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Abstract

Ž .A fractional advection–dispersion equation ADE is a generalization of the classical ADE in
which the second-order derivative is replaced with a fractional-order derivative. In contrast to the
classical ADE, the fractional ADE has solutions that resemble the highly skewed and heavy-tailed
breakthrough curves observed in field and laboratory studies. These solutions, known as a-stable
distributions, are the result of a generalized central limit theorem which describes the behavior of
sums of finite or infinite-variance random variables. We use this limit theorem in a model which
sums the length of particle jumps during their random walk through a heterogeneous porous
medium. If the length of solute particle jumps is not constrained to a representative elementary

Ž .volume REV , dispersive flux is proportional to a fractional derivative. The nature of fractional
derivatives is readily visualized and their parameters are based on physical properties that are
measurable. When a fractional Fick’s law replaces the classical Fick’s law in an Eulerian
evaluation of solute transport in a porous medium, the result is a fractional ADE. Fractional ADEs
are ergodic equations since they occur when a generalized central limit theorem is employed.
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1. Introduction

An equation commonly used to describe solute transport in aquifers is the
Ž .advection–dispersion equation ADE :

EC EC E2 C
syÕ qDD 1Ž .2Et Ex Ex

where C is solute concentration, Õ is the average linear velocity, x is the spatial domain,
t is time, and DD is a constant dispersion coefficient. The transport coefficients in the
ADE are constitutive properties equivalent to the average of unmeasurable smaller-scale
mechanical properties. It is assumed that the motion of particles has a random compo-
nent and that the paths of particles are represented by sums of random variables
describing particle jump size. A large number of tracer particles, initially located at a
point source, will disperse according to a limiting probability distribution, from which

Ž .relative concentrations can be derived for any given time Bear, 1972, p. 589 . Thus, the
ADE is a deterministic equation describing the probability function for the location of
particles in a continuum. The fundamental solutions to the ADE over time will be
Gaussian densities with means and variances based on the values of the macroscopic
transport coefficients Õ and DD. However, the ADE typically underestimates concentra-
tions in the leading andror trailing edges of contaminant plumes. Application of the
ADE to field data reveals an apparent scale-dependence of dispersivity complicating the
prediction of plume evolution in time or space. Early stochastic approaches based on the

Ž .ADE that use small perturbation techniques e.g., Dagan, 1984; Neuman, 1993 rely
Ž .upon a dispersion coefficient which grows with time. Serrano 1995 proposed an

analytic solution that does not require the mathematical assumptions of perturbation
theory and has parameters based on measurable physical properties, though the disper-
sion coefficient remains time dependent and does not reach a constant value.

Since the ADE is based on the fulfillment of a limit theorem, the analytic solution is
Žonly valid when the ergodic assumption is satisfied e.g., Gelhar, 1993; Dagan, 1990,

.1991; see Zhan, 1999 for a review . This occurs when a particle has made enough
uncorrelated motions that its overall probability distribution is asymptotically close to a

Ž .limit distribution Bhattacharya and Gupta, 1990 . When a solute plume reaches ergodic
conditions, it is assumed that the random motion of one tracer particle in space
represents an ensemble of many such particles. If the ergodic requirement is not

Žfulfilled, plume evolution will deviate from theoretical predictions Tompkins et al.,
.1994 . Thus, semi-analytic or pre-asymptotic solutions have been derived to treat

non-ergodic transport in heterogeneous aquifers. Non-local stochastic techniques have
Ž . Žalso been developed in both Eulerian Neuman, 1993 and Lagrangian e.g., Cushman,

.1993 and references therein frameworks. These theories require either numerical
solution in transform space, high resolution Monte Carlo simulations, or closure

Ž .approximations that reduce their applicability. Berkowitz and Scher 1995 provided an
excellent summary of non-local stochastic theories. A more general review of recent

Ž .developments in stochastic hydrology is presented by Rubin 1997 . While many of
these theories have increased our understanding of the mechanisms controlling transport
in porous media, they also require mathematical restrictions or assumptions that reduce
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Ž .their resemblance to physical processes Serrano, 1995 . Furthermore, practitioners still
use some sort of numerical implementation of the classical ADE or particle tracking

Ž .methods in modeling contaminant transport Zheng and Jiao, 1998; Pollock, 1994 .
The central limit theorem is valid for sums of independent and identically distributed

Ž . Ž .iid finite-Õariance random variables Feller, 1968 . This means that Gaussian break-
through curves and strictly Fickian scaling behavior only occur when:

Ž .1. the particle jump size velocity field is uncorrelated in time and
Ž .2. the particle jump size velocity field has finite mean and variance.

