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Abstract The fractional advection-dispersion equation replaces the second spatial derivative in the usual
advection-dispersion equation with a fractional derivative in the spatial variable. It was first applied to tracer
tests in underground aquifers, and later to tracer tests in rivers. An alternative model replaces the first time
derivative with a fractional derivative in time. Previous work has shown that both models provide a reason-
able fit to breakthrough curves in rivers, which has led to a controversy regarding the physically appropriate
fractional model. This paper shows that the relevant space-fractional model is mathematically equivalent to
the corresponding time-fractional model, thus resolving the controversy.

1. Introduction

The fractional advection-dispersion equation (FADE) was introduced to model anomalous superdiffusion
[Benson et al., 2000a]. The FADE modifies the traditional advection-dispersion equation (ADE) by replacing
the second derivative in space with a fractional derivative. The FADE has been successfully applied to tracer
tests in underground aquifers [Benson et al., 2000b, 2001; Zhang et al., 2007] and in rivers [Deng et al., 2004,
2006; Zhang et al., 2005; Kim and Kavvas, 2006]. Point source solutions to the ADE are symmetric in space.
Point source solutions to the FADE with a positive fractional derivative are positively skewed, with a long
leading tail. Point source solutions to the FADE with a negative fractional derivative are negatively skewed,
with a long trailing tail. A stochastic interpretation of the FADE model [Meerschaert and Scheffler, 2004; Meer-
schaert, 2012; Benson et al., 2013] connects the positive fractional derivative in space with long particle
movements in the flow direction, and the negative fractional derivative with upstream movements, against
the flow. Hence, it is natural and physically meaningful to apply a positively skewed FADE, as is typical in
applications to tracer tests in groundwater. Indeed, Zhang et al. [2009] caution that the negatively skewed
FADE may not be physically realistic for applications to hydrology.

However, all known applications of the FADE to river flow hydrology employ a negative fractional derivative,
which Deng et al. [2004] attribute to a ‘‘wide spectrum of dead zones’’ in the velocity field. Thus, it appears
that, while the positive fractional derivative models early arrivals caused by preferential flow paths, the neg-
ative fractional derivative is modeling particle retention. Another modification of the traditional ADE repla-
ces the first derivative in time by a fractional derivative in time. This time-FADE can be derived from a
stochastic model with long resting periods between particle movements [Meerschaert and Scheffler, 2004;
Meerschaert, 2012; Benson et al., 2013]. This statistical physics model led Zhang et al. [2009] to recommend
the time-FADE instead of the FADE with a negative fractional derivative to model tracer tests in rivers.
Baeumer et al. [2009, Remark 4.5] revisit this controversy. They point out that, in the time-FADE, a particle
remains at rest while the plume center of mass moves downstream. That particle is effectively displaced
upstream relative to the center of mass, mimicking the effect of a negative fractional derivative in space.

In this paper, we resolve this controversy, by establishing a space-time duality between the negatively
skewed FADE and the corresponding time-fractional model. First, we note that the point source solution to
the FADE is given by a stable probability density function [Benson et al., 2000a]. Then we apply a space-time
duality result [Baeumer et al., 2009, Corollary 4.1] to show that the solution to the negatively skewed FADE
with no drift, restricted to the positive real axis, also solves a time-FADE with no drift. The proof of Baeumer
et al. [2009, Corollary 4.1] relies on a deep duality result of Zolotarev [1961] for stable densities. Next we offer
a very simple and revealing argument for space-time duality using the dispersion relation, followed by a
new proof of space-time duality on the positive real axis using Fourier-Laplace transforms. Then we extend
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duality to the negative real axis, thereby proving space-time duality on the entire real axis. Finally, we apply
space-time duality to the negatively skewed space-FADE with drift, by adopting a coordinate system that
moves along with the plume center of mass. The resulting space-time duality resolves the controversy out-
lined in Zhang et al. [2009] and [Baeumer et al., 2009, Remark 4.5] by showing that the negatively skewed
space-FADE used to model tracer tests in rivers is just another way of writing a time-fractional model.

2. Simple Space-Time Duality

Here we outline a very simple argument for space-time duality. A more rigorous development will be pre-
sented later in section 4. The original FADE model for concentration C5Cðx; tÞ of a passive tracer is [Benson
et al., 2000a]
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where the average plume velocity v [L/T] and fractional dispersivity D [La/T] are positive constants. The frac-
tional index a 2 ð1; 2�, and skewness b 2 ½21; 1� are dimensionless. When a 5 2, the parameter b is super-
fluous, and equation (1) reduces to the traditional advection-dispersion equation (ADE) [Bear, 1972]. The
positive Riemann-Liouville fractional derivative @aC=@xa is the function with Fourier transform (FT) ðikÞaĈ ,
where Ĉðk; tÞ5

Ð1
21 e2ikx Cðx; tÞ dx is the usual FT. This definition extends the familiar FT formula for integer

order derivatives. The negative Riemann-Liouville fractional derivative @aC=@ð2xÞa has FT ð2ikÞaĈ [Meer-
schaert and Sikorskii, 2012]. Applications to groundwater hydrology typically use b 5 1, resulting in a posi-
tively skewed snapshot x 7!Cðx; tÞ with a long leading tail. Applications to river flows typically use b521, so
that the snapshot is negatively skewed, and the breakthrough curve t 7!Cðx; tÞ has a long trailing tail. In the
following derivations, we assume the negatively skewed FADE with b521.

