
(p+
α/2(t, k) + p−α/2(t, k)),

in which p+
α/2(t, k) and p−α/2(t, k) are the solutions for

(3.23)


D
α/2
t p+

α/2(t, k) = p+
α/2(t, k)− p+

α/2(t, k − 1), t > 0, k ∈ Z
p+
α/2(0, 0) = 1

p+
α/2(0, k) = 0, k 6= 0

and

(3.24)


D
α/2
t p−α/2(t, k) = −

[
p−α/2(t, k)− p−α/2(t, k − 1)

]
, t > 0, k ∈ Z

p−α/2(0, 0) = 1

p−α/2(0, k) = 0, k 6= 0

respectively.
If k is restricted to non-negative integers, then equation (3.24) governs the time

fractional Poisson process, see [18, 23, 27] and references therein. The time frac-
tional Poisson process governed by (3.24) is a non-decreasing counting process
N−(t), and p−α/2(t, k) is the probability p−α/2(t, k) = P (N−(t) = k). Similarly,
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we can regard equation (3.23) as the governing equation for the (negative) counting
process N+(t) which is a non-increasing process taking values in the non-positive
integers.

Therefore, the d’Alembert solution (3.22) indicates that the stochastic process
N(t) governed by (3.21) is a sum of the (positive and negative) time fractional
Poisson processes N+(t) and N−(t), and we may consider N(t) as a wave-type
fractional Poisson process.

The d’Alembert formula solution to evolutionary differential equations can also
be realized in higher dimensions, as we will illustrate in the next example. The
decomposition is related to the fractional Schrödinger equation.

Example 3.6. Consider the following time fractional diffusion-wave equation

(3.25)


Dα
t u(t, x) = ∆u(t, x), t > 0, x ∈ Rn,

u(0, x) = φ(x), ut(0, x) = 0,

lim
|x|→∞

u(t, x) = 0

where 1 < α ≤ 2 and φ ∈ L2(Rn). For simplicity, we will only study the mild
solution on L2(Rn).

Since ∆ generates cosine function C(t) on L2(Rn) ([2]), it also generates an
α-times fractional resolvent family Sα(t) on L2(Rn) by subordination principle and

Sα(t) =

∫ ∞
0

ϕα/2(t, s)C(s)ds, 1 < α ≤ 2

where ϕα/2(t, ·) is given by (3.1). Then the mild solution to (3.25) can be repre-
sented as

u(t, x) = Sα(t)φ(x).

Especially, u(t, x) = C(t)φ(x) when α = 2.
Define −(−∆)α/2 as the usual Riesz fractional Laplacian operator, i.e.,

−(−∆)α/2f(x) = (2π)−n
∫
Rn
eiξ·x|ξ|αf̂(ξ)dξ,

where f̂(ξ) =
∫
Rn e

−iξ·xf(x)dx.

Let A = i[−(−∆)1/2] and −A = −i[−(−∆)1/2]. Based on the Theorem 3.16.7 in
[2], we obtain the following conclusion: (±A)2 = ∆, A and −A generate C0-group
U(t) and U(−t) on L2(Rn) respectively, and the group reduction formula

C(t) =
1

2
(U(t) + U(−t)).

Therefore the mild solution to (3.25) can also be represented as

(3.26) u(t, x) =
1

2

( ∫ ∞
0

ϕα/2(t, s)U(s)φ(x)ds+

∫ ∞
0

ϕα/2(t, s)U(−s)φ(x)ds
)

which can be regarded as the d’Alembert formula solution in higher dimensions.
Here

∫∞
0
ϕα/2(t, s)U(s)φ(x)ds and

∫∞
0
ϕα/2(t, s)U(−s)φ(x)ds are solutions to

(3.27)

{
D
α/2
t u+(t, x) = Au+(t, x) = i[−(−∆)1/2]u+(t, x), t > 0, x ∈ Rn

u+(0, x) = φ(x)
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and

(3.28)