Since non-Gaussian breakthrough curves for non-reactive solutes are often observed in
the field, one or both of these conditions are failing. It is well documented that violation
of the first assumption leads to enhanced diffusion, diffusion that is faster than Gaussian

Ž .analytical solutions predict e.g., Sahimi, 1993 . Most non-Fickian ergodic transport
theories are based on the effects of long-range temporal correlation due, for example, to
solute sorption or preferential pathways. However, it is only recently that the assumption

Žof a finite-variance velocity field has been addressed e.g., Painter, 1996; Liu and Molz,
.1996, 1997; Molz et al., 1997; Benson, 1998 .

The purpose of this paper is to demonstrate that highly skewed, non-Gaussian
contaminant plumes with heavy leading edges can be a result of the infinite-variance

Žparticle jump distributions that arise during transport in disordered non-homogeneous or
.not well structured porous media. Additional factors such as long-term velocity

dependence serve to enhance non-Gaussian plume growth, but are not required for this
Ž .type of evolution. We demonstrate that a fractional ADE Benson, 1998 is a governing

equation for conservative solute transport in porous media in cases where temporally
correlated velocity fields do not dominate transport processes. Section 2 explains that
Fickian dispersion can only occur in homogeneous aquifers. Section 3 provides a
physical justification for the use of a fractional derivative in describing particle
transport. In Section 4, we derive a fractional Fick’s law and use Eulerian conservation
of mass methods to obtain a fractional ADE. Section 5 links the concepts developed in
previous sections with probability theory. Issues of scaling and ergodicity are addressed
in Section 6. Finally, Section 7 links the topics presented in this paper to the
terminology of stochastic theory and related studies.

2. Implications of Fickian dispersion

An underlying assumption of the ADE is that mechanical dispersion, like molecular
diffusion, can be described by Fick’s first law:

EC
FsyDD 2Ž .d

Ex

where F is the mass flux of solute per unit area per unit time and DD is the effectived

diffusion coefficient in a porous medium. Fick’s law states that particle flux is directly
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Fig. 1. Particles diffusing between two cells of length D x.

proportional to the spatial concentration gradient. However, it is not the spatial concen-
tration gradient that causes particle movement, i.e., particles do not ApushB each other
Ž .Crank, 1976 . Particles exhibit random motion on the molecular level. This random

Žmotion ensures that a tracer will diffuse, decreasing the concentration gradient Crank,
.1976 . The particle motion implied by Fick’s law can be examined using a finite-dif-

Ž .ference model for the diffusion of particles between two cells Fig. 1 . For simplicity,
we consider particle transport in one dimension.

Let M be the number of particles in box i. Then, the concentration in each box isi

given by

Mi
C s 3Ž .i

DÕ

where DÕsAD x is the volume of each box and A is the area of the box face normal to
D x.

Assuming that each particle jumps randomly backwards or forwards with rate R
Ž .with units jumpsrD t , then the number of particles that jump in a small time, D t, is
M RD t. The flux, F , is the net number of particles per unit area that move from box ii i

to box iq1 in the interval D t:

1 1 1
M y M R C yC DÕRŽ .i iq1 i iq1ž / 12 2 2F s s s C yC RD x . 4Ž . Ž .i i iq1A A 2

Ž . Ž .Now, C yC is equivalent to C xqD x,t yC x,t . Since the Taylor seriesiq1 i

approximation for x at time t is

` n nE C x ,t D x ECŽ .
C xqD x ,t s sC x ,t q x ,t D xqoo D x 5Ž . Ž . Ž . Ž . Ž .Ý nEx n! Exns0

where

E2 C D x 2 E3C D x 3

oo D x s x ,t q x ,t q . . . ,Ž . Ž . Ž .2 32! 3!Ex Ex
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Ž .Eq. 4 becomes

1 EC
Fs D xqoo D x RD x . 6Ž . Ž .

2 Ex

In order to recover Fick’s law when the limit as D x™0 is taken, we require:

1 21. D x R™DD2
1 2Ž .2. oo D x R™02

Since DD is a constant and D x™0, it follows that R™`. Thus, D x 2 must decrease
Ž .1r2at the same rate that R increases, meaning D x must grow like D t if DD is to

remain constant.
For accounting purposes, particle AjumpsB that occur during a given D t are con-

strained to a D x. This means that there cannot be large deviations from the average
particle velocity. Hence, the entire aquifer must have constant hydraulic properties on

Ž .scales larger than some very small representative elementary volume REV in order for
Ž .Fick’s law to hold with a constant dispersion coefficient. Experiments by Bear 1961

and others have suggested that solute tracers in homogenous porous media exhibit
Fickian dispersion.