Denote by C0 the point source solution to the simplest negatively skewed FADE, taking v 5 0 and D 5 1, so
that

@C0

@t
5

@aC0

@ð2xÞa : (2)

Apply the Fourier transform in both variables,

Ĉ 0ðk;xÞ5
ð1

21

ð1
21

e2ikx2ixt C0ðx; tÞ dx dt; (3)

to see that

½ðixÞ2ð2ikÞa�Ĉ 050; (4)

where k is the wave number and x is the angular frequency. Viewing the FT as a weighted average of non-
vanishing plane waves, the dispersion relation ðixÞ5ð2ikÞa follows, which is equivalent to ðixÞc5ð2ikÞ
where c51=a. Substituting back into (4) and inverting the FT leads to the dual equation:

@cC0

@tc
52

@C0

@x
; (5)

since @=@ð2xÞ52@=@x. In the case a 5 2, so that c51=2, this duality was observed by Heaviside in 1871,
see Das [2011, section 3.7] for a modern presentation. The Heaviside solution to the diffusion equation was
the first practical application of the fractional calculus, and the origin of what is now called operational cal-
culus. In short, Heaviside took the square root of the operator on both sides of the diffusion equation, yield-
ing a time-fractional equation of order c51=2. Similarly, we take the a root where 1 < a � 2, yielding a
time-fractional equation of order c51=a.

3. The FADE Model

The point source solution to the ADE, (1) with a 5 2 and Dirac delta function initial condition Cðx; 0Þ5dðxÞ,
is given by a normal probability density function (PDF):
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Cðx; tÞ5 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p e2ðx2vtÞ2=ð4DtÞ; (6)

for all t> 0. To check this, take FT x 7!k in (1) to get

dĈ
dt

52vðikÞĈ1DðikÞ2Ĉ ; Ĉðk; 0Þ51; (7)

observe that the unique solution to (7) is Ĉðk; tÞ5exp ½2vðikÞt1DðikÞ2t�, and recognize that Ĉðk; tÞ is the FT
of (6). The normal PDF (6) has mean x 5 vt and variance 2Dt, so its standard deviation

ffiffiffiffiffiffiffiffi
2Dt
p

indicates a
plume spreading proportional to the square root of the time variable.

The solution to the FADE (1) for any 1 < a � 2 can be written in terms of a stable PDF [Benson et al., 2000a].
The stable PDF family includes the normal PDF as a special case. Taking FT in the FADE, (1) with
Cðx; 0Þ5dðxÞ, yields

dĈ
dt

52vðikÞĈ1DpðikÞaĈ1Dqð2ikÞaĈ ; Ĉðk; 0Þ51;

where p5ð11bÞ=2 and q5ð12bÞ=2. Then

Ĉðk; tÞ5exp ½2vtðikÞ1DptðikÞa1Dqtð2ikÞa�: (8)

For a 6¼ 1, the FT of a stable PDF f ðx; a;b;r;lÞ can be written in the form [Samorodnitsky and Taqqu, 1994]:

f̂ ðk; a; b; r; lÞ5exp 2ikl2rajkjað11ib sgn ðkÞ tan ðpa=2ÞÞ½ �; (9)

with stable index a 2 ð0; 2�, skewness b 2 ½21; 1�, scale r > 0, and center l 2 ð21;1Þ. A slightly different
form applies when a 5 1 [Meerschaert and Scheffler, 2001, Theorem 7.3.5]. A little algebra [Meerschaert and
Sikorskii, 2012, equation (5.6)] shows that

pðikÞa1qð2ikÞa5cos ðpa=2Þjkjað11ib sgn ðkÞ tan ðpa=2ÞÞ; (10)

where b5p2q. Substitute (10) into (8) and compare with (9) to see that the point source solution to the
FADE (1) can be written in the form of a stable PDF:

Cðx; tÞ5f x; a; b; Dtjcos ðpa=2Þjð Þ1=a; vt
� �

: (11)