{
D
α/2
t u−(t, x) = −Au−(t, x) = −i[−(−∆)1/2]u−(t, x), t > 0, x ∈ Rn

u−(0, x) = φ(x)

respectively.
In the following we shall consider the special case α = 2. When α = 2, equation

(3.28) is a special case of the free space-fractional Schrödinger equation [5, 12, 17],
and (3.27) is the time reverse of (3.28). By taking Fourier transforms, we get that
the fundamental solutions to (3.27) and (3.28) can be represented as

u+
F (t, x) = (2π)−n

∫
Rn
eiξ·xe−i|ξ|tdξ

and

u−F (t, x) = (2π)−n
∫
Rn
eiξ·xei|ξ|tdξ

respectively.
We have not been able to obtain an explicit closed expression for u+

F (t, x) or

u−F (t, x) in the general n-dimensional case even in the sense of distributions. How-
ever, we can compute their sum in one dimension and reduce it to the classical
d’Alembert formula for the wave equation. More precisely, when n = 1, we have

u+
F (t, x) + u−F (t, x)

=
1

2π

∫ +∞

−∞
eiξxe−i|ξ|tdξ +

1

2π

∫ +∞

−∞
eiξxei|ξ|tdξ

=
1

2π

∫ +∞

0

eiξxe−iξtdξ +
1

2π

∫ 0

−∞
eiξxeiξtdξ

+
1

2π

∫ +∞

0

eiξxeiξtdξ +
1

2π

∫ 0

−∞
eiξxe−iξtdξ

=
1

2π

∫ +∞

−∞
eiξxe−iξtdξ +

1

2π

∫ +∞

−∞
eiξxeiξtdξ

= δ(x− t) + δ(x+ t).

Therefore the solution (3.26) to (3.25) is

u(t, x) =
1

2
(U(t)φ(x) + U(−t)φ(x)) =

1

2
(φ(x− t) + φ(x+ t)),

which is the same as the classical d’Alembert solution.

4. D’Alembert formula for fractional telegraph equations

It was obtained by Kac [13, 14] that for the telegraph equation

(4.1)

{
∂2u(t,x)
∂t2 + 2h∂u(t,x)

∂t = c2 ∂
2u(t,x)
∂x2 , t > 0;

u(0, x) = φ(x), u′t(0, x) = 0.

the solution is given by

(4.2) u(t, x) =
1

2
E[φ(x+ cξh(t)) + φ(x− cξh(t))],
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where

ξh(t) =

∫ t

0

(−1)Nh(s)ds, t ≥ 0

and Nh(t) is a Poisson process with parameter h, that is, P{Nh(t) = k} = hktk

k! e
−ht.

When h = 0, we have Nh(t) ≡ 0 and ξh(t) = t, then (4.1) and (4.2) are reduced to
the classical wave equation and d’Alembert solution respectively. Therefore, (4.2)
can be regarded as the d’Alembert formula solution for the telegraph equation.

We may also give the d’Alembert’s formula solution for the (sequential Caputo)
fractional telegraph equation with proper initial conditions. Let 1 < α ≤ 2, consider
the following fractional telegraph equation:

(4.3)

{
D
α/2
t D

α/2
t u(t) + 2hD

α/2
t u(t) = Au(t) t > 0;

u(0) = φ, D
α/2
t u(0) = ψ.

Formally, the equation (4.3) can be rewritten as{
(D

α/2
t + h)2u(t) = (A+ h2)u(t) = B2u(t)

u(0) = φ, D
α/2
t u(0) = ψ,

if there is an operatorB satisfyingA+h2 = B2. Therefore, the operatorD
α/2
t D

α/2
t +

2hD
α/2
t −A can be decomposed into the product of D

α/2
t +h+B and D

α/2
t +h−B.

