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Fractional conservation of mass
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a b s t r a c t

The traditional conservation of mass equation is derived using a first-order Taylor series to represent flux
change in a control volume, which is valid strictly for cases of linear changes in flux through the control
volume. We show that using higher-order Taylor series approximations for the mass flux results in mass
conservation equations that are intractable. We then show that a fractional Taylor series has the advan-
tage of being able to exactly represent non-linear flux in a control volume with only two terms, analogous
to using a first-order traditional Taylor series. We replace the integer-order Taylor series approximation
for flux with the fractional-order Taylor series approximation, and remove the restriction that the flux has
to be linear, or piece-wise linear, and remove the restriction that the control volume must be infinitesi-
mal. As long as the flux can be approximated by a power-law function, the fractional-order conservation
of mass equation will be exact when the fractional order of differentiation matches the flux power-law.
There are two important distinctions between the traditional mass conservation, and its fractional equiv-
alent. The first is that the divergence term in the fractional mass conservation equation is the fractional
divergence, and the second is the appearance of a scaling term in the fractional conservation of mass
equation that may eliminate scale effects in parameters (e.g., hydraulic conductivity) that should be
scale-invariant.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The conservation of mass equation for a fluid in a porous med-
ium has its origins in continuum mechanics. The concept is that
fluid mass flux going into a control volume is subtracted from
the fluid mass flux going out of a control volume. The limit is taken
as the control volume shrinks to a point, and the result is the famil-
iar divergence term for the mass flux. This technique works quite
well for the materials and processes that it was originally designed
to describe, such as fluid flow, or more generally, for any conserva-
tive substance or property, such as heat flux in a metal. The success
of using the traditional divergence to represent the conservation of
a conservative property in a continuum owes to the fact that the
continuum is normally a substance that is quite homogenous down
to the molecular scale, and the measurement scale is normally
many orders of magnitude larger than the scale of heterogeneity.

Applying the divergence term for net fluid mass flux in a porous
medium has always been problematic due to the fact that a porous
medium is only a continuum down to a scale that is several times
larger than the pore scale. For a granular, homogeneous porous
medium, the smallest scale of the control volume is on the order
of 1 cm3, a size which in many cases will be larger than the mea-
surement scale [6]. For a heterogeneous porous medium with a

finite correlation scale, the effective size of the control volume
(or integral scale, in stochastic terms) can easily be on the order
of 1–10 m3. For fractal, or scale-invariant, porous media, the con-
trol volume, or integral scale is considered infinite, or at least
scale-dependant [16,13], and will be much larger than the mea-
surement scale.

The fundamental assumption of the divergence is that the con-
trol volume vanishes in the limit. The reason for this assumption is
that the divergence is obtained using a first order Taylor series. By
truncating the Taylor series at the first order, we make the implicit
assumption that changes in the property being conserved (e.g.,
fluid mass flux) are small and linear over the control volume. This
assumption is only removed by requiring that the control volume
vanishes, in which case the first order Taylor series estimate of flux
becomes identical to the point estimate. Control volumes for heter-
ogeneous porous media are large, and properties within the control
volume (e.g., mass flux, hydraulic conductivity) vary over several
orders of magnitude. Hence the use of a first-order Taylor series
to approximate flux changes within the control volume may not
be appropriate.

In this paper, we first develop the traditional mass conservation
equation, emphasizing the assumptions that are important (and
suspect) for heterogeneous porous media, especially the use of
the Taylor series. We show that an exact form of the fluid mass
conservation equation can be written with the infinite Taylor ser-
ies, although the resulting governing equation is intractable.
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Recent advances in fractional calculus [14] have led to the develop-
ment of a robust fractional Taylor series. We develop a new form of
fractional mass conservation using a first-order fractional Taylor
series. We show that the resulting mass conservation governing
equation is exact, as long as the fractional order of differentiation
matches the order of non-linearity of the fluid flux. We then inves-
tigate the nature and properties of the fractional mass conservation
equation.