The stable index a 2 ð1; 2� controls the tail behavior of the FADE solution (11): Cðx; tÞ � Aptx2a21 as x !1
and Cðx; tÞ � Aqtjxj2a21 as x ! 21 [Samorodnitsky and Taqqu, 1994, Property 1.2.15]. When b 5 0, the
snapshot x 7!Cðx; tÞ is symmetric about its mean x 5 vt. If b521 as in applications to river flow, the snap-
shot has a heavy trailing tail that models particle retention. If b 5 1 as in applications to groundwater flow,
the snapshot has a heavy leading tail that models early arrivals. When a 5 2, the skewness b is superfluous,
and the stable PDF is normal with mean l and variance 2r2, so the stable PDF solution (11) reduces to the
normal PDF solution (6). Although the FT of the stable PDF with 1 < a < 2 cannot be inverted in closed
form, convenient computer codes are available to plot the stable PDF [Nolan, 1997] and these have been
applied to the FADE [Meerschaert and Sikorskii, 2012, Chapter 5].

For our purposes, it will also be useful to nondimensionalize the FADE (1). Recall that the FT of the point
source solution C(x, t) to the FADE (1) is given by (8). Let C0ðx; tÞ be the solution to the FADE (1) with v 5 0
and D 5 1, so that Ĉ 0ðk; tÞ5exp ½ptðikÞa1qtð2ikÞa�, and consider the function C0ðx2vt;DtÞ. Substitute y5x
2vt and simplify to get

ð1
21

e2ikx C0ðx2vt;DtÞ dx5

ð1
21

e2ikðy1vtÞC0ðy;DtÞ dy

5exp ½2ikvt1pDtðikÞa1qDtð2ikÞa�:

Compare (8) and use the uniqueness of the FT to see that Cðx; tÞ5C0ðx2vt;DtÞ, where C0ðx; tÞ solves the
fractional dispersion equation (FDE):
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for all x and all t> 0. The change of variables yields a new coordinate system that moves along with the
plume center of mass x 5 vt. Hence, Cðx; tÞ5C0ðx2vt;DtÞ solves the FADE (1) if and only if C0ðx; tÞ solves
the FDE (12). A very similar FT argument shows that the FDE solution has a useful scaling property:

C0ðx; tÞ5t21=aC0ðt21=ax; 1Þ; (13)

which means that the plume spreads like t1=a and the peak concentration declines at the same rate.

4. Space-Time Duality

In this section, we develop the space-time duality relation for the FADE, extending the basic idea presented
in section 2. Consider the solution C0ðx; tÞ to the negatively skewed dimensionless FDE, (2) with point
source initial condition C0ðx; 0Þ5dðxÞ, and recall that 1 < a � 2. Substitute b521 and v 5 0 into (11) to see
that

C0ðx; tÞ5f x; a;21; t1=aj cos ðpa=2Þj1=a; 0
� �

: (14)

Now we derive an alternative, equivalent solution for x> 0. Apply the Fourier-Laplace transform (FLT),

C0ðk; sÞ5
ð1

0

ð1
21

e2st e2ikx C0ðx; tÞ dx dt; (15)

to both sides of (2), noting that the FT of the Dirac delta function is Ĉ0ðk; 0Þ51 for all k, to get
sC0ðk; sÞ215ð2ikÞaC0ðk; sÞ. Solve for C0ðk; sÞ to obtain

C0ðk; sÞ5 1
s2ð2ikÞa : (16)

The inverse FT of (16) can be expressed as [Morse and Feshbach, 1953, (4.8.18)]

~C0ðx; sÞ5 1
2p

lim
T!1

ðT1is

2T1is

eikx

s2ð2ikÞa dk; (17)

where s > 0 is chosen to avoid the branch cut along the negative real axis. Note that the integrand has a
single pole at k�5is1=a and remains analytic for all other points in the upper half plane. Convert the integral
in (17) to a contour integral by attaching a semicircle of radius T in the upper half plane, and apply the
Cauchy residue theorem; details are shown in Appendix A. For x> 0, the integral over the semicircle tends
to zero as T !1, and we obtain

~C0ðx; sÞ5csc21 exp 2xscð Þ for x > 0; (18)

where c51=a 2 ½1=2; 1Þ. Equation (18) can be inverted using the formula [Meerschaert and Sikorskii, 2012,
(4.42)]:

~h1ðx; sÞ5sc21 exp 2xscð Þ; (19)

for the Laplace transform (LT) of the inverse stable subordinator PDF [Meerschaert and Sikorskii, 2012,
equation (4.47) and Remark 5.6]:

h1ðx; tÞ5 t
cx111=c

f ðtx21=c; c; 1; j cos ðpc=2Þj1=c; 0Þ for x > 0: (20)

Comparing (18) with (19) and using the uniqueness of the LT leads to

C0ðx; tÞ5ch1ðx; tÞ5tx2121=cf ðtx21=c; c; 1; j cos ðpc=2Þj1=c; 0Þ for all x > 0: (21)

Thus, for x> 0, we have an alternative solution to the negatively skewed FDE (2) in terms of a positively
skewed stable PDF with index c51=a.