We will then study the relations between the solution of (4.3) and the solutions of

(4.4)

{
D
α/2
t u+

α/2(t) = (B − h)u+
α/2(t),

u+
α/2(0) = φ+B−1(ψ + hφ)

and

(4.5)

{
D
α/2
t u−α/2(t) = (−B − h)u−α/2(t),

u−α/2(0) = φ−B−1(ψ + hφ)

when ψ + hφ is in the range of B.

Theorem 4.1. Suppose that B is an operator satisfying B2 = A + h2, and both
B−h and −B−h generate α/2 times resolvent families S+

α/2(t) and S−α/2(t) on X,

respectively. Then for φ ∈ D(A), and ψ+ hφ = Bf for some f ∈ D(A2) the strong
solutions of (4.4) and (4.5) can be expressed as

(4.6) u+
α/2(t) = S+

α/2(t)φ+ S+
α/2(t)B−1(ψ + hφ)

and

(4.7) u−α/2(t) = S−α/2(t)φ− S−α/2(t)B−1(ψ + hφ)

respectively, and the d’Alembert’s formula solution for (4.3) reads:
(4.8)

uα(t) =
1

2
[S+
α/2(t)φ+ S−α/2(t)φ] +

1

2
[S+
α/2(t)B−1(ψ + hφ)− S−α/2(t)B−1(ψ + hφ)].
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Proof. First note that both φ and B−1(ψ + hφ) are in the domain of B2. Let
uα(t) = 1

2 (u+
α/2(t) + u−α/2(t)). Then we have

(D
α/2
t + h)2uα(t)

=
1

2
(D

α/2
t + h)(D

α/2
t + h)(u+

α/2(t) + u−α/2(t))

=
1

2
(D

α/2
t + h)(D

α/2
t + h)u+

α/2(t) +
1

2
(D

α/2
t + h)(D

α/2
t + h)u−α/2(t)

=
1

2
(D

α/2
t + h)Bu+

α/2(t)− 1

2
(D

α/2
t + h)Bu−α/2(t)

=
1

2
B(D

α/2
t + h)u+

α/2(t)− 1

2
B(D

α/2
t + h)u−α/2(t)

=
1

2
B2(u+

α/2(t) + u−α/2(t))

= B2uα(t).

Moreover,

uα(0) =
1

2
[u+
α/2(0) + u−α/2(0)] =

1

2
[φ+B−1(ψ + hφ) + φ−B−1(ψ + hφ)] = φ.

Finally, we have

2 lim
t→0

(D
α/2
t uα)(t) = lim

t→0
(D

α/2
t u+

α/2)(t) + lim
t→0

(D
α/2
t u−α/2)(t)

= Bu+
α/2(0)− hu+

α/2(0)−Bu−α/2(0)− hu−α/2(0)

= B[B−1(ψ + hφ) +B−1(ψ + hφ)]− h(u+
α/2(0) + u−α/2(0))

= 2ψ + 2hφ− 2hφ = 2ψ.

Thus (4.8) is the strong solution of (4.3). �

Remark 4.2. (1) When h = 0, Theorem 4.1 reduces to Theorem 2.8.
(2) Suppose that −(ω0 + A) is a sectorial operator with angle 0 < ϕ < π − πα

for some constant ω0 > 0. Then h2 + A generates a bounded analytic α-times
resolvent family for each constant h satisfying |h| ≤ √ω0. Let B = i[−(h2 +A)]1/2,
then (±B)2 = A + h2, B is invertible, and ±B generate bounded analytic α/2-
times resolvent families. Therefore, both B−h and −B−h generate exponentially
bounded α/2-times resolvent family. See [20, Section 7] for more details.

Example 4.3. Let 1 < α ≤ 2. Consider

(4.9)

{
D
α/2
t D

α/2
t u(t, x) + 2hD

α/2
t u(t, x) = c2 ∂

2u(t,x)
∂x2 t > 0, x ∈ R;

u(0, x) = φ(x), D
α/2
t u(0, x) = 0.

which is equivalent to

(4.10)

{
Dα
t u(t, x) + 2hD

α/2
t u(t, x) = c2 ∂

2u(t,x)
∂x2 t > 0, x ∈ R;

u(0, x) = φ(x), ut(0, x) = 0.