2. Traditional mass conservation

In this section, we develop the traditional fluid mass conserva-
tion equation in a porous medium, emphasizing the use of the first-
order Taylor series and the consequences of this assumption. Fig. 1
illustrates the standard control volume, with the length of the
sides, Dx1, Dx2, Dx3 defined. The inflow component of the fluid
mass flux, F(x1), passing through the �x1 face is

Fðx1Þ ¼ Dx2Dx3qq1; ð1Þ

where q1 is the x1 component of the specific discharge (L/t) passing
through the �x1 face of the control volume and q is the fluid density
(m/L3).

The mass flux outflow that passes through the +x1 face is ob-
tained by taking the flux passing through the �x1 (1) and adding
to it the change that takes place in the mass flux in the x1-direction
multiplied by the distance (Dx1) over which the change acts

Fðx1 þ Dx1Þ ¼ Dx2Dx3qq1 þ Dx2Dx3
oqq1

ox1
Dx1: ð2Þ

This step is in virtually every groundwater hydrology text (e.g.,
[9,8]) that derives mass conservation. What is seldom said is that
this is simply the first-order Taylor series approximation for the
mass flux expanded about the point x1

Fðx1 þ Dx1Þ ¼

Dx2Dx3 qq1 þ
oqq1

ox1
Dx1 þ

o2qq1

ox2
1

Dx2
1

2
þ o3qq1

ox3
1

Dx3
1

3!
þ � � �

 !
: ð3Þ

By truncating the Taylor series approximation for the flux at the
second-order term, we are making the very important assumption
that changes in mass flux that take place within the control volume
are linear. If these changes are non-linear, we are further making

the assumption that they can be adequately approximated as
piece-wise linear. This is the reason that we take the limit as the
control volume shrinks to zero. As long as the control volume is
vanishingly small (compared to the measurement scale), any non-
linear change in flux can be approximated as piece-wise linear.

This critical assumption is illustrated in Fig. 2. Suppose that the
actual flux is non-linear. The linear first order Taylor series approx-
imation is shown as the straight line, while the actual non-linear
flux is shown by the curved line above it. Only in the area immedi-
ately around x (much smaller than Dx) would the piece-wise linear
approximation be reasonably accurate.

To complete the traditional derivation of the divergence term in
the mass conservation equation, we take the net mass flux in the x1

direction, F(x1) � F(x1 + Dx1), using (1) and (2)

Fðx1Þ � Fðx1 þ Dx1Þ ¼ ðDx2Dx3qq1Þ

� Dx2Dx3qq1 þ Dx2Dx3
oqq1

ox1
Dx1

� �

¼ �DV
oqq1

ox1
; ð4Þ

where DV = Dx1Dx2Dx3 is the volume of the control volume.
Taking the net mass flux in the x2 and x3 directions

Fðx2Þ�Fðx2þDx2Þ¼ ðDx1Dx3qq2Þ� Dx1Dx3qq2þDx1Dx3
oqq2

ox2
Dx2

� �

¼�DV
oqq2

ox2
; ð5Þ

Fðx3Þ�Fðx3þDx3Þ¼ ðDx1Dx2qq3Þ� Dx1Dx2qq3þDx1Dx2
oqq3

ox3
Dx3

� �

¼�DV
oqq3

ox3
ð6Þ

and adding (4)–(6) gives us the net mass flux passing through the
control volume

DV � oqq1

ox1
� oqq2

ox2
� oqq3

ox3

� �
¼ �DV

oqqi

oxi
ð7Þ

using Einstein’s notation, where q = i1q1 + i2 q2 + i3q3, i1, i2, i3 are
the unit vectors in the x1, x2, x3 directions, respectively.

Eq. (7) is the net mass flux, or divergence, and is then assigned
to the accumulation term to provide the standard mass conserva-
tion for a fluid in a porous medium

� oqqi

oxi
¼ 1

DV
o

ot
DVnqð Þ; ð8Þ

where n is porosity. A change of variables is normally performed on
the right-hand side of (8) so that the dependent variable is either

x

Δx

Δy

y

z

Δz

Fig. 1. Definition sketch for control volume.

