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Abstract: Anomalous dispersion is observed throughout hydrology, yielding a
contaminant plume with heavy leading tails. The fractional advection dispersion
equation (FADE) captures this behavior by replacing the second-order spatial
derivative with a Riemann-Liouville (RL) fractional derivative. The RL frac-
tional derivative is a nonlocal operator and models large jumps of solute particles
in heterogeneous media. This chapter reviews the FADE, including fundamen-
tal (point-source) solutions, which are expressed as stable probability density
functions. The space FADE has been extended to space-dependent parameters
(e.g., dispersivity) and multiple dimensions. Alternatively, the time FADE and
fractional mobile immobile (FMIM) models, which utilize time-fractional deriva-
tives to model long-waiting times (retention), are also used to model anomalous
dispersion. Current applications of the FADE, including parameter estimation,
source identification, space-time duality, and FADE models on bounded domains
are discussed.

Keywords: Fractional dispersion, continuous time random walks, parameter fit-
ting, source identification, space-time duality

PACS: ...

1 Introduction
Non-Fickian, or anomalous, dispersion is observed throughout hydrology in both
surface [2, 25, 32, 53] and subsurface [9, 11, 19, 62] flows through heterogeneous
porous media. Solute particles may experience long movements due to high-
velocity preferential flow paths, yielding a particle plume with heavy leading
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tails. As a result, the solute spreads in a super-diffusive manner. The traditional
advection dispersion equation (ADE) with constant coefficients cannot model
this feature of anomalous dispersion. To address this problem, the fractional
advection dispersion equation (FADE) was introduced in Benson et al. [7–9],
replacing the second derivative in space with a fractional Riemann-Liouville
(RL) derivative. Thus, the FADE introduces spatial nonlocality [20,21,24], using
an integro-differential operator with a power-law kernel, to model a wide range
of flow velocities.

The FADE has successfully modeled tracer tests in underground aquifers,
including the MADE tracer tests in a highly heterogeneous aquifer located on
a US Air Force base in Mississippi [9, 12, 17], tracer tests in the Cape Code
sand and gravel aquifer [7], unsaturated soils [65], saturated porous media [73],
streams and rivers [1, 25, 27], and overland solute transport due to rainfall [26].
More recently, the FADE has modeled anomalous mixing and reaction between
multiple chemical species [13, 14]. Some of this success may be attributed to
the simplicity of the FADE: a wide range of observed behavior in heterogeneous
media is captured with a parsimonious model with just four parameters.

This chapter focuses on the spatial FADE in both 1D and multiple dimen-
sions. In Section 2, we first discuss the one-dimensional FADE. We then discuss
variants of the FADE with variable coefficients. Fundamental solutions to the
FADE with constant coefficients are expressed in terms of a stable probability
density function. In Section 3, we describe the multi-dimensional FADE [40]. Sec-
tion 4 briefly surveys two time-fractional models: the time FADE [63] and the
fractional mobile-immobile model (FMIM) [58]. Section 5 examines two inverse
problems associated with the FADE: parameter estimation and source identifi-
cation. Finally, current research and unsolved problems are discussed in Section
6.

2 The Fractional Advection-Dispersion
Equation

The 1D space-fractional advection dispersion equation (FADE) for concentration
C(x, t) [M/L3] with constant coefficients is given by

∂C

∂t
+ v

∂C

∂x
= D

1 + β

2
∂αC

∂xα
+ D

1 − β

2
∂αC

∂(−x)α
, (1)

where v [L/T] is the average plume velocity, D [Lα/T] is a fractional disper-
sion coefficient that controls the rate of spreading, 1 ≤ α ≤ 2 (dimensionless)
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and −1 ≤ β ≤ 1 (dimensionless) is the skewness parameter. The first and sec-
ond terms on the right hand of (1) are the positive (left) and negative (right)
Riemann-Liouville (RL) fractional derivatives. If β = 1, then solutions to the
FADE are positively-skewed, while if β = −1, solutions are negatively skewed.
If β = 0, the sum of the two RL fractional derivatives is equivalent to the sym-
metric Riesz derivative, and the resulting solution is symmetric. The fractional
order α codes for the heterogeneity of the velocity field, with a higher probability
of large velocities as α decreases towards one, see Clarke et al. [17].

If α = 2, the FADE reduces to the traditional advection-dispersion equation
(ADE) for groundwater flow and transport (e.g., see Bear [6]). The FADE (1)
was introduced by Benson et al. [8] to model scale-dependent dispersivity in
fitted groundwater plumes, i.e., the fact that the fitted parameter D grows with
time when the ADE is applied to data. Such evidence of superdiffusion is an
indicator that a space-fractional model may be preferable. Indeed, Benson et
al. [7–9] show that the FADE (1) with 1 < α < 2 allows the same data to be fit
with a constant coefficient model, where D does not vary over time.