Denote by A = c2 d2

dx2 . Then the conditions in Theorem 4.1 and Remark 4.2 are
fulfilled. Therefore the solution to (4.9) can be represented as

u(t, x) =
1

2
[S+
α/2(t)(1 + hB−1)φ(x) + S−α/2(t)(1− hB−1)φ(x)]
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Orsingher and Beghin ([28]) have obtained the following Fourier transform of the
solution to (4.10):

ũ(t, ξ) = Eα,1(η1t
α) +

(2h+ η2)tα

η1 − η2
[η1Eα,α+1(η1t

α)− η2Eα,α+1(η2t
α)]φ(ξ)

=
1

2

[(
1 +

h√
h2 − c2ξ2

)
Eα,1(η1t

α) +
(
1− h√

h2 − c2ξ2

)
Eα,1(η2t

α)
]
φ(ξ)

where

η1 = −h+
√
h2 − c2ξ2, η2 = −h−

√
h2 − c2ξ2.

They also remarked that, for α = 2, ũ(t, ξ) can be reduced to the characteristic
function of the telegraph process

T (t) = V (0)ξh(t) = V (0)

∫ t

0

(−1)Nh(s)ds,

where V (0) is a random variable with the probability distribution P (V (0) = ±c) =
1/2 independent of Nh(t).

On the other hand, we can obtain the d’Alembert formula solution for (4.9) by
Bernstein and subordinator theory [1, 33]. Indeed, since z(λ) = (λα + 2hλα/2)1/2

is a Bernstein function for 0 < α ≤ 2, h ≥ 0, there is a subordinator Dz(t) with
Laplace exponent z(λ), that is to say,

E
(
e−λDz(t)

)
= e−tz(λ).

Denote the inverse of Dz(t) by Yz(t),i.e.,Yz(t) = inf{y > 0 : Dz(y) > t}. Then we
have

(4.11)

∫ ∞
0

e−λtdF (t, x) =
z(λ)

λ
e−xz(λ), x ≥ 0

where F (t, x) is the distribution function of Yz(t).
Thanks to the subordination principle and the d’Alembert’s solution (1.2) to

(1.1), the solution to (4.9) can be represented as

(4.12) u(t, x) =
1

2
E[φ(x+ cYz(t)) + φ(x− cYz(t))]

Next, we will clarify the the relation between (4.2) and (4.12) in the special case

α = 2. Let z(λ) =
√
λ2 + 2hλ. Denote the density of ξh(t) by g(t, x), x ∈ (−∞,∞).

Then |ξh(t)| has density

w(t, r) =

{
g(t, x) + g(t,−x), x ≥ 0,

0, x < 0.

Moreover, we have [7]

∫ ∞
0

e−λtg(t, x)dt =


1
2 [ z(λ)

λ + 1]e−xz(λ), x > 0,
1
2 [ z(λ)

λ − 1]exz(λ), x < 0,
z(λ)
2λ , x = 0,

and

(4.13)

∫ ∞
0

e−λtw(t, x)dt =
z(λ)

λ
e−xz(λ), x ≥ 0.
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Since the solution of (4.1) can be represented as (4.2):

u(t, x) =
1

2
E[φ(x+ cξh(t)) + φ(x− cξh(t))]

=

∫ ∞
−∞

1

2
[φ(x+ r) + φ(x− r)]g(t, r)dr,

the solution of (4.1) can be represented in another way:

u(t, x) =
1

2
E[φ(x+ c|ξh(t)|) + φ(x− c|ξh(t)|)]

=

∫ ∞
0

1

2
[φ(x+ r) + φ(x− r)]w(t, r)dr.

It is easy to see |ξh(t)| and the inverse subordinator Yz(t) are identically dis-
tributed from (4.11) and (4.13).
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[3] B. Baeumer, M.M. Meerschaert and S. Kurita, Inhomogeneous fractional diffusion equations.
Fract. Calc. Appl. Anal. 8(4) (2005), 371–386.