Now consider mechanical dispersion in a heterogeneous aquifer. In this case, large
velocity variations at the pore scale are caused by the motion of fluid through a
disordered porous medium. Since the hydraulic conductivity at different locations in an
aquifer can vary over many orders of magnitude, there may always be particle velocities
that are large enough that particle jumps are not constrained to a small REV. Assuming
that an REV must exist on some scale and increasing the size of the control volume to
meet it is analogous to increasing the discretization size in a Riemann sum when
approximating an integral; the approximation becomes too coarse to provide any
valuable information about the function. It has also been suggested that some particles
travelling in aquifers move at velocities many orders of magnitude slower than the mean

Ž .velocity i.e., Brusseau, 1992; Haggerty and Gorelick, 1995 , significantly affecting
plume evolution.

It would be useful if particle jumps occurring in a given D t could be modeled
without limiting them to the length of a single control volume. A more robust model
might also permit the probability of forward jumps and backward jumps to be different.
If we describe the flux of particles as proportional to a fractional deriÕatiÕe, then the
size of particle jumps, and hence the magnitude of the particle velocities, are uncon-
strained. The fractional derivative will also permit unique jump direction probabilities.
Before developing the notion of Afractional dispersionB, an introduction to fractional
calculus and utility of fractional derivatives is provided.

3. Fractional calculus

Fractional calculus is concerned with rational-order, rather than strictly integer-order,
derivatives and integrals. The majority of fractional calculus theory was developed in the
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Ž .19th century see the history compiled by Oldham and Spanier, 1974 . The mathematics
of fractional calculus is a natural extension of integer-order calculus. Long thought to be
a mathematical construct with little application, fractional calculus is now being used in
many scientific and engineering fields, including fluid flow, electrical networks, electro-

Žmagnetic theory, and probability and statistics e.g., Miller and Ross, 1993; Oldham and
.Spanier, 1974; Zaslavsky, 1994; Gorenflo and Mainardi, 1998a . Fig. 2 demonstrates

that fractional-order derivatives form a continuum between their integer-order counter-
parts.

Ž . Ž .Benson et al. 2000a and Gorenflo and Mainardi 1998a provide an introduction to
Ž .fractional calculus as it applies to diffusion problems while Oldham and Spanier 1974 ,

Ž . Ž . 2 Ž .Fig. 2. a Plot of the function f x s x and its 0.2, 0.4, 0.6, 0.8, and 1st derivatives. b Plot of the 1st, 1.2,
Ž . 21.4, 1.6, 1.8, and 2nd derivatives of f x s x .
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Ž . Ž .Miller and Ross 1993 , or Samko et al. 1993 present complete treatises on the subject.
For the purposes of this discussion, it is only critical to understand the differences in the
behavior of integer-order and fractional-order derivatives.

Integer-order derivatives depend only on the local behavior of a function, meaning
the slope of the function at an infinitesimally small interval. Fractional derivatives,
however, are non-local functions. The fractional derivative of a function at a given point

Ž .depends on the character of the entire function Blank, 1996 . This is most easily
demonstrated by expressing the fractional derivative as a linear combination of a left and
right sided derivative:

1 1q q qD s 1yb D q 1qb D 7Ž . Ž . Ž .b q y2 2

1 1Ž . Ž .where y1FbF1 and 1yb and 1qb are the probabilities that a particle will2 2

jump backwards or forwards. Dq , known as the Riemann–Liouville operator, is theq
derivative of a function from y` to x while Dq , known as the Weyl fractionaly

Ž .derivative, is the derivative from x to ` Gorenflo and Mainardi, 1998b .
Ž .If the series definition of the Riemann–Liouville operator Miller and Ross, 1993 ,

