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[1] Space-fractional advection-dispersion models provide attractive alternatives to the
classical advection-dispersion equation for model applications that exhibit early arrivals
and plume skewness. This paper develops a flexible method for estimating the parameters
of the fractional transport model on the basis of spatial plume snapshots or temporal
breakthrough curve data. A particle-tracking approach provides error bars for the
parameter estimates and a general method for model fitting and comparison via optimal
weighted least squares. A simple model of concentration variance, based on the particle-
tracking approach, identifies the optimal weights.
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1. Introduction

[2] Non-Fickian transport of conservative solutes has been
widely observed in laboratory and field data [Benson et al.,
2000a, 2000b, 2001; Levy and Berkowitz, 2003; Bromly and
Hinz, 2004; Klise et al., 2004]. The resulting anomalous
dispersion is not well described by the classical second-
order advection-dispersion equation (ADE) without exten-
sive site characterization [Zheng and Gorelick, 2003]. A
number of transient storage-based ADE models have been
proposed for simulating the anomalous dispersion [Bencala
and Walters, 1983; Boano et al., 2007; Deng and Jung,
2009]. The space-fractional advection-dispersion equation
(FADE) provides an attractive alternative that can represent
plume skewness and early arrivals:
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where C(x, t) (M/L3) is tracer concentration, v (L/T) is the
average plume velocity, D (La/T) controls rate of spreading
[Benson et al., 2000b], b (dimensionless) is the skewness
parameter (�1 � b � 1 with b = 0 for a symmetric plume),
and the space-fractional index 1 < a � 2 (dimensionless)
codes the heterogeneity of the porous medium [Clarke et al.,
2005]. When a = 2, (1) reduces to the classical ADE with
constant parameters. The FADE (1) has been successful at
modeling unsaturated transport [Pachepsky et al., 2001;
Zhang et al., 2005], transport in saturated porous media
[Zhou and Selim, 2003; Chang et al., 2005; Huang et al.,
2006], and river flows [Deng et al., 2004, 2006; Zhang et
al., 2005; Kim and Kavvas, 2006].
[3] This paper develops a general method of parameter

estimation for the FADE parameters a, b, v, D from plume

concentration data. Both spatial snapshots (observations
of concentration C(x, t) for t fixed and x = x1, . . ., xN) and
temporal breakthrough curves (measurements of C(x, t) for
x fixed and t = t1, . . ., tN) are considered, since these are the
data typically available. Naturally these data are contaminated
by measurement error as well as model error (no model
takes into account every source of variation). The FADE (and
the ADE) relate to a specific stochastic process limit for a
random walk model of particle movement [Bhattacharya
et al., 1976; Zhang et al., 2006; Chakraborty, 2009].
Using a particle-tracking approach (Bhattacharya et al. use
the term ‘‘pseudoparticle’’), and equating the relative con-
centration of particles with the limit probability density, we
can equate the measured concentration with a histogram
consisting of the observed number of particles in each bin,
where bin size is chosen to represent the volume sampled
in a concentration measurement, and the number of particles
is calibrated with plume roughness. Careful simulations
(results not shown) were conducted to validate the fitting
method for simulated plumes. Several illustrative applica-
tions were then fit to demonstrate the method: spatial
snapshots from a tracer test at the MADE site in Mississippi;
breakthrough curve data from tracer tests along the Grand
River and the Red Cedar River in Michigan; and simulated
ensemble snapshots from the Integrated Groundwater
Modeling facility at Michigan State University. A recent
review [Neuman and Tartakovsky, 2009] places the FADE
in the context of modern stochastic theory, and highlights
the relationships between alternative approaches. For exam-
ple, the FADE may be considered as a type of nonlocal
transport equation with convolution-Fickian flux [Cushman
and Ginn, 2000] or a limit case of the continuous time
random walk model [Meerschaert and Scheffler, 2004;
Berkowitz et al., 2006]. The model (1) is applicable under
the ergodic hypothesis [Gelhar, 1993, Dagan, 1989] when
particles sample enough aquifer heterogeneity so that the
resulting plume resembles ensemble limit behavior, allow-
ing the effective application of particle-tracking schemes.
The general fitting methodology presented in this paper,
based on an optimal weighted least squares approach, can
also be adapted to alternative transport models in one or
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several spatial dimensions. The optimal weights are deter-
mined via the particle-tracking approach, so the method is
applicable to any model that admits a particle-tracking
solution, where each particle moves independently of the
other particles. Hence the model can include retention, a
distributed source, and/or multiple interacting tracers (e.g.,
bacterial growth). Several example applications and model
comparisons are included in section 4, where we use our
general procedure to fit the FADE (1) to field and simulated
data, and compare with alternative models.

2. Concentration Variance and Model Fitting

[4] This section describes a particle-tracking approach
[Bhattacharya et al., 1976] to estimate transport model
parameters. The main technical issue is concentration vari-
ance. A stochastic process models the movement of particles,
so that the relative concentration of particles approximates
the probability density of the underlying stochastic process.
The approach is quite general, and can be applied to any
model that has a particle-tracking analogue. The main
technical assumption is that each particle moves indepen-
dently of the other particles. We highlight the FADE model
(1) in this section, in order to focus the discussion. For the
FADE with point source initial condition, the underlying
stochastic process is a stable Lévy motion, a Markov process
whose transition densities have no closed form in general, but
can be efficiently computed by well established numerical
methods. Extensions to more general initial/boundary con-
ditions are possible, the only essential difference arises in
the solution to the model equation. For example, any initial
condition can be handled by convolution of the point
source (Green’s function) solution with the initial particle
distribution.
[5] We begin with the problem of fitting to a spatial

snapshot. Suppose that the measured concentration data at
some fixed time t > 0 is given in the form (xi, ci) for i = 1, . . .,
N, where ci is the observed concentration of particles at
location xi. Particles evolve independently according to the
underlying stochastic process, and concentration is a
histogram of particle location data, measured at locations
x1, . . ., xN. The underlying stochastic model implies that
particle location is a random variable Xt whose probability
density fq(x, t) governs the chance of finding the particle
in the histogram bin at location x. The notation explicitly
acknowledges the unknown parameters q that determine
the density function, since our goal is to estimate these
parameters. The FADE parameter vector is q = (a, b, v, s)
where the scale s is related to the dispersion parameter D in
(1) by sa = Dtjcos(pa/2)j [e.g., see Benson et al., 2001;
Samorodnitsky and Taqqu, 1994]. Model concentration is
given by C(x, t) = Kfq(x, t) where K > 0 is the total mass of
the plume.
[6] Model parameter estimation is essentially a least

squares curve fitting problem. We conceptualize the concen-
tration data as a histogram, essentially a rescaled (by the total
mass K) density estimate. For the FADE, the relevant fq(x, t)
is a stable density that has no closed form [Samorodnitsky
and Taqqu, 1994]. The stable density represents the most
general limit for sums of independent and statistically
homogeneous particle movements, which explains its im-
portance in stochastic process limits [Feller, 1971]. The

simplest way to express the general stable density fq(x, t) is
in terms of its Fourier transform:

Z
eikxfq x; tð Þ dx ¼ exp imk � sawa;b kð Þ
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; ð2Þ

where

wa;b kð Þ ¼ jkja 1� ibsign kð Þ tan pa=2ð Þ½ � for a 6¼ 1;
jkj 1þ ib 2=pð Þsign kð Þ log jkj½ � for a ¼ 1;
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where the tail index 0 < a � 2, skewness �1 � b � 1,
center �1 < m < 1, and scale s � 0. When a = 2, the
stable reduces to a normal density with mean m and standard
deviation s

ffiffiffi
2
p

. Codes for computing the stable density
based on analytical inversion of the Fourier transform and
numerical integration of the resulting formula are widely
available [e.g., see Nolan, 1999].
[7] Model fitting is complicated by another factor as well.