The two solutions given by equations (14) and (21) are equal for any t> 0 and x> 0, and this leads to a
remarkable connection between space-fractional and time-fractional dispersion models. Denote by ð@=@tÞc

gðtÞ the Caputo fractional derivative of order 0 < c < 1, with LT sc~gðsÞ2sc21gð0Þ [Meerschaert and Sikorskii,
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2012, pp. 38–39]. Recall that 1=ða1ikÞ is the FT of e2ax HðxÞ, where H(x) is the Heaviside function, and take
FT in (19) to see that h1ðx; tÞ has FLT:

�h1ðk; sÞ5 sc21

ik1sc
; (22)

for all k and all s> 0. Rewrite in the form sc�h1ðk; sÞ2sc2152ðikÞ�h1ðk; sÞ and then invert to see that h1ðx; tÞ
solves the time-fractional dispersion equation:

@

@t

� �c

h1ðx; tÞ52
@

@x
h1ðx; tÞ; h1ðx; 0Þ5dðxÞ: (23)

Since C0ðx; tÞ is proportional to h1ðx; tÞ for all x> 0 and t> 0, this implies that the point source solution to
the negatively skewed FDE (2) also solves the time-fractional dispersion equation:

@

@t

� �c

C0ðx; tÞ52
@

@x
C0ðx; tÞ for x > 0 and t > 0: (24)

This space-time duality was first established by Baeumer et al. [2009, Corollary 4.1] using a completely differ-
ent argument.

4.1. Random Walk Interpretation
Next we briefly discuss the random walk models behind the two equivalent model equations (2) and (24),
see Benson et al. [2013] for more detail. The time-fractional dispersion equation (24) governs the long-time
limiting particle density of a delayed random walk, where particles move a small distance downstream after
each random waiting time, and the waiting times satisfy P½T > t� � t2c for t> 0 large. The heavy tailed wait-
ing times T model occasional long particle retention times in the immobile zone. The negatively skewed
FDE (2) governs the long-time limiting particle density of a random walk, where the jump variable X satisfies
P½X < 2x� � x2a for x> 0 large. This models occasional particle movements upstream relative to the center
of mass. Zhang et al. [2009] argue that time-fractional models like (24) provide a more suitable physical
description of particle movements in a river flow, since the negatively skewed FADE (2) models particles
that jump upstream. On the other hand, Deng et al. [2004] and Hunt [2006] interpret the negative fractional
derivative as a model for retention. The equivalence demonstrated here between the time-fractional model
(24) and the space-fractional model (2) resolves that controversy, by showing that in fact the two models
are equivalent.

4.2. Incorporating the Advection Term
Next we show how the general negatively skewed FADE (1) with b521 and a nonzero drift term v 6¼ 0
relates to a time-fractional model. Recall that the solution C(x,t) to (1) can be written as:
Cðx; tÞ5C0ðx2vt;DtÞ, where C0 solves (2). Then it follows from (21) that

Cðx; tÞ5C0ðx2vt;DtÞ5ch1ðx2vt;DtÞ for x > vt: (25)

Note that h1ðx; tÞ50 for x< 0, and take FT x 7! k to see that [Bingham, 1971]

ĥ1ðk; tÞ5
ð1

0
e2ikx h1ðx; tÞ dx5Ecð2iktcÞ; (26)

using the Mittag-Leffler function:

EcðzÞ5
X1
j50

zj

Cð11cjÞ; (27)

defined for all complex numbers z [Mainardi and Gorenflo, 2000]. Take LT in the remaining variable t 7! s in
(26), noting that Ecð2ztcÞ has LT sc21=ðz1scÞ [Meerschaert and Sikorskii, 2012, equation (2.29)], to arrive back
at (22).
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A change of variable y5x2vt shows that

Ĉðk; tÞ5
ð1

vt
e2ikxch1ðx2vt;DtÞ dx

5c
ð1

0
e2ikðy1vtÞh1ðy;DtÞ dy

5ce2ikvt Ecð2ikðDtÞcÞ

and then evaluating the LT t 7! s and using a substitution u 5 Dt we arrive at

�Cðk; sÞ5
ð1

0
e2st Ĉðk; tÞ dt

5

ð1
0

e2stce2ikvt Ecð2ikðDtÞcÞ dt

5c
ð1

0
e2ðs1ikvÞD21uEcð2ikucÞD21du

5
cðs1ikvÞc21

Dcik1ðs1ikvÞc :

Rearrange to get ðs1ikvÞc�Cðk; sÞ52ikDc�Cðk; sÞ1cðs1ikvÞc21 and invert to see that the same C(x, t) that sol-
ves the FADE (1) with b521 also solves the coupled space-time-fractional governing equation:

@

@t
1v

@

@x

� �c

Cðx; tÞ52Dc @

@x
Cðx; tÞ1cdðx2vtÞ t2cHðtÞ

Cð12cÞ for x > vt; (28)

using the LFT formula [Meerschaert et al., 2002]:

@

@t
1v

@

@x

� �c

f ðx; tÞ 7! ðs1ikvÞc�f ðk; sÞ (29)

and using the LT formula t2c=Cð12cÞ 7! sc21 again to see that
ð1

21

ð1
21

e2st e2ikxdðx2vtÞ t2cHðtÞ
Cð12cÞ dx dt5

ð1
0

e2st e2ikvt t2c

Cð12cÞ dt5ðs1ikvÞc21;

for all k > 0 and s> 0.

The operator defined in (29) is the fractional material derivative, first studied in Sokolov and Metzler [2003]. A
multidimensional definition of the fractional substantial derivative was independently proposed in Friedrich
et al. [2006] to study the fractional Kramers-Fokker-Planck equation. The standard material (or substantial)
derivative gives the temporal rate of change of a quantity (e.g., concentration) in a moving reference frame
as viewed from a fixed ground frame. Hence, (29) is a nonlocal generalization of the standard material, or
substantial, derivative [Bear, 1972, 4.1.4] that models retention in a moving reference frame.

In conclusion, the point source solution C(x, t) to the negatively skewed space-FADE (1) with b521, the
model used in river flows, also solves the space-time-FADE (28) for all x> vt. Hence, the space-fractional
model (1) with b521 is completely equivalent to the space-time-fractional model (28) of plume motion in
river flows.

4.3. The Upstream Tail
Next we extend the space-time duality to both sides of the plume, including the portion upstream of the
plume center of mass. Mathematical details are included in Appendix B, to show that for x< 0, the solution
to the negatively skewed dimensionless FADE (2) is given by C0ðx; tÞ5ch2ð2x; tÞ for x< 0, where the PDF:

h2ðx; tÞ5 t
cx111=c

f tx21=c; c; b0; r0; 0
� �

HðxÞ; (30)

where b0 is given by (B7), and r0 by (B8). Hence, the solution to (2) on the entire real line is

C0ðx; tÞ5ch1ðx; tÞHðxÞ1ch2ð2x; tÞHð2xÞ; (31)
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where we include the Heaviside terms to
emphasize that only the h1 term contrib-
utes when x> 0, and only the h2 term
operates on x< 0. Then the general solu-
tion Cðx; tÞ5C0ðx2vt;DtÞ to the negatively
skewed FADE, (1) with b521, can be writ-
ten as

Cðx; tÞ5ch1ðx2vt;DtÞHðx2vtÞ
1ch2ðvt2x;DtÞHðvt2xÞ:

(32)

To illustrate the two components in (32), Fig-
ure 1 plots an example snapshot x 7!Cðx; tÞ
of the left-hand side against the two compo-
nents on the right-hand side. Figure 2 plots a
breakthrough curve (BTC) t 7! Cðx; tÞ. Note
that the power law tail of the BTC is modeled
by the second term in (32).

Further calculations in Appendix C show
that h2ðx; tÞ is the point source solution to

p0
@

@t

� �c

h2ðx; tÞ1q0
@ch2ðx; tÞ
@ð2tÞc 5Q0

@h2ðx; tÞ
@x

; h2ðx; 0Þ5dðxÞ; (33)

for t> 0 and x> 0, where p05ð11b0Þ=2; q05ð12b0Þ=2; b0 is given by (B7), and Q05cos ðpc=2Þ=cos ð3pc=2Þ.
The first term in (33) uses the Caputo derivative. This equation is more complicated than the corresponding
dual (24) for x> 0, because for x< 0 the skewness varies from 21=3 to 1 1, and Q0 varies from 21=3 to 21
as a increases from 1 to 2. Using (C3), a calculation similar to (28) shows that

p0
@

@t
1v

@

@x

� �c

Cðx; tÞ1q0 2
@

@t
2v

@

@x

� �c

Cðx; tÞ5~D
@

@x
Cðx; tÞ1rðx; tÞ; (34)

for x< vt, where ~D5DcQ0 and the boundary term:

rðx; tÞ5cp0dðx2vtÞ t2cHðtÞ
Cð12cÞ1cq0dðx2vtÞ ð2tÞ2cHð2tÞ

Cð12cÞ ; (35)

see Appendix D for details. Note that for t> 0, the boundary term simplifies to

rðx; tÞ5cp0dðx2vtÞ t2cHðtÞ
Cð12cÞ : (36)

4.4. Duality for a 5 2
For the dimensionless ADE, (12) with a 5 2,
the duality relationship given by (32) becomes

Cðx; tÞ5 1
2

h1ðx; tÞHðxÞ1h2ð2x; tÞHð2xÞ½ �;