( )F x + Δ x
(actual)

( )F x+ Δ x
(linear approximation) 

( )F x

x x+ Δ x

Fig. 2. Non-linear function and the first-order Taylor series approximation.
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pressure or head, but we will not concern ourselves with that part
of the derivation at this time.

From this discussion, it should be clear that the traditional mass
conservation equation (8) is only exact when the change in flux in
the control volume is linear, due to the fact that we only used a
first-order Taylor series (2) to represent the mass flux change.

Let us suppose that the change in mass flux is parabolic

f ðyÞ ¼ qþ ðy� xÞp; ð9Þ

where q = f(x) is the flux at the point x, the function f(y) represents
flux at the point y = x + Dx, and the power law exponent p = 2. By
adding the second-order term to the Taylor series

Fðx1 þ Dx1Þ ¼ Dx2Dx3 qq1 þ
oqq1

ox1
Dx1 þ

o2qq1

ox2
1

Dx2
1

2

 !
ð10Þ

we can derive a mass conservation equation that is exact for para-
bolic non-linear fluid fluxes. The net mass flux in the x1 direction is

F x1ð Þ
� F x1 þ Dx1ð Þ ¼ Dx2Dx3qq1ð Þ

� Dx2Dx3qq1 þ Dx2Dx3
oqq1

ox1
Dx1 þ Dx2Dx3

o2qq1

ox2
1

Dx2
1

2

 !

¼ �DV
oqq1

ox1
þ o2qq1

ox2
1

Dx1

2

 !
: ð11Þ

Taking the net flux in the x2 and x3 directions, and adding these to
(11) and assigning the result to the net accumulation term gives us
the mass conservation equation for the control volume

� oqqi

oxi
� DV

2
Dxi

o2qqi

o2xi

 !
¼ 1

DV
o

ot
DVnqð Þ: ð12Þ

Eq. (12) is the exact mass conservation equation for the case in
which the mass flux is non-linear and proportional to the square
of the travel distance (9).

Although we expect fluid mass flux to be non-linear, there is no
reason to expect that it would follow (9) in general, much less for a
specific case. So we can generalize (12) by including all the terms
in the Taylor series. The derivation is straightforward, and follows
along the same lines as (10)–(12), and results in

�
X1
n¼1

ðDxiÞn�1

n!

onqqi

oxn
i

¼ 1
DV

o

ot
ðDVnqÞ: ð13Þ

Eq. (13) is the most general form of the fluid mass conservation in a
porous medium, which is exact for any linear or non-linear changes
in fluid flux. Although it is relatively easy to derive (13), it is intrac-
table analytically or numerically, for even the most simple cases.

A recent breakthrough in fractional calculus has given us a tool
that is extremely useful in solving this problem: the fractional Tay-
lor series [14].

3. The fractional Taylor series

A good introduction to the use and meaning of fractional deriv-
atives in physical and biological systems can be found in Metzler
and Klafter [12]. The fractional Taylor series is a generalization of
the Taylor series for fractional derivatives, where a is the fractional
order of differentiation, 0 < a < 1. The fractional Taylor series at the
point y = x + Dx is defined by Odibat and Shawagfeh [14]

FðyÞ ¼ FðxÞ þ Da
x FðxþÞ ðy� xÞa

Cðaþ 1Þ þ Da
x Da

x FðxþÞ

� ðy� xÞ2a

Cð2aþ 1Þ þ � � � ; ð14Þ

where C(x) is the gamma function, and Da
x is the Caputo fractional

derivative of order 0 < a < 1 with base point x, which is defined
for 0 < a < 1 by

Da
x FðyÞ ¼ 1

Cð1� aÞ

Z y

x
F 0ðy� uÞðu� xÞ�adu:

Here F0 is the usual first derivative, and the notation x+ in (14) indi-
cates the limit as we approach x from the right. Note that there are
other definitions of the fractional derivative, but the fractional Tay-
lor series is only valid for the Caputo form. The main distinguishing
feature of the Caputo fractional derivative is that, like the integer
order derivative, the Caputo fractional derivative of a constant is
zero. This property is critical for a fractional Taylor series. Note also
that the third term in (14) involves the a fractional derivative of the
a fractional derivative, which is not the same as the 2a fractional
derivative. This is to ensure that the a fractional derivative of the
function (9) is a constant when p = a, and the a fractional derivative
of that constant is zero. Then the coefficients of the fractional Taylor
series can be found in the usual way, by repeated differentiation.
The traditional integer-order Taylor series is recovered from (14)
when a = 1, using the well-known property of the Gamma function:
C(n + 1) = n!.

The fractional Taylor series is extremely useful for approximat-
ing non-integer power law functions. We will use (9), a non-linear
power law function, to illustrate this point.

The traditional integer order Taylor series approximation for (9)
with p = 2, expanded about x and truncated at the second order
term, is

f ðyÞ ¼ f ðxÞ þ f 0ðxÞðy� xÞ þ f 00ðxÞ ðy� xÞ2

2!
: ð15Þ

Since q = f(x), and f0(x) = 2 � (y � x)1jy=x = 0, and f0 0(x) = 2 � 1
� (y � x)0jy=x = 2, Eq. (15) becomes

f ðyÞ ¼ qþ ðy� xÞ2: ð16Þ

Hence, the second-order Taylor series approximation of f(y) is exact,
because the order of non-linearity of the function matches the order
of the Taylor series approximation. If p = 3, a third-order Taylor ser-
ies would provide an exact approximation.

However, if p is a non-integer real number, no finite integer or-
der Taylor series can give an exact match between the value of the
function and its Taylor series approximation.

Now let us examine the fractional Taylor series approximation
of (9), when p > 0 is some real number. The Caputo fractional deriv-
ative of the function (9) is

Da
x f ðyÞ ¼ Da

x ½qþ ðy� xÞp� ¼ Cðpþ 1Þ
Cðpþ 1� aÞ ðy� xÞp�a

: ð17Þ

This well-known formula (17) from fractional calculus is not hard to
check, using the standard formula for the Beta integral

Z B

A
ðs� AÞa�1ðB� sÞb�1ds ¼ ðB� AÞaþb�1 CðaÞCðbÞ

Cðaþ bÞ ;

which is valid for any real numbers A < B and positive real numbers
a, b. The first order fractional Taylor series for (9) expanded about x
is exact when a = p: the first term f(x) = q. For the second term, use
(17) along with the fact that the Caputo fractional derivative of the
constant q is zero to write

Da
x f ðyÞ ¼ Cðpþ 1Þ

Cðpþ 1� aÞ ðy� xÞp�a
:

Then for any y > x we have

Da
x f ðyÞ ¼ Cðpþ 1Þ

Cðpþ 1� aÞ � 1: ð18Þ
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The last equality follows from the fact that, since p = a, the exponent
p � a = 0, so the term (y � x)p�a = 1 for any y > x. Then of course the
limit as y ? x+ is

Da
x f ðxþÞ ¼ Cðpþ 1Þ

Cðpþ 1� aÞ � 1:

Hence second term in the fractional Taylor series is

Da
x f ðxþÞ

� �
� ðy� xÞa

Cðaþ 1Þ ¼
Cðpþ 1Þ

Cðpþ 1� aÞ � 1
� �

� ðy� xÞa

Cðaþ 1Þ ¼ ðy� xÞp:

Here we have used p = a and C(1) = 1. Since Da
x f ðyÞ is a constant, the

remaining higher order Caputo fractional derivatives are all zero,
and so the two-term fractional Taylor series approximation is exact

f ðyÞ ¼ f ðxÞ þ Da
x f ðxþÞ ðy� xÞa

Cðaþ 1Þ þ Da
x Da

x f ðxþÞ ðy� xÞ2a

Cð2aþ 1Þ þ � � �

¼ qþ ðy� xÞp þ 0þ � � �

This is a very important result. It tells us that if we match the order
of the fractional Taylor series approximation to the exponent in the
power law function we are trying to approximate (9), then the
two-term fractional Taylor series approximation to this function
is exact.