`1 G kyqŽ .
q yqD f x s lim D x f xykD x 8Ž . Ž . Ž .Ýq

G yq G kq1D x™0 Ž . Ž .ks0

is rewritten in the form

`

w f xykD xŽ .Ý k
ks0qD f x s lim , 9Ž . Ž .q q

D xD x™0

where

G kyqŽ .
w s ,k

G kq1 G yqŽ . Ž .

it is readily apparent that a Riemann–Liouville fractional derivative is the limit of a
weighted average of the values over the function from y` to x. These weights, w ,i

Ž .correspond in the limit to a power function defined by the order of the fractional
derivative, q. Fig. 3 includes a log–log plot of the weights representing the dependence
of a fractional derivative at a given point of a function on points up to 100 cells away.
Weights corresponding to the 0.1, 0.5, and 0.9th derivatives are presented. The
larger-order fractional derivatives place more weight on proximal cells and dependence
on distal cells decrease very quickly with distance. Conversely, lower-order fractional
derivatives place relatively less weight on proximal cells and the dependence on distal
cells decreases slowly. As x™`, the slope of the weight function is equal to yq.

While the Riemann–Liouville operator has memory over the function from y` to x,
the Weyl operator is the limit of a weighted average of the values over the function from

Ž .x to `. Thus, the fractional derivative, Eq. 7 , at a point on a function has a unique
power law AmemoryB both forwards and backwards on the function.
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Fig. 3. Log–log plot demonstrating the power law decay in weights placed on the 100 closest cells in
calculating the q th fractional derivative.

Ž .If the probability distribution for forward jumps follows one power law, P X)x s
C xyq 1, where x)0, and the probability distribution for backwards jumps follows a1

Ž . yq 2 Ž .second power law, P yX)x sC x x)0 , then the ratio of forward to backward2
Ž . Ž .jump probabilities, 1qb r 1yb , is equal to the ratio of the densities as x becomes

Ž .large Fig. 4 . If q sq , then the ratio is constant and y1FbF1 is the skewness. If1 2

q -q , then the probability of large jumps in the forward direction will be much larger1 2
Ž . Žthan the probability of large jumps in the backward direction. As x™`, 1qb r 1y

Fig. 4. The ratio of the probability of forward jumps to negative jumps is the distance between the power law
probabilities on a log–log plot.
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.b ™` so we must have bs1. Since the lower value of q and q tends to dominate,1 2

the fractional derivative in this case will take the form Dq sDq1. If q -q , then asb 1 2 1
Ž . Ž .x™`, 1qb r 1yb ™0, so bsy1 and the appropriate fractional derivative will

be Dq sDq2 . Since it is highly unlikely that the probabilities of forward and backwardb y1

jumps decrease with the same power law in a heterogeneous porous medium, dispersive
flux should be proportional to a fractional derivative of form Dq sDq1 or Dq sDq2 .b 1 b y1

4. Fractional dispersion and the fractional ADE

Ž .The generalized Taylor series Osler, 1971 :

` nqq
D x

nqqC xqD x ,t s D CŽ . Ž .Ý b
G nqqq1Ž .nsy`

D x q
q qsD C x ,t qoo D x 10Ž . Ž . Ž .b

G qq1Ž .
where q is a rational number and Dq, the qth derivative, is valid for both integer andb

fractional-order derivatives. Since the gamma function is equivalent to the factorial
Ž . Ž .function for integers, Eq. 10 reduces to Eq. 5 for integer-order derivatives. Note that

each term of a fractional-order Taylor series includes the weighted average of the values
over the entire function.

Ž .Using the generalized Taylor series for C xqD x,t in the equation for particle flux,
Ž .Eq. 4 , we have

q1 D x
q qFs D C qoo D x RD x . 11Ž . Ž . Ž .b2 G qq1Ž .

Taking the limit as D x™0 yields a fractional Fick’s law:

FsDDDq C 12Ž . Ž .b

which, because of the multi-directional nature of the fractional derivative can also be
expressed as

1 1q qFsDD 1qb D C q 1yb D C . 13Ž . Ž . Ž . Ž . Ž .Ž . Ž .q y2 2

The fractional Fick’s law is valid as D x™0 when:

Dx qq1
11. R™DD2

G qq1Ž .
1 qq1Ž .2. oo D x R™02

In contrast to the non-fractional case, when a limit is taken as D x™0, it must be
true that R™` at the same rate as D x qq1

™0 in order for DD to be constant. Thus, D x
Ž .1r amust grow at the same rate as D t , where asqq1.
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Fig. 5. A fractional Fick’s law allows the particles in box i to move more than one box in a small D t. Note
that the probability a particle moves one box forward or backward is greater than the probability that a particle
moves forward or backward two boxes, which is greater than the probability that a particle moves three boxes,
etc.