(37)

where h1ðx; tÞ solves (38) with c51=2, and
h2ð2x; tÞ solves a very similar equation:

@

@t

� �c

h2ðx; tÞ5 @

@x
h2ðx; tÞ;

h1ðx; 0Þ5dðxÞ;
(38)

since Q0521 and b051 in (33), so that p051
and q050. This classical factorization of the
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Figure 1. Snapshot of (32) with parameters are a53=2, v 5 1, t 5 1, and
D 5 1. Solid line is the stable PDF on the right-hand side. Pluses mark the
first term on the left-hand side, and circles mark the second term.
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Figure 2. Breakthrough curve for (32) with parameters a53=2, v 5 1, x 5 2,
and D 5 1. Solid line is the stable PDF on the right-hand side. Pluses mark
the first term on the left-hand side, and circles mark the second term.
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diffusion equation was established by Heaviside in 1871, see [Das, 2011, section 3.7] or [Heaviside,
2008].

5. Discussion

Deng et al. [2004] have attributed the skewness and long trailing tails of observed breakthrough curves in
river flows to particle retention. Retention may be modeled via a continuous time random walk (CTRW)
[Metzler and Klafter, 2004; Montroll and Weiss, 1965] where particles can undergo long waiting times
between jumps. The scaling limit of such a CTRW is governed by a time-fractional diffusion equation [Meer-
schaert et al., 2002], providing a sound physical argument in favor of the time-fractional model. However,
space-fractional models for solute transport in rivers have also been derived ab initio using a fractional con-
servation of mass argument [Kim and Kavvas, 2006]. At present, neither time-fractional nor space-fractional
models can be invalidated using either data or physics.

In this paper, we presented a space-time duality result for the negatively skewed FADE, which implies that
the space-fractional models and time-fractional models commonly applied to tracer tests in rivers may be
viewed as two faces of the same coin. That is, under certain conditions, the space-fractional model and
time-fractional model describe the same underlying physics and possess the same class of solutions; the
two models appear to differ since they are clothed with different mathematical operators.

Baeumer et al. [2009] proved a space-time duality result for the negatively skewed FADE with no drift, v 5 0
and b521 in (1). They showed that a point source solution to that FADE, restricted to the positive real line
x> 0, also solves a time-FADE (24) with no drift. This result is not immediately applicable to tracer tests in river
flows, where a nonzero drift is required. Hence, in this paper we extended that result, to establish a space-
time duality for the negatively skewed FADE with drift. First, we offered a simple, intuitive argument for the
original result of Baeumer et al. [2009] based on the dispersion relation (4). Then we provided a new proof of
the result in Baeumer et al. [2009] based on Fourier and Laplace transforms: We considered the point source
solution to the simplest negatively skewed FADE (2) with zero drift. For a point source solution starting at
x 5 0, we took a Fourier transform in the space variable x and a Laplace transform in the time variable t. Rear-
ranging, we inverted the Laplace transform, and then the Fourier transform, to recover the negatively skewed
FADE with no drift. Inverting in the opposite order, first the Laplace transform and then the Fourier transform,
led to the time-FADE with no drift. Hence, there is an equivalence between the negatively skewed space-
FADE with no drift, and the time-FADE. As in Baeumer et al. [2009], that argument was only valid for x> 0.
Next we extended that argument to the negative real line x< 0, and to the case of a nonzero drift, both of
which are required for applications to tracer tests in rivers. The resulting duality relation shows that the nega-
tively skewed FADE used to model tracer tests in rivers is mathematically equivalent to a corresponding time-
fractional model. This equivalence resolves a controversy in the hydrological literature [Berkowitz et al., 2006;
Zhang et al., 2009]. Rather than viewing the space-FADE and time-FADE (or CTRW) as competing models, one
should see them as complementary versions of the same underlying physical process.

6. Conclusion

This paper establishes the mathematical equivalence of certain space-fractional and time-fractional models
in hydrology. Previous research established a link between space-fractional models and long particle move-
ments, as well as a relation between time-fractional models and long resting times between particle move-
ments. Although seemingly incompatible, the results in this paper show that these phenomena are two
sides of the same coin. In essence, a particle (or bolus of solute) experiencing a long resting time in the
immobile zone, while the bulk of the plume flows downstream, is displaced in the upstream direction rela-
tive to the plume center of mass, since the center of mass moves downstream while the particle remains at
rest. Hence, the FADE with negative skewness and the CTRW are completely compatible models, and both
are equally valid representations of the underlying physics.