A very important consequence for mass conservation of this re-
sult is that we can replace the integer-order Taylor series approx-
imation for flux with the fractional-order Taylor series
approximation, and remove the restriction that the flux has to be
linear, or piece-wise linear, and remove the restriction that the
control volume must be infinitesimal. As long as the flux can be
approximated by a power-law function, the fractional-order con-
servation of mass equation will be exact. In the next section, we
derive the fractional conservation of mass equation using the frac-
tional order Taylor series approximation for the flux term.

4. Fractional conservation of mass equation

Using Fig. 1, we define the component of flux passing through
the �x1 face, which is the same as Eq. (1)

Fðx1Þ ¼ Dx2Dx3qq1: ð19Þ

Now we compute the component of flux passing through the +x1

face using the two-term ath order fractional Taylor series expanded
about x1

Fðx1 þ Dx1Þ ¼ Dx2Dx3qq1 þ Dx2Dx3
oaqq1

oxa
1

Dxa
1

Cðaþ 1Þ : ð20Þ

The net mass flux in the x1-direction is obtained by subtracting (19)
from (20)

Fðx1Þ � Fðx1 þ Dx1Þ ¼ �Dx2Dx3
oaqq1

oxa
1

Dxa
1

Cðaþ 1Þ : ð21Þ

We assume here that the medium is heterogeneous, but isotropic.
Hence a is the same in all directions. Further, it should be stated
that this model of heterogeneity is also non-stationary.

The net mass fluxes through the x2 and x3 faces are

Fðx2Þ � Fðx2 þ Dx2Þ ¼ �Dx1Dx3
oaqq2

oxa
2

Dxa
2

Cðaþ 1Þ ð22Þ

and

Fðx3Þ � Fðx3 þ Dx3Þ ¼ �Dx1Dx2
oaqq3

oxa
3

Dxa
3

Cðaþ 1Þ : ð23Þ

The net mass flux, DF through the control volume is obtained by
summing (21)–(23)

DF ¼ �Dxa
1Dx2Dx3

Cðaþ 1Þ
oaqq1

oxa
1
� Dx1Dxa

2Dx3

Cðaþ 1Þ
oaqq2

oxa
2
� Dx1Dx2Dxa

3

Cðaþ 1Þ

� oaqq3

oxa
3
: ð24Þ

We then assign the right hand side of (24) to the accumulation term
as in (8)

�Dxa
1Dx2Dx3

oaqq1

oxa
1
� Dx1Dxa

2Dx3
oaqq2

oxa
2
� Dx1Dx2Dxa

3
oaqq3

oxa
3

¼ C aþ 1ð Þ o

ot
Dx1Dx2Dx3nqð Þ: ð25Þ

By assuming the control volume is a cube, Dx1 = Dx2 = Dx3 = Dx,
(25) simplifies to

� oaqqi

oxa
i

¼ Cðaþ 1Þ
Dxaþ2

o

ot
ðDx3nqÞ: ð26Þ

Eq. (26) is the most general form of the fractional conservation of
mass equation. Note that when a = 1, C(2) = 1 and we recover the
usual integer-order conservation of mass equation, (8).

Now let us turn our attention to the right hand side of (26), the
accumulation term. We will follow the usual convention and as-
sume that the control volume can vary in size (over time) in the
vertical dimension, Dx3, only, so that

o

ot
ðDx3nqÞ ¼ Dx2 o

ot
ðDx3nqÞ: ð27Þ

Combining (26) and (27)

oaqqi

oxa
i

¼ �Cðaþ 1Þ
Dxa

o

ot
ðDx3nqÞ: ð28Þ

Since Dx3, n and q all depend on pressure (p), we can make a change
of variables and use the chain rule to get

o

ot
ðDx3nqÞ ¼ nq

oDx3

op
op
ot
þ Dx3q

on
op

op
ot
þ Dx3n

oq
op

op
ot
: ð29Þ

Using the standard linear relationships [9]