The hydraulic conductivity of a perfectly homogeneous aquifer can be measured in a
single control volume. As we seek to describe the variation in hydraulic conductivity of
heterogeneous aquifers, a non-local function is required. The first-order derivative in
Fick’s law describes a uniform velocity field in a homogenous porous medium. As the
order of the fractional derivative in the fractional Fick’s law decreases, that is, as q is
reduced, a more heterogeneous porous medium is represented because there is a higher

Ž .probability that particles may travel farther in a given D t Fig. 3 . Since the heterogene-
ity of the system is characterized by the fractional derivative, there is no need for the
dispersion coefficient, DD, to be scale-dependent.

As depicted in Fig. 5, a particle whose motion is governed by a fractional Fick’s law
can move any distance from its original location in a given D t, with the probability that
a particle moves a given distance backwards decaying as one power law and the
probability that it moves forwards decaying as a second power law. The precise power
laws are governed by the order, a , and skewness coefficient, b , of the fractional
derivative as previously described. Also note that the particle model in Fig. 5 represents
solute dispersion. If box i is advected at the mean groundwater velocity, then the
forward particle jumps represent particle velocity that is faster than the mean flow, while
backward jumps represent particle velocity below the average velocity. The parameter b

describes the relative probabilities of particle travel ahead or behind the mean velocity.
The Eulerian derivation of the one-dimensional ADE based on the conservation of

Žmass of solute flux into and out of a small control volume of porous media e.g., Freeze
.and Cherry, 1979 can be generalized to that of a solute transported by advection and

fractional dispersion.
Let solute transport in the x direction be given by:

Advective transportsÕ n CdA 14Ž .x e

Dispersive transportsn DD Dq C dA 15Ž . Ž .e x b

qŽ .where D C is the qth derivative of concentration, n is the effective porosity and dAb e

is the cross-sectional area of the element perpendicular to the direction of flow. Then,
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the mass flux in the i direction, F , is the sum of the advective and dispersivei

components:

F sÕ n Cyn DD Dq C 16Ž . Ž .x x e e x b

where 0-q-1.
Ž .Substituting Eq. 16 into the equation for conservation of mass in one dimension,

EC EFx
yn s , 17Ž .e

Et E x

yields

EC E
qs yÕ CqDD D C . 18Ž . Ž .Ž .x x b

Et Ex

If we let asqq1 be the order of the fractional derivative in both the forward and
backward directions and assume that porosity, velocity, and the dispersion coefficient
are constant, a fractional ADE is obtained:

EC EC
asyÕ qDDD C . 19Ž . Ž .b

Et Ex

The fractional ADE can describe solute plume evolution with a large probability of
particles moving significantly ahead of and behind the mean solute velocity. The order
of the fractional derivative, 1-aF2, will be close to 1 for highly heterogeneous
aquifers, closer to 2 for more homogenous aquifers, and equal to 2 for homogenous
aquifers. Furthermore, bs1 when solute disperses preferentially at velocities ahead of
the mean velocity and bsy1 when more of the solute remains behind the mean

Ž .groundwater velocity. Statistical–mechanical derivations for Eq. 19 can be found in
Ž . Ž . Ž . Ž .Meerschaert et al. 1999 , Benson 1998 , Benson et al. 2000a , and Chaves 1998 .
Ž .Cushman and Ginn in review demonstrate that the fractional ADE is a special case of

Ž .the non-local transport equations found in Cushman and Ginn 1993 . The three
Ž .dimensional case is more complicated as discussed in Meerschaert et al., 1999 , as the

order of the fractional derivative is not necessarily equal in all directions and the
AskewnessB can assume many directions.