If we treat the fitting problem as a simple least squares
optimization, we would seek the value of the parameter
vector q and the total mass K > 0 that minimizes

1

N

XN
i¼1

ci � Kfq xi; tð Þð Þ2: ð3Þ

However, this assumes that the concentration variance is the
same at each point xi, which is far from the truth. Certainly
the deviation between theoretical and measured concentra-
tion will not be the same at low and high concentrations.
Statistically, this is a heteroscedastic nonlinear regression.
The key to correctly fitting the parameters is to understand
this error structure, and take it into account in a generalized
least squares approach.
[8] A simple computation in Appendix A shows that the

concentration variance in a particle-tracking setup is always
proportional to the measured concentration. This result is
universal, and does not depend on the choice of model.
Hence any model that admits a particle-tracking solution,
where each particle moves independently of the other
particles, can be fit using this general procedure. In partic-
ular, our approach does not require the underlying stochastic
process to be Markovian, nor does it require successive
movements of any given particle to be uncorrelated. Since
the variance of the measured concentration ci = Ĉ(xi, t) is
proportional to model concentration C(xi,t), we expect
measured and model concentration to agree more closely,
in absolute terms, at lower concentrations. Hence a simple
least squares fit is not appropriate. Instead, we will see that a
weighted least squares is optimal. In Appendix A, we show
that the optimal fitting procedure is to choose model param-
eters q and K to minimize the weighted mean square error
function

e q;Kð Þ ¼ 1

N

XN
i¼1

wi ci � Kfq xi; tð Þð Þ2; ð4Þ

where the weight wi = 1/(Kci) is essentially the reciprocal of
the concentration variance. The procedure for fitting a
breakthrough curve is essentially the same, except that the
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data is measured concentration (ci, ti) for times t1, . . ., tN
at one point x in space, and the space-varying model
concentration Kfq(xi, t) is replaced by its time-varying
analogue Kfq(x, ti). Appendix A also develops asymptotic
expansions for the measured concentration and the estimated
model parameters, leading to confidence bands that describe
the quality of the approximations. Since the concentration
variance is proportional to the concentration, low concen-
trations imply thin error bars. If this were not the case, the
concentration error bars at low concentrations would allow
negative observations, which makes no sense physically.
Error bars for the model parameters depend on the first
partial derivatives of the model concentration (for the
FADE, this involves the stable density function), which can
be computed numerically in practice. Details of the fitting
procedure and error bar calculation are laid out in section 3.
Finally, we point out that the procedure does not take
measurement error into account. For concentrations well
above the detection limit, this is a reasonable approxima-
tion. Concentrations below the detection limit should be set
to zero. A zero concentration is ignored in the optimization,
since we use the generalized inverse of the diagonal matrix
Sq in (A16).
[9] Concentration variance has been studied extensively

in traditional stochastic hydrology. In that theory, concen-
tration variance represents the variability of measured
concentration at a fixed point in space, between different
realizations of a random velocity field. Our approach
represents a simplification of that model. Fiori and Dagan
[2000] view particle motion as a Gaussian diffusion with
drift, in a random velocity field. Our model differs in that
the underlying diffusion is a non-Gaussian stable Lévy
process, whose heavy tails also code the variations in the
velocity field. This allows the effective use of a FADE (1) in
which the constant average plume velocity v and fractal
dispersivity D are constitutive parameters. Fiori and Dagan
derive the explicit form of the observed concentration
variance, which indicates that concentration variance is
highest at the plume center [see also Fiori and Dagan,
2000, Figure 7]. Hu and He [2006] extend that result to
account for kinetic sorption and local dispersion in a
heterogeneous porous medium, and again they find that
concentration variance is highest at high relative concen-
trations [Hu and He, 2006, Figures 1 and 2]. This is in
agreement with our simplified model, in which the Gaussian
pdf of concentration is approximated by a binomial, and a
spatial snapshot is approximated by a histogram (particle-
tracking approach).
[10] To further clarify the theory behind concentration

variance, consider a typical contaminant transport simula-
tion. A random hydraulic conductivity (K) field is generated,
statistically consistent with the aquifer properties we wish
to capture, and the corresponding velocity and dispersivity
are computed based on relevant model assumptions, includ-
ing appropriate initial and boundary conditions. If we track
particles through a single aquifer realization, then each
particle evolves independently of the other particles in that
simulation, and the results of this paper are immediately
applicable. If we take an ensemble average over a small
number of realizations, this induces a correlation between
particle movements, since two particles in the ensemble
may undergo similar motion because they are following the

same realization. This is the source of the two particle
correlation in the classical theory of stochastic hydrology.
If we take an ensemble average of a sufficiently large number
of realizations, then an ergodic limit is achieved. If we run
the simulation over a sufficiently long period of time, so
that a typical particle samples all the heterogeneity of the
aquifer, then again an ergodic limit is achieved. In both
cases, the results of this paper are again applicable, since the
simplifying assumption of particles that evolve independent
of one another is close enough to reality to provide a simple,
descriptive model of plume behavior. It is also important to
point out that the subject of this paper is model fitting. It is
not our intent to champion one model over another in this
paper, but rather to develop statistically sound methods for
fitting a given model to concentration data. Model error, a
mismatch between the chosen model and the underlying
physical reality, contributes another source of ‘‘noise’’ in
measured concentration data, in that it contributes to the
deviation of measured concentration values from a fitted
curve derived from that model. We have not considered the
affect of model error in our work.
[11] Following the work of Cassiani et al. [2005] on

turbulent atmospheric flow, Bellin and Tonina [2007] model
concentration itself as a Gaussian diffusion. They assume a
quadratic dispersivity in their diffusion model, which leads
to an analytical solution with concentration following a Beta
pdf. They then fit a Beta pdf to point data and vertically
averaged concentrations from the Cape Cod site, and obtain
superior fits to a Gaussian or Lognormal. It is important to
note that this Beta pdf represents the overall distribution of
concentration, disregarding spatial location. Hence the Beta
pdf fits a histogram with normalized concentration on the
horizontal axis, and frequency on the vertical [Bellin and
Tonina, 2007, Figures 2–6]. This is unlike the approach
taken in this paper, where the FADE is fit to a histogram
with spatial location on the horizontal axis, and concentration
on the vertical. Hence the normal/binomial pdf of concen-
tration at a fixed point in space, found in this paper as well as
traditional stochastic hydrology, does not conflict with the
findings of Bellin and Tonina [2007].
[12] An alternative method for fitting the FADE param-

eters (D. A. Benson, private communication, 2009) con-
sists of minimizing mean square error on a log-log plot of
the concentration data. This is equivalent to minimizing
N�1

PN
i¼1 (log ci � log C)2 where C = Kfq(xi, t) is the

model concentration. A Taylor expansion yields log ci �
log C + (ci � C)/C to first order. Then we are essentially
minimizing N�1

PN
i¼1 Wi(ci � C)2 where the weights Wi =

1/C2 represent an improvement over unweighted least
squares, but are not equivalent to the optimal weighting.