oDx3

op
¼ bsDx3; ð30Þ

where bs is the coefficient of compressibility for the porous medium

on
op
¼ bsð1� nÞ; ð31Þ

oq
op
¼ qbw; ð32Þ

where bw is the coefficient of compressibility of the water. Substi-
tuting (30)–(32) into (29)

o

ot
ðDx3nqÞ ¼ Dx3qðbs þ nbwÞ

op
ot
: ð33Þ

Substituting (33) into (28), we get

� oaqqi

oxa
i

¼ Cðaþ 1ÞDx1�aqðbs þ nbwÞ
op
ot
: ð34Þ

Eq. (34) is the ath order fractional conservation of mass equation
allowing for vertical compressibility of the control volume. Again,
if a = 1, we recover the usual integer order conservation of mass
equation

� oqqi

oxi
¼ qðbs þ nbwÞ

op
ot
: ð35Þ

There are three differences between (34) and (35), two of which are
significant. The first difference is that (34) has C(a + 1). This is just a
constant which is easily computed knowing the value of a. Previous
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applications of fractional calculus to flow and transport in porous
media [3,5,11] suggest that a reflects the degree of heterogeneity
in the porous medium. When a ? 1, the porous medium is essen-
tially homogeneous and (34) ? (35); i.e., the conventional mass
conservation equation is recovered from the fractional mass conser-
vation equation. As a gets smaller (than 1), the porous medium be-
comes increasingly heterogeneous.

The second difference is that the divergence term on the left-
hand side of (34) is the fractional derivative of the flux, which in
three dimensions is the fractional divergence [11]. The fractional
divergence is defined using Einstein’s notation

divaðqÞ ¼ ra � q ¼ oaqi

oxa
i

:

Now Eq. (34) can be written in vector form

�qðra � qÞ ¼ Cðaþ 1ÞDx1�aqðbs þ nbwÞ
op
ot
: ð36Þ

As a gets smaller than 1, the fractional divergence provides more
global information about the changes in flux. This is because the
fractional derivative, unlike the integer order derivative, is a non-lo-
cal operator [7].

The third difference is that the right hand side of (34) contains
the term Dx1�a. We believe that the retention of this term in the
fractional mass conservation equation amounts to a built-in scale
effect. This makes sense because when a < 1, the medium hetero-
geneity is scale-dependant with long-range or infinite auto-corre-
lation. The scale effect goes away as a ? 1, Dx1�a ? Dx0 ? 1, as it
should for a homogeneous medium.

The fractional advection dispersion equation has proven useful
in modeling contaminant flow in heterogeneous porous media [1–
3]. The fractional advection dispersion equation is known to be a
special case of a general transport equation with convolution flux
[7] and a limit case of the continuous time random walk with
power-law particle jumps [4,10]. It is a simple matter to derive
the fractional advection dispersion equation from the fractional
conservation of mass equation (34) using a moving coordinate sys-
tem at the plume center of mass, in exactly the same way that the
usual advection dispersion equation follows from the traditional
conservation of mass equation (8), see [11]. This approach vali-
dates the utility of the fractional advection dispersion equation
and related theories, by highlighting the scaling factor that renders
the fractional equation scale invariant. We believe that this scaling
captures the fractal nature of the porous medium [16].

5. Conclusions

A fractional conservation of mass equation captures power law
variations of flux in fractal porous media. The fractional equation
becomes scale invariant by incorporating a power law correction
for the finite size control volume. The fundamental limitations of
the traditional mass conservation equation are: (1) it is valid for
flow fields in which changes in flux (within the control volume)
are small and linear, or piece-wise linear; and (2) the control vol-
ume (or measurement scale) must be large compared to the scale
of heterogeneity. Both of these limitations are required due to
the fact that flux changes in the control volume are approximated
by a first-order Taylor series. We have shown that the fractional
Taylor series can be an exact representation of non-linear (power
law) flux using only the first two terms. By using the fractional Tay-

lor series to represent flux change through the control volume, we
develop fractional conservation of mass equations (26) and (34)
that remove the aforementioned limitations of the traditional mass
conservation equation.