5. Stochastic modeling and stochastic hydrogeology

Stochastic modeling uses the laws of probability theory to predict the outcome of
processes that contain random elements. Central to these laws are limit theorems, which
specify the distribution of the sum of a large number of n iid random variables.
DeMoive’s well known central limit theorem,

X qX q . . . qX ynm1 2 n 2lim sY;N ms0,s s1 , 20Ž .Ž .1
n™`

2s n

states that an appropriately shifted and normalized sum of iid, finite-Õariance random
variables, X , divided by the square root of n, will converge to a Gaussian distributioni
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with zero mean and unit variance. This implies that the sum of the random variables
X qX q . . . qX grows at the same rate as n1r2.1 2 n

The central limit theorem is not the only limit theorem. It is a special case of Levy’s´
general limit theorem,

X qX q . . . qX ynm1 2 n
lim sY;S ss1,b ,ms0 21Ž . Ž .a1

n™`
as n

which states that normalized sums of iid random variables of any distribution will
converge to a Aa-stableB or ALevy-stableB distribution with index of stability 0-aF2,´
skewness coefficient y1FbF1, shift parameter ms0, and spread parameter ss1
Ž .Feller, 1971; Gnedenko and Kolmogorov, 1968 . Because all stable densities cannot be
written in closed form, they are typically expressed in terms of their Fourier transforms:

`
Ž iu x . iu XEe s e f x d xŽ .H

y`

pa
aa < <sexp ys u 1y ib signu tan q imu if a/1 22Ž . Ž .ž /ž /2

Ž .where f x is a stable density and

1 if u)0signus ½y1 if u-0.

ŽThe Gaussian distribution is a stable distribution with as2 the skewness coefficient
. Ž .is irrelevant when as2. The Cauchy distribution, omitted from Eq. 22 for clarity, is

Ž .stable with as1. The densities of several symmetric bs0 stable distributions are
compared in Fig. 6. The effect of varying the skewness coefficient of a stable density is
demonstrated in Fig. 7.

Random variables whose limiting sums are normally distributed are said to be in the
Gaussian Adomain of attractionB. The densities in a-stable domains of attraction have at

< <yay1least one tail that decays as the power function x . The power-law tails result in
Ž .such large probabilities of extreme values values far from the mean that these

Ž .distributions do not have a defined second moment or variance . These densities are
thus referred to as heaÕy-tailed or infinite-Õariance distributions. Infinite variance
occurs when the integral

` 2VARs xym f x d x , 23Ž . Ž . Ž .H
y`

diverges. When a-2, the stable distribution is still described with a scale parameter,
s , but the second moment diverges so the variance is undefined. Note that the standard

Ž .deviation for a Gaussian distribution as2 is equal to the square root of two
multiplied by the stable scale parameter, though both are denoted with a sigma.
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Ž .Fig. 6. Plots of symmetric standard a-stable densities showing power-law AheavyB tailed character. a linear
Ž . Ž .axes, and b log–log axes. From Benson 1998 .

It is important to remark that the finite-variance Gaussian distribution is defined from
y` to `. Using an infinite-variance a-stable distribution only changes the shape of the
distribution, it does not change the domain over which the distribution is defined. Thus,
an infinite-variance velocity model does not imply infinite magnitude particle velocities
any more than the Gaussian does. Rather, the probabilities are different. In practice,

Ž .infinite variance means that the sample variance the calculated variance for a data set
for a set of random variables will not converge to a constant value as is generally
expected by the law of large numbers. Fig. 8a demonstrates that if sample variance is
calculated as standard normal random variables are generated, the sample variance does
indeed converge to 1. However, in Fig. 8b, the sample variance for a-stable random
variables is always finite but never converges to a constant value.
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Fig. 7. Plot of a s1.5 stable densities with varying skewness.

Ž . Ž .Fig. 8. Sample variance for of a set of a 5000 iid finite variance random variables and b 5000 iid infinite
Ž .variance 1.9-stable random variables.
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Noting that the number of jumps, n, is equivalent to the total time divided by the time
per jump, trD t, we can recast the classical central limit theorem to suit the problem of
Fickian particle jumps:

t
D x qD x q . . . qD x y mt1 2

D t
D t

lim sY;N 0,1 , 24Ž . Ž .1
2t t

™` sD t ž /D t

where the individual jump lengths, D x , have mean m and variance s 2 and D x qD xi 1 2

q . . . qD x is the location of the particle at time t. Define the average particletrD t

velocity, ÕsmrD t and the dispersion coefficient, DDss 2rD t. The central limit
theorem then takes the form