[4] E. G. Bajlekova, Fractional evolution equations in Banach spaces, PhD thesis, Department

of mathematics, Eindhoven University of Technology, 2001.
[5] S.S.Bayin, Definition of the Riesz derivative and its application to space fractional quantum

mechanics. J. Math. Phys. 57(12) (2016), 123501.
[6] C. Chen, M. Li and F.B. Li, On boundary values of fractional resolvent families, J. Math.

Anal. Appl. 384 (2011), 453-467.

[7] C. DeWitt-Morette, S.K. Foong, Path-integral solutions of wave equations with dissipation.
Phys. Rev. Lett. 62 (19) (1989), 2201-2204.

[8] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, GTM

194, Springer Science and Business Media, 1999.
[9] H.O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Differential

Equations 6 (1969), 50-70.

[10] Y. Fujita, Integrodifferential equation which interpolates the heat euqation and the wave
equation (II), Osaka J. Math. 27 (1990), 797-804.

[11] R. Gorenflo, Stochastic processes related to time-fractional diffusion-wave equation, Com-

mun. Appl. Ind. Math. 6 (2) (2015), e-531, 8 pp.
[12] M. Jeng, S.L.Y. Xu, E. Hawkins and J.M. Schwarz, On the nonlocality of the fractional

Schrödinger equation, J. Math. Phys. 51(6) (2010), 062102.
[13] M. Kac, Some Stochastic Problems in Physics and Mechanics, Magnolia Petrolum Co.

Colloq. Lect. 2, 1956.

[14] M. Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math.
4(3) (1974), 497-510.

[15] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional

Differential Equations, Elsevier, New York, 2002.
[16] S.G. Krein, Linear Differential Equations in Banach space, American Mathematical Society,

Providence, R.I., 1971. Translated from the Russian by J. M. Danskin, Translations of

Mathematical Monographs, Vol. 29.
[17] N. Laskin, Fractional Schrödinger equation. Phys. Rev. E, 66, (2002), 056108.

[18] N. Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul. 8 (2003),

201-213.
[19] K.X. Li, J.G. Peng and J.X. Jia, Cauchy problems for fractional differential equations with

Riemann-Liouville fractional derivatives, J. Funct. Anal. 263 (2012), 476-510.

[20] C.G. Li, M. Kostic, M. Li, and S. Piskarev, On a class of time-fractional differential equa-
tions, Fract. Calc. Appl. Anal. 15 (4) (2012), 639-668.



THE FRACTIONAL D’ALEMBERT’S FORMULAS 25

[21] M. Li, C. Chen and F.B. Li, On fractional powers of generators of fractional resolvent

families, J. Funct. Anal. 259 (2010), 2702-2726.

[22] M. Li and Q. Zheng, On spectral inclusions and approximations of α-times resolvent families,
Semigroup Forum 69(3) (2004), 356-368.

[23] M.M. Meerschaert, E. Nane and P. Vellaisamy, The fractional Poisson process and the

inverse stable subordinator, Electron. J. Probab. 16 (2011), 1600-1620.
[24] M.M. Meerschaert, R.L. Schilling and A.Sikorskii, Stochastic solutions for fractional wave

equations, Nonlinear Dyn. 80(4) (2015), 1685-1695.

[25] M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter
Studies in Mathematics 43, Walter de Gruyter Co., Berlin, 2012.

[26] M.M. Meerschaert and F.Straka, Inverse stable subordinators, Math. Model. Nat. Phenom.

8(2) (2013), 1-16.
[27] E. Orsingher, Fractional Poisson processes, Sci. Math. Jpn 76(1) (2013), 139-145.

[28] E. Orsingher and L. Beghin, Time-fractional telegraph equations and telegraph processes
with Brownian time. Probab. Theory Related Fields 128(1) (2004),141-160.

[29] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer, New York, 1983.
[30] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[31] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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