There are two important distinctions between the traditional
mass conservation, (35), and its fractional equivalent, (34). The first
is that the divergence term in the fractional mass conservation
equation is the fractional divergence, and is equivalent to the def-
inition of fractional divergence provided by Meerschaert et al. [11].
The traditional integer order divergence is only able to move mass
into/out of adjacent control volumes [15] since it is based on tradi-
tional Brownian motion. The fractional divergence is able to move
mass between adjacent and further away control volumes, depend-
ing on the nature of the non-linear flux, because the fractional
space derivatives in the fractional divergence term contain global
information about flux changes.

The second distinction is the appearance of the term D x1�a in
the accumulation term of (34), which introduces a scale effect. In
traditional mass conservation, scale effects are seen as scale-
dependant changes in parameters (e.g. hydraulic conductivity,
storage) that should be scale-independent. These parameters
should be scale-invariant in the fractional conservation of mass
equation since the scale effects will be handled by the fractional
derivatives and the Dx1�a term.

Acknowledgement

M.M. Meerschaert was partially supported by NSF Grant DMS-
0706440.

References

[1] Benson DA, Wheatcraft SW, Meerschaert MM. Application of a fractional
advection–dispersion equation. Water Resour Res 2000;36(6):1403–12.

[2] Benson DA, Wheatcraft SW, Meerschaert MM. The fractional-order governing
equation of Lévy motion. Water Resour Res 2000;36(6):1413–23.

[3] Benson DA, Schumer R, Meerschaert MM, Wheatcraft SW. Fractional
dispersion, Lévy motion, and the MADE tracer tests. Transport Porous Media
2001;42:211–40.

[4] Berkowitz B, Cortis A, Dentz M, Scher H. Modeling non-Fickian transport in
geological formations as a continuous time random walk. Rev Geophys
2006;44:RG2003. doi:10.1029/2005RG000178.

[5] Clarke DD, Meerschaert MM, Wheatcraft SW. Fractal travel time estimates for
dispersive contaminants. Ground Water 2005;43(3):401–7.

[6] Cushman JH. On measurement, scale, and scaling. Water Resour Res
1986;22(2):129–34.

[7] Cushman JH, Ginn TR. Fractional advection-dispersion equation: a classical
mass balance with convolution-Fickian flux. Water Resour Res 2000;36(12):
3763–6.

[8] Domenico PA, Schwartz FW. Physical and chemical hydrogeology. New
York: John Wiley & Sons Inc.; 1990. 824 p.

[9] Fetter CW. Applied hydrogeology. 4th ed. New York: Prentice Hall; 2001. 598 p.
[10] Meerschaert MM, Scheffler HP. Limit theorems for continuous time random

walks with infinite mean waiting times. J Appl Probab 2004;41(3):623–38.
[11] Meerschaert MM, Mortensen J, Wheatcraft SW. Fractional vector calculus for

fractional advection–dispersion. Physica A 2006;367:181–90.
[12] Metzler R, Klafter J. The restaurant at the end of the random walk: recent

developments in the description of anomalous transport by fractional
dynamics. J Phys A 2004;37:R161–208.

[13] Neuman SP. Universal scaling of hydraulic conductivities and dispersivities in
geologic media. Water Resour Res 1990;26(8):1749–58.

[14] Odibat ZM, Shawagfeh NT. Generalized Taylor’s formula. Appl Math Comput
2007;186:286–93.

[15] Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW. Eulerian derivation
of the fractional advection–dispersion equation. J Contam Hydrol 2001;38:
69–88.

[16] Wheatcraft SW, Tyler SW. An explanation of scale-dependent dispersivity in
heterogeneous aquifers using concepts of fractal geometry. Water Resour Res
1988;24(4):566–78.

S.W. Wheatcraft, M.M. Meerschaert / Advances in Water Resources 31 (2008) 1377–1381 1381