D x qD x q . . . qD x yÕtt1 2

D t
lim sY;N 0,1 . 25Ž . Ž .'t DDt
™`

D t

As in the derivation of the equation for Fickian dispersion, for proper convergence of the
Ž .1r2central limit theorem, the length of particle jumps is proportional to DDt . The

location of a particle at time t, the sum of particle jumps, D x qD x q . . . qD x , must1 2 n

grow as t1r2.
Note that the normalized sum of any finite-variance random variables, i.e., log-nor-

mal, uniform, etc., converges to the Gaussian. Stochastic theory mandates that Gaussian
densities will be the solutions to a Fickian ADE. Similarly, the derivation for the
fractional Fick’s law implies the generalized central limit theorem in the form

D x qD x q . . . qD x ynm1 2 n
lim sY;S ss1,b ,ms0 26Ž . Ž .a1

n™` t
a

s ž /D t

or, substituting ÕsmrD t and DDss arD t,

D x qD x q . . . qD x yÕtt1 2

D t
lim sY;S ss1,b ,ms0 27Ž . Ž .a1
t
™` a

D t DDtŽ .

where no assumption need be made about the specific distribution of particle velocity.
Ž .Hence, the solutions to the fractional ADE are stable densities with as2 Gaussian for

homogeneous media and stable densities with a-2 for heterogeneous media. The
stable densities with a-2 include information about the drift, spread, and skewness of
the contaminant plumes. Note that the parameters a and b in the stable densities are
the same as those in the fractional derivative. If particle dispersion in an aquifer is
governed by a fractional Fick’s law with fractional derivative Da, then the correspond-b
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Ž .ing conservative solute snapshot will look like the stable density S s ,b ,m wherea

Ž .1r a Ž .ss DDt and msÕD t. Benson et al. 2000a,b describe methods for estimating the
parameters in the fractional ADE and applying the equation in both the laboratory and
field settings.

6. Ergodicity

A stochastic process is a collection of random variables that describes the evolution
of a physical process through time or space. As described in previous sections, the
stochastic process under consideration in groundwater contaminant transport is the path
of a solute particle through a porous medium. The random variables we sum are the
individual AjumpB lengths that occur in a small D t. It is generally assumed that
correlation decays rapidly beyond some D t. A stationary stochastic process will follow

Ž .the same probability law, regardless of its point of origin Ross, 1997 . Assuming that
the hydraulic conductivity distribution of an aquifer dictates the distribution of solute
particle velocities, a stationary conductivity field implies that a contaminant plume will
evolve in the same way regardless of the source location.

A stochastic process is ergodic if the distribution of the sum of random variables
Ž .reaches some limit that does not depend on its initial conditions Feller, 1968 . If

particle travel is ergodic, then the probability that a particle will be located a distance x
from its starting point will follow the appropriate stable distribution for a given time, t.
As a result of the ergodic hypothesis, the concentration profile of an ensemble of such
particles with a common starting location will follow the same distribution. Thus, in the
case of solute transport, ergodicity is a statement of the conditions under which limit
theorems can be applied: when a sufficient number of normalized, iid random variables
have been added. Ergodic conditions are those under which equations based on limit

Ž .theorems are good approximations of stochastic processes. Zhan 1999 indicates that
the ergodic hypothesis for transport in aquifers is usually invalid when heterogeneity is
strong. This study suggests that it is only Gaussian limiting conditions that will not be
reached when heterogeneity is strong. Early-time, pre-asymptotic, or pre-ergodic equa-
tions may not be necessary for the description of non-Gaussian breakthrough curves
because ergodic conditions can produce plume evolution following any one of the many
limiting, a-stable, distributions. The spread and index of stability of the proper limiting
distribution are directly related to the dispersion coefficient and the order of the
fractional derivative in the corresponding fractional ADE. When ergodic conditions are
reached, these non-local parameters do not vary with time. Thus, the scaling properties
of the dispersion coefficient are eliminated.