3. Parameter Estimation for the FADE Model

[13] This section describes a practical method for estimat-
ing coefficients in the space-fractional advection-dispersion
model (1) based on laboratory or field data. We begin with
the problem of fitting FADE parameters given a spatial
snapshot of concentration data ci collected at locations xi
for i = 1, � � �, N at a fixed time t > 0. The best fitting
parameters are found by minimizing the weighted mean
square error function (4) where K > 0 is the total mass and
fq(x, t) is the stable density with parameters q = (a, b, v, s)
where a, b are from the FADE (1), the plume center of mass
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m = vt, and the scale s is given by sa = Dtjcos(pa/2)j. For a
given value of q, the optimal K can be computed from (A17).
Hence we optimize (4) by an iterative two-step approach.
Fix K and minimize (A17) as a function of the remaining
parameters using standard nonlinear optimization software,
and the method of Chambers et al. [1976] for simulating the
stable density [see also Nolan, 1999]. Fix this value of q and
compute K from (A17). Iterate until both estimates con-
verge. The optimization problem is highly nonlinear with
several local extrema, hence we advise a multistart approach
where the two-step iterative method is applied to a grid of
starting values representing a reasonable range of parame-
ters, and the overall optimum is determined. Another
reasonable approach is to fit the model by eye, and then
use this as a starting value in the optimization. Typically the
parameter range can be judged from the context of the
problem. It would also be reasonable to employ more
sophisticated nonlinear optimization methods such as sim-
ulated annealing or a genetic algorithm, but for the FADE
fitting this was not attempted, as the multistart two-step
nonlinear optimization method produced reasonable fits.
Example fits to field data and numerical simulations will
be shown in section 4.
[14] Next we consider the problem of parameter estima-

tion for temporal breakthrough curve data, where plume
concentration ci is observed at one location x at different
time points t1, . . ., tN. As before, we conceptualize observed
concentration as a histogram from an ensemble of particles,
where the density estimate ci = Ĉ(x, ti) from (A1) approx-
imates the model density C(x, ti) = Kfq(x, ti). From this point
of view, the observed concentration Ĉ(x, t) is a random vari-
able whose mean is approximately equal to the model con-
centration C(x, t) and whose variance is approximately equal
to KC(x, ti)/(n dx). Detailed calculations in Appendix A show
that the optimal fitting procedure is to minimize the weighted
mean square error function

E q;Kð Þ ¼ 1

N

XN
i¼1

wi ci � Kfq x; tið Þð Þ2 ð5Þ

as a function of the FADE parameters q = (a, b, v, s) and
the total mass K, where the weights 1/wi = Kci. This is
completely analogous to the fitting procedure for spatial
snapshots, the only difference being that the space-varying
concentrations in (4) are replaced by their time-varying
counterparts. Note this procedure also assumes no mass is
lost over time, consistent with the FADE model for total
concentration.
[15] The underlying statistical theory is complicated by

correlations between ci and cj, which can be significant
if the observation times ti and tj are closely spaced. This
correlation between concentration measurements can occur
due to correlation between movements of different particles,
or between successive movements of an individual particle,
but it can also occur in simple random walk models, since
each particle moves only a limited distance in a very short
period of time. The correlation becomes negligible if the
time spacing is sufficiently wide so that the conditional
probability of a single particle occupying the x bin at time tj,
given that the same particle occupies the same bin at time ti,
is approximately equal to the unconditional probability,
essentially an ergodic assumption. This probability cannot

be directly estimated from the concentration data, which
contains no information about which particles are sampled.
Now the computation of the parameter estimates is exactly
the same as for spatial snapshot data, except that we
substitute the objective function (5) in place of (4).
[16] The fitting procedure for other mass-preserving

models, such as the CTRW or convolution flux model, is
quite similar. All that is required is that: (1) the ergodic
hypothesis is satisfied so that a particle-tracking model is
applicable and (2) model concentrations C(x, t) can be
efficiently computed at each iteration of the optimization
code. The same procedure could also be applied, in principle,
for any partial differential equation model that admits a
numerical solution as a function of its parameters, and a
particle-tracking analogue. For example, in section 4.2 we fit
a CTRW (time-fractional) model to breakthrough data for a
river flow tracer test, using the same general procedure (5).
The validity of this procedure for the CTRW model is
supported by Meerschaert and Scheffler [2004] where the
CTRW ergodic limit is proven to be a time-fractional ADE.

4. Application to Measured Plume Data

[17] This section demonstrates our parameter fitting
methods in the case of the FADE model (1). The method
was implemented using an R code (available from the
authors) which takes advantage of a library function to
compute the stable density.

4.1. Spatial Snapshots From a MADE Tracer Test

[18] Natural gradient tracer tests were conducted at the
Macrodispersion Experimental (MADE) site at Columbus
Air Force Base in northeastern Mississippi. The method of
this paper was applied to the MADE-2 tritium plume data
[Boggs et al., 1993]. The data has four spatial snapshots at
day 27, day 132, day 224, and day 328 days after injection,
respectively. We consider the longitudinal distribution of
total mass. The data points represent the maximum concen-
tration measured in vertical slices perpendicular to the
direction of plume travel, similar to Figure 4 of Benson et
al. [2001].
[19] The resulting concentration curve (solid line) is shown

against the measured concentration data in Figure 1. We
attribute the lack of fit near the injection point to retention
at the source, which is not captured by the FADE model
(1) used in this study. See Schumer et al. [2003] for a
modified FADE model that includes retention, which
improves the fit. Benson et al. [2001] gave a range of
values for a with the most favored value around a = 1.1, in
close agreement with our result of a = 1.0915. The FADE
presented by Benson et al. [2001] is limited to the case b = 1.
Our estimate of the dimensionless skewness parameter b =
0.99 is sufficiently close to validate that assumption. The
remaining parameter fits are v = 0.196 m/d, D = 0.186 ma/d,
and K = 56,778 pCi/ml. Velocity v could also be estimated
from the plume center of mass, which is located downstream
of the peak concentration, since the plume is strongly skewed
[Benson et al., 2001]. The dashed lines in Figure 1 represent
95% confidence bands using equation (A15) where we
calibrate n dxn = 300 (number of particles times the length
of the cube that defines the sampling volume) so that the
confidence bands bracket all but a few of the concentration
measurements. Note that the value for n dxn is purely
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empirical, since there is no way to know the actual number of
particles in the concentration measurements. Using the cal-
ibrated figure for n dxn we can compute confidence intervals
for the FADE parameter estimates from equation (A14),
numerically approximating the partial derivatives of the
stable density. For example, the 95% interval for a is
[1.08,1.11] which easily shows that a is statistically signif-
icantly less than two. The 95% interval for plume velocity v is
[0.15,0.23] so that there is much more uncertainty in this
parameter. Generally, the fractional parameters a and b can
be estimated more precisely than v and D. Finally, we note
that the parameters n and dx are known exactly in particle-
tracking simulations. In that case, equation (A14) can be used
directly to get confidence bands for the model parameters.
[20] The parameter fits for the MADE-2 tritium plume on

day 224 shown in Figure 1 were then used to predict the
later snapshot on day 328. Figure 2 shows that the upscaled
FADE curve fits the day 328 data reasonably well, providing
further evidence that the FADE is a useful model to predict
plume evolution. See also the discussion by Benson et al.
[2001].