Appendix A: Complex Contour Integration Details

We transform the integral in (17) into a complex contour integral, by attaching a semicircle CT of radius T in
the upper half plane, see Figure A1. Then we show that the integral over the semicircle CT approaches zero
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as T !1 when x> 0: Along CT, let
k5T exp ðihÞ, where 0 � h � p, define
the dispersion symbol wðk; sÞ5s2ð2ikÞa

and write
����
ð
CT

eikx

wðk; sÞ dk

����5 T

����
ðp

0

exp ixT exp ðihÞð Þ
w T exp ðihÞ; sð Þ dh

����
5 T
ðp

0

jexp ixT cos h1isin hð Þð Þj
jw T exp ðihÞ; sð Þj dh

� T
ðp

0

exp 2Tx sin hð Þ
js2Taeiaðh2p=2Þj dh:

(A1)

Given s> 0, for any T > s11 we have
js2Taeiaðh2p=2Þj � js2Taj > 1 so that the
integrand is bounded above by its
denominator. Since sin h � 2h=p for

0 < h � p=2, we have exp 2Tx sin hð Þ � exp 2Tx2h=pð Þ, and then since sin h5sin ðp2hÞ it follows that the
final term in (A1) is bounded above by

2T
ðp=2

0
exp 22Txh=pð Þ dh ; (A2)

which tends to zero as T !1. Hence, (A1) can be evaluated by applying the residue theorem to the interi-
or of C. Set wðk; sÞ50 and solve for k to see that the integrand has a (simple) pole k�5is1=a for any s> 0. Dif-
ferentiate wðk; sÞ with respect to k and evaluate at the pole to get w0ðk�; sÞ5ias121=a, then calculate the
residue [Brown et al., 1996, p. 195] to get

~Cðx; sÞ 5
1

2p
ð2piÞ eik�x

w0ðk�; sÞ5
1
a

s1=a21e2xs1=a
; (A3)

for any s> 0. Substitute c51=a to arrive at (18).

Appendix B: Duality for x< 0

Zolotarev [1986] defines the stable PDF paðx; g; b; lÞ as the function with FT:

p̂aðk; g; b; lÞ5exp 2ikl2bjkjaexp 2ig sgn ðkÞp
2

� �h i
: (B1)

Here a and l are as before in (9), jgj � a for 0 < a � 1; jgj � 22a for 1 < a � 2 and b> 0. Zolotarev [1961]
proved a duality result for the stable PDF, which states that for any a � 1 and any x> 0 we have

pa x; g; 1; 0ð Þ5x212apa� x2a; g�; 1; 0ð Þ; (B2)

where a�51=a and g�5ðg21Þ=a11. A little algebra [Zolotarev, 1986] shows that (B1) is equivalent to (9)
with

b5cot
pa
2

� �
tan

pg
2

� �
and ra5b cos

pg
2

� �
: (B3)

Next we convert the duality relation (B2) to the parameterization of (9). Specializing to the case of a nega-
tively skewed FADE with 1 < a � 2 and b521, it follows from b5cot pa=2ð Þtan pg=2ð Þ with jgj � 22a,
using tan p2uð Þ52tan u, that g522a. Then g�5ð12aÞ=a1151=a5c, and this corresponds to a c-stable
PDF with skewness b5cot pc=2ð Þtan pc=2ð Þ51. Then we can rewrite the negatively skewed case of (B2) for
x> 0 in the equivalent form:

f x; a;21; j cos ðpa=2Þj1=a; 0
� �

5x2121=cf x21=c; c;11; j cos ðpc=2Þj1=c; 0
� �

; (B4)

an equality between an a-stable PDF and a c-stable PDF with c51=a. The duality relation (21) follows using
the scaling relation (13) along with (11).

Figure A1. Contour C5LT 1CT for x> 0.
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For x< 0, use the definition of the FT and a simple change of variable in (B1) to see that

pað2x; g; b; 0Þ5paðx; 2g; b; 0Þ: (B5)

Apply Zolotarev duality, (B2), to see that for any a � 1 and x< 0 we have

pa x; g; 1; 0ð Þ5pa 2jxj; g; 1; 0ð Þ

5pa jxj; 2g; 1; 0ð Þ

5jxj212apc jxj2a; g0; 1; 0ð Þ
; (B6)

with c51=a and g05ðð2gÞ21Þ=a115223c. Specializing to the case of a negatively skewed FADE with
1 < a � 2 and b521, we see that the right-hand side of (B6) corresponds to a c-stable PDF with skewness:

b05cot
pc
2

� �
tan

pg0

2

� �
52cot

pc
2

� �
tan

3pc
2

� �
; (B7)

using tan ðp2uÞ52tan u, and scale,

r05 cos
pg0

2

� �
52cos

3pc
2

� �
; (B8)

using cos ðp2uÞ5cos u. Then we can rewrite the negatively skewed case of (B2) for x< 0 in the equivalent form:

f x; a;21; j cos ðpa=2Þj1=a; 0
� �

5jxj2121=cf jxj21=c; c; b0; r0; 0
� �

: (B9)

The duality relation (31) for the entire real line follows easily using (21), the scaling relation (13), and the def-
inition (30).