7. Stochastic processes

This study addresses the concepts behind the fractional ADE in a context that does
not require a familiarity with statistical mechanics. However, most studies of particle
motion in the presence of disordered media have been published by physicists. In this
section, the concepts of aquifer contaminant transport discussed in this paper are linked



( )R. Schumer et al.rJournal of Contaminant Hydrology 48 2001 69–88 85

with their statistical mechanics or mathematical counterparts and mention significant
references. Here, Astochastic processesB refer to the random processes leading to partial

Ž .differential equations PDEs , not the stochastic theories in which the parameters and
Ždependent variables in deterministic PDEs are randomized e.g., Gelhar and Axness,

.1983 .
The model of the random motion of a particle as composed of discrete jumps is

commonly known as a random walk. The Fickian random walks taken by particles in
homogeneous media are discrete approximations of Brownian motion processes or
Wiener processes. Transport that exhibits non-Fickian or non-ABoltzmannB scaling is

Ž .termed Aanomalous diffusionB. Kochubei 1990 provides a mathematical proof that the
fractional-order diffusion equation describes anomalous transport.

The term AstableB in Levy’s distributions indicates that a distribution is in its own´
domain of attraction. The motion of particles that requires use of the generalized central
limit theorem is known as Levy motion. Brownian motion is a subset of Levy motion.´ ´
An argument for the ubiquity of Levy distributions in nature is provided by Tsallis et al.´
Ž .1995 . The relationship between Levy processes and anomalous diffusion is discussed´

Ž . Ž . Ž .by Compte 1996 , Gorenflo and Mainardi 1998b , Zumofen et al. 1990 and many
others.

Ž .A stochastic process is self-similar if it has stationary increments jump lengths and
is invariant if the proper scaling index is used. The scaling index for Brownian motion is
1r2 while the index for Levy motion is 1ra . Random walks on self-similar fractal´

Žobjects have been investigated by a number of authors e.g., Metzler et al., 1994; Roman
.and Giona, 1992 . While Brownian and Levy motion have statistically independent´

increments, other self-similar processes display long-range temporal dependence. It has
been demonstrated that long-range spatial correlation alone can result in enhanced

Ž .dispersion rates Makse et al., 1998 , implying faster-than-Fickian plume evolution in
finite-variance hydraulic conductivity fields with long-range spatial correlation. Frac-

Ž .tional Brownian motion fBm , the counterpart to Brownian motion that includes
long-range temporal dependence, has been used to characterize aquifer heterogeneity

Ž .with correlation see Molz et al., 1997 and references therein . The scaling parameter for
fBm is known as the Hurst coefficient. Other studies have suggested that aquifer

Ž .heterogeneity can be modeled using fractional Levy motion fLm , which combines long´
range dependence with heavy tails, or even multifractals, a generalization of fLm which
permits distributions describing different heterogeneity scales to follow different power

Ž .laws Molz et al., 1997; Liu and Molz, 1996, 1997 . These formalisms have been used
to generate conductivity fields for use in numerical simulations demonstrating that

Žtransport in disordered, correlated porous media is non-Fickian and heavy-tailed Molz
.et al., 1999 . The relationship between the structure of the hydraulic conductivity field

and solute particle distribution remains an open question.
Ž .Continuous-time random walks CTRWs , which generalize random walks by allow-

Ž .ing a time delay between particle jumps were developed by Montroll and Weiss 1965 .
Ž .Scher and Lax 1973 present CTRWs as a general theory for transport in disordered

systems, which include a coupled spatial–temporal memory. Berkowitz and Scher
Ž .1998 suggest that the anomalous spreading of solutes in both fractured and porous
media can be modeled using the CTRW formalism.
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8. Summary

A Fickian model for solute dispersion in aquifers implies that the probability
distribution governing solute velocity must have a finite variance. However, the large
variation in hydraulic conductivity values in heterogeneous aquifers may lead to an
infinite-variance velocity field. In this case, dispersive flux is best described using a
fractional Fick’s law, in which flux is proportional to a fractional-order derivative. The
non-local nature of the fractional derivative means that this model does not rely on an
REV. When a fractional Fick’s law replaces the classical Fick’s law in an Eulerian
evaluation of solute transport in a porous medium, the result is a fractional ADE.
Fractional ADEs have a-stable solutions with tail and skewness parameters equal to
those in the fractional derivative. These solutions can be asymmetric and can have heavy
leading andror trailing edges, resembling breakthrough curves observed in the labora-
tory and field.

The Gaussian is a subset of stable distributions, the classical central limit theorem is a
special case of a generalized central limit theorem, integer-order derivatives are subsets
of fractional-order derivatives, and homogeneity and heterogeneity are two types of
ordered media. The connection between these generalizations tend to support a fractional
ADE, which describes a scale-invariant stochastic process, as an appropriate model for
conservative solute transport in porous media.
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