[21] The physical derivation of the FADE in the work by
Schumer et al. [2001] implies that the tail parameter 1 <a� 2,
and we restricted to that range in our optimization. The solid
line in Figure 3 shows the same FADE curve as in Figure 1,
in log-log scale to accentuate the tail behavior. If we allow 0 <
a� 2, which is the parameter range for the stable density, we
find an alternative fit (dash-dotted line in Figure 3) with a =
0.70 and b = 1.0. Certainly the tail fit seems superior. The
development of Schumer et al. [2001] assumes a classical
conservation of mass @C/@t = �q, along with a fractional
flux q = vC � D@a�1 C/@xa�1 that codes a power law
distribution of particle jumps. Recent work by Meerschaert
et al. [2006] outlines a more general approach that includes
a fractional divergence (fractional conservation of mass).
This theory extends the FADE to the full range of 0 < a � 2.
Hence, while a = 0.70 is outside the usual parameter range
of the FADE (1), there is a well established physical basis
that allows extending the model to 0 < a � 2. The weighted
MSE (4) provides additional information. The fit in Figure 1
produced an optimal weighted MSE of 533 while the
alternative fit in Figure 3 (dash-dotted line) gave 459. Thus

Figure 1. Concentration data and fitted FADE curve (solid line) for the MADE-2 tritium plume, day
224. The dashed lines represent 95% confidence bands for FADE concentration.

Figure 2. MADE-2 tritium plume, day 328, and FADE model prediction (solid line) using day 224 fitted
parameter values.
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the alternative FADE with a < 1 gives a significantly
better fit.

4.2. Breakthrough Curve for the Red Cedar River

[22] The methods of this paper were used to fit the
FADE (1) to breakthrough curve data from a tracer test
reported by Phanikumar et al. [2007]. The Red Cedar River
is a fourth-order stream in south central Michigan, United
States, that drains a landscape dominated by agriculture and
urbanization. Four slug additions of fluorescein dye were
released in the middle 75% of the channel to ensure
conditions of instantaneous mixing. Sampling was done at
the middle of the cross section for each dye release. The
distances to the three sampling locations from the point of
release were: 1.4 km, 3.1 km and 5.08 km from the injection
site. Figure 4 illustrates the fit for the 3rd slug tracer
sampled at all three sampling locations. The parameter fits
for distance 1.4 km area = 1.32, b =�0.99, v = 0.022 km/min,
D = 0.00181 kma/min, and K = 22.64 mg/L. For distance
3.1 km we get a = 1.56, b = �0.99, v = 0.026 km/min,
D = 0.00131 kma/min, and K = 25.48 mg/L. At distance
5.08 km we find a = 1.58, b = �0.96, v = 0.029, D =
0.00181 kma/min, K = 27.75 mg/L. Note that the parameter
values are fairly consistent between the three sampling sites,
and the fitted values of a < 1.6 shows that the FADE is
appropriate as an alternative to the ADE (special case a = 2)
for this data. Note also that there is no evidence of mass loss
downstream.
[23] Deng et al. [2004, 2006] report positive skewness

b = 1 in their fits to similar river flow tracer tests. We
believe that this is due to a small discrepancy between our
parameterization and the one used by Deng et al. There are
two competing parameterizations for the stable density, and
a skewness of �1 in the work of Zolotarev [1986] corre-
sponds to a skewness of +1 in the work by Samorodnitsky
and Taqqu [1994]. The underlying random walk model
[Meerschaert et al., 1999] clarifies the meaning of the
skewness parameter. Particles that jump downstream con-
tribute to the positive skewness, and particle that jump
upstream add to the negative skewness. Hence the positive
skewness that predominates in the groundwater models of

Benson et al. [2001], Schumer et al. [2001], and Huang et
al. [2006] captures early arrivals caused by preferential flow
paths. Negative skewness codes particle retention in dead
zones or eddies. Deng et al. [2004] state that the fractional
derivative in their river flow model captures a ‘‘wide
spectrum of dead zones,’’ and it is apparent from the fitted
breakthrough curves in Figure 5 of Deng et al. [2004] that
their model has a heavy tail at late time, consistent with
b = �1 in the notation of our paper. The later work of
Deng et al. [2006] adds retention to their model, but the
late time tails in the breakthrough curves of Figures 4, 5,
and 6 of Deng et al. [2006] indicate that heavy tails and
negative skewness is also operating there. Related work by
Hunt [2006, p. 88] gives a nice description of the fractional
model as a way to capture ‘‘the effect of dead-zone regions
in the river.’’ Another application of the FADE appeared in
work by Xiong et al. [2006], who fit the FADE to laboratory
column data. Although the skewness was not reported there,
we have learned (G. Huang, private communication, 2009)
that a skewness of b = �1 was used, in the notation of our
paper. It seems that the FADE with negative skewness is
modeling retention. A physical explanation for the FADE
model of river flows that allows negative skewness was
recently accomplished by Kim and Kavvas [2006].
[24] Xiong et al. [2006] compare the FADE to an asymp-

totic CTRW model with retention. That CTRW model
imposes power law waiting times between particle jumps,
hence it coincides exactly with the time-fractional advection
dispersion equation

@gC

@tg
¼ �v @C

@x
þ D

@2C

@x2
; ð6Þ

where the Caputo fractional derivative is used. The
mathematical equivalence between the time-fractional ADE
and the CTRW scaling limit is well known [Meerschaert et
al., 2002; Berkowitz et al., 2006]. Xiong et al. [2006] find
that the CTRW (time-fractional) model gives a better fit to
their column data than the negatively skewed space-
fractional ADE, or the traditional ADE, although the FADE

Figure 3. Log-log plot of concentration data and fitted FADE curve (solid line) for the MADE-2 tritium
plume, day 224. The dash-dotted line shows an alternative stable fit with a < 1.
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fits are also reasonable. Their fitting is based on unweighted
least squares, and their measure of fit is the unweighted mean
square error. It would be interesting to repeat their experiment
with the optimal weighted mean square error procedure
developed in our paper. In a similar vein, we compare the
time-fractional model (6) to the space-fractional FADE (1).
We fit the alternative model (6) to the Red Cedar break-
through data measured 5.08 km downstream, using the same
method of minimizing the weighted MSE function (5) as a
function of the model parameters. The fitted parameter values
for the time-fractional model are g = 0.978 (dimensionless),

v = 0.029 km/ming, D = 0.000467 km2/ming and K =
27.85 mg/L. Figure 5 shows the fitted curve against the
data. The fit is reasonable, although visually not as good as
the FADE, especially near the peak. The FADE fit gave an
optimal weighted MSE of 0.058, while the time-fractional
model gave 0.127, providing further evidence that the
FADE fit is superior.