Appendix C: Governing Equation for x< 0

Define gcðtÞ5f ðt; c;b0;r0; 0Þ and GcðtÞ5
Ð t
21 gcðsÞ ds. Rewrite (30) as

h2ðx; tÞ5atx212agcðtx2aÞHðxÞ

52
d

dx
Gcðtx2aÞHðxÞ

52
d

dx

ðt

21
x2agcðsx2aÞHðxÞds:

(C1)

Use equations (9) and (10) to see that

ĝcðxÞ5
ð1

21
e2ixt gcðtÞ dt5e2wðxÞ;

where wðxÞ5D0½p0ðixÞc1q0ð2ixÞc�; p05ð11b0Þ=2; 05ð12b0Þ=2; b0 is given by (B7), and D05cos ð3pc=2Þ=
cos ðpc=2Þ. A change of variable in the definition of the FT shows that gðx; tÞ5x2agcðtx2aÞ has FT
ĝðx;xÞ5e2xwðxÞ, and then it follows from (C1) that

~h2ðx;xÞ52HðxÞ d
dx
ðixÞ21e2xwðxÞ; (C2)

using FT property
Ð t
21 f ðsÞ ds 7! ðixÞ21 f̂ ðxÞ [Howell, 2001]. Evaluate the derivative in (C2), and then take FT

in the remaining variable using HðxÞe2ax 7! 1=ðik1aÞ to get

�h2ðk;xÞ5
ðixÞ21wðxÞ

ik1wðxÞ : (C3)

Rearrange and substitute wðxÞ to get

p0 ixð Þc�h2ðk;xÞ1q0 ixð Þc�h2ðk;xÞ52ikQ0�h2ðk;xÞ1p0 ixð Þc21
1q0 2ixð Þc21; (C4)

where Q051=D05cos ðpc=2Þ=cos ð3pc=2Þ. Recalling that @cf=@ð6tÞc 7! ð6ixÞc f̂ ðxÞ and inverting the FT in
both variables yields
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p0
@ch2

@tc
1q0

@ch2

@ð2tÞc 5Q0
@h2

@x
1p0dðxÞbðtÞ1q0dðxÞbð2tÞ; (C5)

where the source term bðtÞ5HðtÞt2c=Cð12cÞ, using HðtÞt2c=Cð12cÞ 7! ixð Þc21. For t> 0, the term bð2tÞ
vanishes because of the Heaviside term. Combine the b(t) term with the positive Riemann-Liouville deriva-
tive using the relationship [Meerschaert and Sikorskii, 2012, equation (2.33)]:

@

@t

� �c

f ðtÞ5 @cf ðtÞ
@tc

2
f ð0Þt2c

Cð12cÞ ; (C6)

to arrive at (33).

Appendix D: Governing Equation for x< vt

Here we write the upstream governing equation in the original coordinates. The calculation is similar to
(28). Recall that Cðx; tÞ5ch2ðvt2x;DtÞ for x< vt and substitute y5vt2x to get

ðvt

21
e2ikxch2ðvt2x;DtÞ dx5ce2ikvt ĥ2ð2k;DtÞ;

use (C3) to see that

ð1
0

e2ixtce2ikvt ĥ2ð2k;DtÞ dt5
c
D

�h2 2k;
x1kv

D

� �
5

c
D

D
ix1ikv

� �
w x1kv

D

� 	
2ik1w x1kv

D

� 	 ;

rearrange and use the definition of wðxÞ from Appendix C to get

½p0ðix1ikvÞc1q0ð2ix2ikvÞc��Cðk;xÞ52ik ~D�Cðk;xÞ1�rðk;xÞ;

where ~D5Dc=D0 and �rðk;xÞ5cp0ðix1ikvÞc21
2cq0ð2ix2ikvÞc21. Use (29) with s5ix to get

2
@

@t
2v

@

@x

� �c

f ðx; tÞ 7! ð2ix2ikvÞc�f ðk;xÞ

and then (34) follows. Use the FT formula t2cHðtÞ=Cð12cÞ 7! ðixÞc21 to see that
ð1

21

ð1
21

e2ixt e2ikxdðx2vtÞ t2cHðtÞ
Cð12cÞ dx dt5

ð1
0

e2ixt e2ikvt t2c

Cð12cÞ dt5ðix1ikvÞc21

and similarly, use the FT formula ð2tÞ2cHð2tÞ=Cð12cÞ 7! ð2ixÞc21 to get
ð1

21

ð1
21

e2ixt e2ikxdðx2vtÞ ð2tÞ2cHð2tÞ
Cð12cÞ dx dt5ð2ix2ikvÞc21;

which leads directly to (35).
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