4.3. Breakthrough Curve for the Grand River

[25] The methods of this paper were used to fit the
FADE (1) to breakthrough curve data from a tracer test

Figure 4. Breakthrough data and fitted FADE curves (solid lines) for the Red Cedar river fluorescein
tracer test.

W10415 CHAKRABORTY ET AL.: FRACTIONAL PARAMETER ESTIMATION

7 of 15

W10415



reported by Shen et al. [2008]. A tracer study was conducted
on a 40 km stretch of the Grand River, a 420 km long
tributary to Lake Michigan, traveling through the city of
Grand Rapids and extending to Coopersville, Michigan,
United States. Rhodamine WT 20% (weight) solution was
used in the study. At each station, grab samples were
collected from just below the surface using manual sam-
pling. The distances to the four sampling locations from the
point of release are: 4558 m (bridge 1), 13,687 m (bridge 2),
28,375 m (bridge 3) and 37,608 m (bridge 4). Figure 6
shows the fit for RWT breakthrough data collected at
bridge 3. Fitted parameter values are a = 1.38, b = �1.0,
v = 0.446 m/s, D = 0.887 ma/s, and K = 50,179 ppb. The
late time breakthrough curve shows significant retention. It
appears that the FADE model is capturing the retention via
the negative skewness parameter b = �1, which means that
particles are falling behind the plume center of mass.
[26] While the negatively skewed stable provides a satis-

fying fit to the Grand river data, one can certainly entertain
alternative models. A simple lognormal pdf captures some

features of the data: It is strongly skewed and nonnegative.
Figure 7 illustrates the best fit, using the same optimal
weightedMSE procedure. The fitted parameter values arem =
10.98, s = 0.093, and K = 99945. Lack of fit at the peak is
evident, and the log-log plot shows that the lognormal model
fails to capture the power law decline in the late-time
breakthrough curve. The optimal weighted MSE for the
lognormal model is 0.12 as compared to 0.018 for the FADE
fit, providing an additional measure of how much better the
FADE models this data.

4.4. Interactive Groundwater Simulation

[27] A sophisticated software environment, termed inter-
active groundwater (IGW), has recently been developed to
provide unified deterministic, stochastic, and multiscale
groundwater modeling [Li and Liu, 2006; Li et al., 2006].
The FADE (1) was fit to an ensemble average plume
simulated in IGW using a multiscale hydraulic conductivity
field on a model domain of 500 m� 125 m. Three lognormal
random fields with correlation lengths of 10 m, 100 m, and

Figure 5. Alternative time fractional ADE model (6) fitted (solid line) versus breakthrough data for Red
Cedar River fluorescein tracer test observed 5.08 km downstream from release. Compare with the FADE
fit in Figure 4.

8 of 15

W10415 CHAKRABORTY ET AL.: FRACTIONAL PARAMETER ESTIMATION W10415



Figure 6. Breakthrough data and fitted FADE curve (solid line) for rhodamine tracer test in the Grand
River 28.375 km downstream from release.

Figure 7. Alternative lognormal fit (solid line) and breakthrough data for Grand River rhodamine tracer
test 28.375 km downstream from release. Compare with FADE fit in Figure 6.
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500 m and the same geometric mean of 10 m/d were
superimposed to generate the conductivity field. A constant
head difference of 1 m was imposed, porosity was set at 0.3,
and a deterministic plume with a pulse initial condition was
simulated using the IGW software on an 801 � 201 grid. An
ensemble mean of 100 simulated plumes was averaged
along the axis transverse to the flow to produce one
dimensional concentration snapshots consistent with (1).
Figure 8 shows the stable density fit [a = 1.25, b = �1.0,
m = 93.4, s = 31.8, K = 2578]. The simulated concentration
data is more variable than the river flow tracer data, but
similar to the MADE snapshots. It seems that the stable
density gives a reasonable fit, and since the tail parameter
a = 1.25 is much less than 2, this is evidence that the
FADE provides a better descriptive model than the tradi-
tional ADE. The tail parameter indicates a high degree of
heterogeneity, similar to the MADE plume, see the discus-
sion by Clarke et al. [2005]. However, the skewness here is
b = �1, quite different than the b = 1 value estimated for the
MADE plume. One difference is that the MADE plume has
a heavy leading edge, coded by the positive fractional
derivative in (1). The simulated plume shows no early
arrivals, and it seems likely that the FADE skewness is
coding retention here, just as for the river flow data
discussed earlier in this paper. We also note that the left
(upstream) tail of the IGW plume falls off faster than the
fitted concentration, so that the FADE model overestimates
retention in this case. Note that the simulated conductivity
field is multiscale lognormal, while the MADE conductivity
field exhibits heavier tails [Benson et al., 2001]. Although
the multiscale simulated field successfully reproduces a
high degree of heterogeneity, a different underlying distri-
bution of conductivity may be required to fully capture the
statistical properties of an aquifer similar to the MADE site,
where a heavy tail conductivity field leads to significant
early arrivals. The ensemble plume fitted here is quite
different than the MADE plume, which is essentially one
realization of a natural velocity field. The fitting procedure
developed in this paper assumes a particle tracking Ansatz
with independent particles. In the ensemble plume, there is a
correlation between particles, imparted by the random

velocity field. Under the usual ergodic hypothesis [Zhan,
1999] particles sample enough heterogeneity in the aquifer
so that the resulting plume resembles the ensemble limit
behavior, allowing the effective application of particle-
tracking schemes. In that case, the methods of this paper
remain valid. However, it may be that the IGW ensemble
plume is preasymptotic. Further research to develop fitting
schemes that include two particle correlations would be
interesting, to facilitate modeling of pre-ergodic plumes.

4.5. Discussion

[28] The MADE site is a highly heterogeneous aquifer,
and there is a large degree of scatter between the measured
and fitted concentrations. Breakthrough concentrations at
the Red Cedar River and Grand River are much smoother,
with much less scatter between the measured and fitted
concentrations. It is not common to fit the same model to
both groundwater and surface water tracer tests in the same
paper, and this provides an interesting opportunity for
comparison. Transport models for both groundwater and
surface water tracer tests recognize that hydrodynamic
dispersion is a main driver of plume spreading. In ground-
water, dispersion comes from intervention of the porous
medium. At the MADE site, a highly heterogeneous medium
leads to considerable dispersion, as compared to other
groundwater sites. Model fitting to groundwater tracer tests
typically leads to values of a between 1.1 and 1.7 in the
FADE model (1). In general, the parameter a codes the
heterogeneity of a porous medium. See Clarke et al. [2005]
for further discussion. Tracer tests in 47 column experi-
ments are fit to the symmetric FADE with b = 0 by San José
Martı́nez et al. [2009] using an unweighted MSE criterion.
The resulting a values range between 1.05 to 2.00. That
study notes that a is affected by soil type, choice of tracer,
whether soil is disturbed, and soil saturation. Saturated soil
column data from Huang et al. [2006] fit by unweighted
MSE produced values of a near 1.85 (with b = 1). They also
found some evidence of scale dependence in the fractional
dispersion parameter D in (1). Xiong et al. [2006] model the
same soil column data, and compare the FADE and CTRW
(time-fractional ADE) using the unweighted MSE criterion.

Figure 8. IGW simulated ensemble plume spatial snapshot and FADE model fit (solid line).
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They find the CTRW (time-fractional) model gives a better
fit, contrary to our findings for the Red Cedar. It would be
interesting to repeat their study using our optimal weighted
MSE criterion.
[29] The parameter fits for the Red Cedar and Grand

River in this paper (a between 1.3 and 1.6) indicate less
heterogeneity than the MADE site. Hunt [2006] fits the
FADE (1) with a around 1.7 to three river flows. Deng et al.
[2004] finds a between 1.6 and 1.8 for several reaches of
the Missouri and Monocacy rivers. Deng et al. [2006] adds
a retention term to the model, and fits to several additional
rivers, with similar a values. In all these studies, the
skewness b = �1 is used. Recall that the parameter a codes
heterogeneity. In the case of river flows, heterogeneity
refers to variability in the velocity field. An important
difference between river flows and groundwater is the
extent of mixing. The smoothness of the river flow concen-
trations is attributed to faster mixing in the flow. Faster
mixing leads to less scatter of the measured concentrations
away from the fitted concentration curve. This in turn
implies tighter error bars for the parameter estimates. In
river flow tracer tests, it is common for the fitted model
parameters to vary from one measurement site to another.
This is typically attributed to differences between reaches of
the river, such as depth and meander.
[30] The heterogeneity parameter a seems to be similar

for tracer tests in groundwater or river flows. In either case,
a smaller value of a indicates a more heterogeneous
velocity profile, causing more dispersion. The main differ-
ence between the two applications is the skewness. Typical
groundwater plumes exhibit neutral to positive skewness,
with a heavy leading tail. Many river flow plumes are
negatively skewed, with a persistent late time tail. Hence
the physical explanation of the fractional derivative used in
groundwater theory [Schumer et al., 2001] cannot be directly
applied to river flows. A physical explanation for the FADE
model of river flows that allows negative skewness was
recently accomplished by Kim and Kavvas [2006].
[31] We also explored an alternative CTRW model that

codes retention in terms of power law waiting times
between particle movements. This model is equivalent to
a time-fractional ADE. The CTRW (time-fractional) fit to
the Grand River tracer test data was reasonably good, but
not as good as the FADE fit. The idea of using space-
fractional models to capture retention in river flows is fairly
new, and controversial. Zhang et al. [2009] caution that the
FADE with b < 1 may not be physically realistic, and
recommend alternative time-fractional models. In previous
applications to groundwater hydrology, space-fractional
models capture early arrivals, and time-fractional or CTRW
models code retention. One possible explanation for the use
of space-fractional derivatives to model retention is given
by B. Baeumer et al. (Space-time duality for fractional
diffusion, submitted to Journal of Applied Probability,
2009) in terms of space-time duality: In short, falling behind
the plume center of mass due to retention is mathematically
equivalent to jumping upstream, in the ergodic limit.

5. Conclusions

[32] This paper develops a new method of parameter
estimation for the space-fractional advection-dispersion

equation (FADE) in equation (1). The method is based on
a particle-tracking approach, where concentration measure-
ments are interpreted as a random histogram. The method
can also be used for any other transport model that admits a
particle-tracking solution, where each particle moves inde-
pendently of the other particles. Model fitting uses weighted
least squares, with weights based on the concentration
variance. The particle-tracking model implies that concen-
tration variance is proportional to concentration, so a fitted
curve should lie closer to the measured concentration data at
lower concentrations. This weighted least squares approach
is effective for both spatial snapshots and temporal break-
through data. The method is used to fit the FADE to several
data sets. The MADE tritium plume snapshot data was
previously modeled using the FADE, and our parameter fits
are similar. An alternative fit with an extended FADE, using
a fractional derivative of order a < 1, seems to provide a
superior fit. We then discuss the underlying physical prin-
ciples that support this model extension. Two different sets
of breakthrough data for tracers tests in Michigan rivers are
fit, with excellent results. The fit suggests significant
deviation from the traditional ADE model, and it seems
that the FADE (without any additional retention terms) is
modeling retention through negative skewness. An alterna-
tive CTRW model is also examined, and the two competing
model fits are compared using the metric of weighted MSE.
It turns out that the FADE with negative skewness gives a
somewhat better fit in this case. Simulated plume data using
a multiscaling conductivity field also shows anomalous
dispersion, similar to the MADE site, but again with
negative skewness. In all cases, the fitting methods of this
paper produce reasonable results, showing both the utility of
our method, and the scope of the FADE as a model for
transport.

Appendix A: Statistical Theory

[33] In the particle-tracking model, a tracer plume is
represented by a large ensemble of statistically identical
particles [Xt

(k): 1 � k � n]. Each particle has the same
probability density fq(x, t), which depends on a vector of
model parameters q. We assume a fixed total mass K > 0, so
that each particle carries mass K/n. Then a histogram of
particle concentration at one fixed time t > 0 approximates
the model concentration C(x, t) = K fq(x, t) via the formula

Ĉ x; tð Þ ¼ K

dx
� Nx

n
; ðA1Þ

where Nx counts the number of particles in the bin at
location x, and dx is the bin width. The concentration
variance can now be computed from the right-hand side of
equation (A1). We sketch the ideas briefly here, and then
proceed to a rigorous development.
[34] The count variable Nx is binomial with success prob-

ability p � fq(x, t) dx, the chance of a single particle
occupying the bin at location x. Themean number of particles
in the bin is E[Nx] = np, and the variance is V[Nx] = np(1� p),
according to the standard formula for binomial random
variables. Then the fraction of particles Nx/n in the bin at
location x has mean p = E[Nx/n] and variance p(1 � p)/n =
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V[Nx/n]. Since Nx/n has mean p � fq(x, t) dx, the mean of the
measured concentration Ĉ(x, t) = (K/dx) � (Nx/n) is approx-
imately equal to (K/dx) � fq(x, t) dx, which reduces to the
model concentration C(x, t) = Kfq(x, t). In order to get an
accurate estimate, we need a large number of particles (n) and
a narrow bin width (dx), and hence the probability p is quite
small. ThenNx/n has variance p(1� p)/n� p/n� fq(x, t)dx/n,
so that the variance of the measured concentration is
approximately (K/dx)2 � fq(x, t)dx/n which reduces to
C(x, t) � K/(n dx). In short, concentration variance is
proportional to concentration.
[35] Estimation of the concentration via (A1) is compli-

cated by the fact that the count variables Nx in (A1) are not
independent for different locations x: If a particle Xt

(k)

inhabits bin x, it cannot inhabit bin x0 6¼ x at that same
time. To model this dependence, we introduce the cumula-
tive distribution function Fq(x, t) = P(Xt � x). This distri-
bution function is approximated by its empirical analogue

F̂q x; tð Þ ¼ 1

n

Xn
k¼1

I X
kð Þ

t � x
� �

; ðA2Þ

where I(Xt
(k) � x) = 1 if Xt

(k) � x, and I(Xt
(k) � x) = 0

otherwise. Then the sum in (A2) is simply the number of
particles located to the left of the point x. In the same
notation, we write the density estimate as

f̂ x; tð Þdx ¼ 1

n

Xn
k¼1

I x� dx < X
kð Þ

t � x
� �

; ðA3Þ

where again I(�) = 1 if the statement in parentheses is true, and
I(�) = 0 otherwise. Note that Ĉ(x, t) = Kf̂q(x, t) where f̂q(x, t)
dx = F̂q(x, t) � F̂q (x � dx, t) is the area of one histogram bar.
Histogram density estimation is widely used, and asympto-
tic properties at a single point x can be obtained from the
general theory of kernel density estimation [Silverman,
1986]. Since we need to consider the density estimation
problem simultaneously at multiple points of x, a full
treatment of the density estimation problem relies on the
asymptotic theory of the empirical distribution function as a
stochastic process in x. We consider the asymptotic
approximation of the density function by the empirical
density or histogram (A3) as the number of particles n tends
to infinity and the bin size dxn shrinks to zero. The notation
N (m, S) represents the multivariate normal distribution
with meanm and covariance matrixS. Its probability density
is g(x) = (2p)�d/2jSj�1/2exp(�(x � m)TS�1(x � m)/2) in d
dimensions. The notation Xn) Y means that the probability
distribution of the random variables Xn converges to the
distribution of Y. We say that Xn is a consistent estimator of
a if P(jXn � aj > e) ! 0 as n! 1 for any error tolerance
e > 0 (also called convergence in probability).
[36] Suppress t and q for ease of notation and write

pD(x) = F(x) � F(x � D) where D = dxn. Then the density
estimate has mean

E f̂ xð Þ
h i

¼ E
Fn xð Þ � Fn x�Dð Þ

D

� 	
¼ pD xð Þ

D
ðA4Þ

and covariance E[ f̂ (x)f̂ ( y)]

¼ E
1

nD

Xn
k¼1

I x�D < X kð Þ � x
� � !"

� 1

nD

Xn
j¼1

I y�D < X jð Þ � y
� � !#

¼ 1

nDð Þ2
E
Xn
k¼1

I x�D < X kð Þ � x; y�D < X kð Þ � y
� �"

þ
Xn
j;k¼1
j 6¼k

I x�D < X kð Þ � x
� �

I y�D < X jð Þ � y
� �#

¼ 1

nDð Þ2
nP x�D < X 1ð Þ � x; y�D < X 1ð Þ � y

� �h i

þ n n� 1ð Þ
nDð Þ2

F xð Þ � F x�Dð Þf g F yð Þ � F y�Dð Þf g:

Thus, for sufficiently small D = dxn, E[ f̂ (x)f̂ ( y)]

¼
1

nD2
n� 1ð ÞpD xð ÞpD yð Þ if x 6¼ y

1

nD2
pD xð Þ þ n� 1ð Þp2D xð Þ

 �

if x ¼ y:

8><
>: ðA5Þ

Using (A4) and (A5)

Var f̂ xð Þ
h i

¼ 1

nD2
pD xð Þ 1� pD xð Þð Þ

Cov f̂ xð Þ; f̂ yð Þ
h i

¼ � 1

nD2
pD xð ÞpD yð Þ:

Since f is the continuous density function of X,

lim
D!0

F xð Þ � F x�Dð Þ
D

¼ lim
D!0

1

D
pD xð Þ ¼ f xð Þ;

lim
D!0

F xð Þ � F x�Dð Þ ¼ lim
D!0

pD xð Þ ¼ 0:

Hence if D ! 0 and nD ! 1 we have

E f̂ xð Þ
h i

� f xð Þ

Var
ffiffiffiffiffiffiffi
nD
p

f̂ xð Þ
h i

¼ pD xð Þ
D

1� pD xð Þð Þ � f xð Þ

and Cov[
ffiffiffiffiffiffiffi
nD
p

f̂ (x),
ffiffiffiffiffiffiffi
nD
p

f̂ (y)]

¼ � nD

nD2
pD xð ÞpD yð Þ

¼ � pD xð Þ
D

pD yð Þ � �f xð Þ � 0 ¼ 0:

Since f̂ is sum of independently and identically distributed
random variables, using the central limit theorem and
Slutsky’s theorem [e.g., see Ferguson, 1996] we obtain

ffiffiffiffiffiffiffi
nD
p f̂ xð Þ � f xð Þ

f̂ yð Þ � f yð Þ

� 
! N 0;

f xð Þ 0

0 f yð Þ

� � 
: ðA6Þ

Since nD!1 it follows from (A6) that E[ f̂ (x)]! f(x) and
Var[ f̂ (x)] ! 0, and hence f̂ !p f; that is, f̂ is a consistent
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estimator of f. Thus, in our original notation, we have shown
that, for the density estimator f̂ (x, t) as defined in (A3), if
n ! 1, dxn ! 0 and n dxn ! 1, then

ffiffiffiffiffiffiffiffiffiffi
n dxn

p f̂q xi; tð Þ � fq xi; tð Þ
f̂q xj; t
� �

� fq xj; t
� �

 !

) N 0;
fq xi; tð Þ 0

0 fq xj; t
� �

 ! ! ðA7Þ

and f̂q(x, t) is a consistent estimator of fq(x,t). Note that
these results can be also derived from the asymptotics of
empirical process [van der Vaart, 1998]. Note also that these
results are true for any density estimation problem based on a
histogram, and hence they apply to any transport model for
which a corresponding particle-tracking method is available.
[37] From the above results, we can consider the observed

concentrations after appropriate rescaling as a good approx-
imation of density values so that we can estimate the
parameters of the density. The remaining results are stated
in terms of the stable density underlying the FADE. Exten-
sion to alternative transport models is similar, under suitable
technical conditions. We assume that concentration data is
observed at the vector of locations x = (x1, � � �, xN), and we
denote by diag[x] the diagonal matrix with entries x1, . . .,
xN. Let Q be an open subset of the parameter space on
which the Fourier transform of the stable density (2) is
continuous at all parameters. Suppose that the true value q0
is in interior of �. Suppose that n!1, dxn! 0 in such a
way that

ffiffiffi
n
p

dxn ! 1. Let q̂ be the estimator obtained by
minimizing

Q qð Þ ¼ f̂q x; tð Þ � fq x; tð Þ
� �T

S�1q f̂q x; tð Þ � fq x; tð Þ
� �

; ðA8Þ

where Sq = diag[ f̂ q(x, t)]. We wish to show that q̂ is a
consistent estimator of q0.
[38] Consider a neighborhood of q0, Nd, such that Nd =

{q: jq � q0j < d} for d > 0. Here, jvj = maxi jvij for v = (v1,
� � �, vk). Then it is enough to show P(q̂ 2 Nd

c \ Q) ! 0
which is equivalent to q̂ !p q0. Write

P q̂ 2 Nc
d \Q

� �
¼ P inf

q2Nc
d\Q

Q qð Þ � inf
q2Nd\Q

Q qð Þ
� 

� P inf
q2Nc

d\Q
Q qð Þ � Q q0ð Þð Þ � 0

� 

since infq2Nd\Q Q(q) � Q(q0). Note that

Q qð Þ � Q q0ð Þ

¼
XN
i¼1

f̂ xið Þ � fq xið Þ
� �2

f̂ xið Þ
�
XN
i¼1

f̂ xið Þ � fq0 xið Þ
� �2

f̂ xið Þ

¼
XN
i¼1

fq0 xið Þ � fq xið Þð Þ2

f̂ xið Þ

þ 2
XN
i¼1

f̂ xið Þ � fq0 xið Þ
� �

fq0 xið Þ � fq xið Þð Þ

f̂ xið Þ
¼: A qð Þ þ B qð Þ:

Then, we have

P inf
q2Nc

d\Q
Q qð Þ � Q q0ð Þð Þ � 0

� 

� P inf
q2Nc

d\Q
A qð Þ þ inf

q2Nc
d\Q

B qð Þ � 0

� 
:

By the consistency of f̂ (xi) we have

A qð Þ !p

XN
i¼1

fq0 xið Þ � fq xið Þð Þ2

fq0 xið Þ

and thus there exists a C such that

inf
q2Nc

d\Q
A qð Þ � C > 0

because fq(x) is different from fq0
(x) for q 2 Nd

c \ Q.
[39] We can also choose an � > 0 such that jB(q)j � ����� < C

for large enough n. Thus,

inf
q2Nc

d\Q
A qð Þ þ inf

q2Nc
d\Q

B qð Þ � C � � > 0

and it follows that

P inf
q2Nc

d\Q
A qð Þ þ inf

q2Nc
d\Q

B qð Þ � 0

� 
! 0; ðA9Þ

which shows that q̂ is a consistent estimator of q0.
[40] Next we consider the asymptotics of the parameter

estimates. Let Q be an open subset of the parameter space
on which the density fq(x, t) is twice continuously
differentiable. As before, suppose that n ! 1, dxn ! 0
in such a way that

ffiffiffi
n
p

dxn ! 1. By consistency of q̂ and
the mean value theorem,

@Q
�
q̂
�

@qj
� @Q q0ð Þ

@qj
¼
@2Q �q

� �
@q2j

�
q̂ � q0

�
;

where q is in a line segment between q̂ and q0 contained in
Q. Since @Q(q̂)/@qi = 0, we have

q̂ � q0 ¼ �
@2Q �q

� �
@q2

� 	�1
@Q q0ð Þ
@q

;

where @Q(q)/@q = (@Q(q)/@q1, � � �, @Q(q)/@q4)T with jth
element defined as

@Q qð Þ
@qj

¼ �2
XN
i¼1

f̂ xið Þ � fq xið Þ
� �

f̂ xið Þ
@fq xið Þ
@qj

ðA10Þ

and @2Q(q)/@q2 is a 4 � 4 matrix whose ( j, k) entry is

@2Q qð Þ
@qj@qk

¼ �2
XN
i¼1

f̂ xið Þ � fq xið Þ
� �

f̂ xið Þ
@2fq xið Þ
@qj@qk

þ 2
XN
i¼1

1

f̂ xið Þ
@fq xið Þ
@qj

@fq xið Þ
@qk

:
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[41] Since fq(x) is twice continuously differentiable with
respect to q in Q, we have

j f̂ xið Þ � f�q xið Þj
� j f̂ xið Þ � fq0

xið Þj þ jfq0
xið Þ � f�q xið Þj !p 0

@fq xið Þ
@qj

����
q¼�q
! @fq0

xið Þ
@qj

and thus we have

@2Q �q
� �

@qj@qk
!p 2

XN
i¼1

1

fq0
xið Þ
@fq0

xið Þ
@qj

@fq0 xið Þ
@qk

: ðA11Þ

Consequently,

@2Q �q
� �

@q2
!p 2

@fq0
xð Þ

@q

T

diag fq0
xð Þð Þ½ ��1 @fq0

xð Þ
@q

; ðA12Þ

where @fq0
(x, t)/@q is the N � 4 matrix whose (j, k) entry is

@fq(xj, t)/@qk evaluated at q = q0. From (A10), we can
express

@Q q0ð Þ
@q

¼ �2 @fq0
xð Þ

@q

T

diag f̂ xð Þ
� �h i�1

f̂ xð Þ � fq0 xð Þ
� �

:

Thus, It follows from (A7) and f̂ !p f that

ffiffiffiffiffiffiffiffiffiffi
n dxn

p @Q q0ð Þ
@q

¼ �2 @fq0 xð Þ
@q

T

diag f̂ xð Þ
� �h i�1

�
ffiffiffiffiffiffiffiffiffiffi
n dxn

p
f̂ xð Þ � fq0 xð Þ
� �

) 2
@fq0 xð Þ
@q

T

diag fq0 xð Þð Þ½ ��1=2N 0; Ið Þ:

ðA13Þ

where I is the 4 � 4 identity matrix. Now (A12) and (A13)
combine to show that

ffiffiffiffiffiffiffiffiffiffi
n dxn

p
q̂ � q0

� �
) AN 0; Ið Þ where

A ¼ @fq0 x; tð Þ
@q

T

diag fq0 x; tð Þ½ ��1@fq0
x; tð Þ

@q

" #�1

� @fq0 x; tð Þ
@q

T

diag fq0 xð Þð Þ½ ��1=2:

ðA14Þ

This shows that the parameter estimate q̂j is approximately
normal with mean qj and standard deviation sj=

ffiffiffiffiffiffiffiffiffiffi
n dxn
p

where sj is the jth entry along the diagonal of the matrix A
in the formula (A14). Note that sj depends on the partial
derivatives of the stable density, which are computed
numerically. If f̂q(x, t) follows a normal distribution exactly,
Q(q) in (A8) is similar to the negative log likelihood function.
Then asymptotic properties of the estimates in this paper can
be carried over from those of MLEs [e.g., see Ferguson,
1996]. However, the difference between parameter esti-
mates in this paper and classical MLEs lies in the fact that
f̂q(x, t) is only asymptotically normal.
[42] Finally we discuss fitting the total mass. We assume

that ci = Kf̂q(xi, t) where K > 0 is the (unknown) total plume

mass, a nuisance parameter. We also write ci = K f̂q(xi, t) the
observed concentration. Then it follows from (A7) by a
simple rescaling that

ffiffiffiffiffiffiffiffiffiffi
n dxn

p ci � C xi; tð Þ
cj � C xj; t

� �
 !

) N 0;
KC xi; tð Þ 0

0 KC xj; t
� �

 ! ! ðA15Þ

and ci is a consistent estimator of C(xi, t). Similarly, it
follows from (A9) that a consistent estimator q̂ of q comes
from minimizing

e q;Kð Þ ¼ c� C x; tð Þð ÞTS�1q c� C x; tð Þð Þ; ðA16Þ

where Sq = diag[KC(x, t)], c = (c1, � � �, cN) is the vector
of concentration measurements, and C(x, t) = (C(x1, t),
. . ., C(xN, t)). In practice, we replace the unknown con-
centration C(xi, t) in the covariance matrix Sq by the
observed concentration ci, resulting in the weighted least
squares objective function (4). Solve @e/@K = 0 by simple
algebra to obtain

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ciPn
i¼1 f 2q xi; tð Þ=ci

 �

s
ðA17Þ

so thatK can be obtained easily once the remaining parameters
q have been estimated. Note also that @2e/@K2 = 2K�3

Pn
i¼1ci >

0 so that the solution to @e/@K = 0 yields a minimum.
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