The positive and negative RL derivatives in (1) may be computed using the
(shifted) Grünwald-Letnikov finite difference formula introduced by Meerschaert
and Tadjeran [46]:

∂αC

∂xα
= lim

h→0
h−α

∞∑
j=0

gα
j C (x − (j − 1)h, t) (2a)

∂αC

∂(−x)α
= lim

h→0
h−α

∞∑
j=0

gα
j C (x + (j − 1)h, t) , (2b)

where the Grünwald weights gα
j are given by

gα
j = (−1)j Γ(α + 1)

Γ(j + 1)Γ(α − j + 1)
= −α(1 − α) · · · (j − 1 − α)

j!
.

From these definitions, we see that the RL fractional derivative is a nonlocal
operator: the change in concentration at position x does not just depend on
nearby locations, but distant locations as well. From a particle perspective, a
combination of positive and negative RL derivatives allows a solute particle to
jump to any point in the domain. Figure 1 illustrates this situation, and Schumer
et al. [57] provide a derivation of (1) using this Eulerian particle picture. In
brief, the FADE models contaminant transport through a heterogeneous porous
medium, using a nonlocal fractional derivative that captures a highly variable
velocity field.

The FADE (1) governs the long-time limit of a random walk with long-tailed
particle jumps, and C(x, t) is the probability density function (PDF) of the
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Fig. 1: Fractional diffusion of particles between distant cells, illustrating the nonlocality of
the RL fractional derivative, from [57].

limiting stochastic process. Suppose that (Xn) are independent and identically
distributed (IID) random variables that represent the particle jumps, and Sn =
X1 + · · · + Xn is a random walk that represents the position of a randomly
selected particle after the nth jump. Suppose that P[Xn > x] = pCx−α and
P[Xn < −x] = qCx−α for some C > 0 and 1 < α < 2, where p, q are nonnegative
constants such that p + q = 1. Then the mean v = E[Xn] exists and we have

n−1/α

[nt]∑
j=1

(Xj − v) + n−1
[nt]∑
j=1

v ⇒ Zt + vt, (3)

where Zt is a stable Lévy motion with mean zero [44, Remark 4.17]. The PDF
C(x, t) of Zt +vt solves the FADE (1) with D = CΓ(2−α)/(α−1) and β = p−q

[44, Proposition 4.16]. If Xn are IID with a finite variance σ2 = E[(Xn − v)2],
then (3) holds with α = 2, Zt is a Brownian motion, and C(x, t) solves the
FADE (1) with α = 2 and D = σ2/2 [44, Section 1.1]. The latter connection
between random walks, Brownian motion, and the diffusion equation was noted
by Einstein [29] in his most cited research paper. The corresponding connection
between heavy tailed random walks, stable Lévy motion, and the FADE extends
this powerful idea, see Sokolov and Klafter [61] for further discussion.

2.1 Fractional-Flux ADE (FF-ADE)

In a heterogeneous porous medium, at a large enough scale where the geological
character of the medium changes with location, the material parameters v and D

can depend on space. There are at least three variants of the FADE with space-
dependent coefficients: 1) the fractional-flux ADE (FF-ADE), 2) the fractional-
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divergence ADE (FD-ADE), and 3) the fully fractional divergence ADE (FFD-
ADE).

The FF-ADE model is derived from the classical conservation of mass (con-
tinuity) equation

∂C

∂t
+ ∂q

∂x
= 0, (4)

where q(x, t) is the flux, complemented with a fractional flux constitutive equa-
tion [51,57]

q(x, t) = v(x)C − D(x)1 + β

2
∂α−1C

∂xα−1 + D(x)1 − β

2
∂α−1C

∂(−x)α−1 . (5)

The first term in (5) is the advective flux, which models the average drift of con-
taminant particles, while the second and third terms are the dispersive flux that
model large particle jumps in the positive and negative directions, respectively.
Combining (4) and (5) yields the FF-ADE from Zhang et al. [67] and Huang et
al. [33]:

∂C

∂t
= − ∂

∂x

[
v(x)C − D(x)1 + β

2
∂α−1C

∂xα−1 +D(x)1 − β

2
∂α−1C

∂(−x)α−1

]
. (6)

Setting β = 1 yields the FF-ADE given by Equation (4) in [68], while setting
v(x) and D(x) constant yields (1).

2.2 Fractional-Divergence ADE (FD-ADE) and Fully
Fractional Divergence ADE (FFD-ADE)

An alternative formulation replaces the divergence in the continuity equation
(4) with a fractional divergence [43], yielding a fractional divergence-advection
dispersion equation (FD-ADE)

(7)

∂C

∂t
= − ∂

∂x
[v(x)C] + 1 + β

2
∂α−1

∂xα−1

[
D(x)∂C

∂x

]
− 1 − β

2
∂α−1

∂(−x)α−1

[
D(x)∂C

∂x

]
.

Setting β = 1 yields the FD-ADE given by Equation (11) in Zhang et al. [68].
By setting v(x) and D(x) constant in (7), we recover the modified FADE

∂C

∂t
+ v

∂C

∂x
= D

1 + β

2
∂α−1

∂xα−1

[
∂C

∂x

]
− D

1 − β

2
∂α−1

∂(−x)α−1

[
∂C

∂x

]
, (8)
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proposed in Zhang et al. [66]. The modified FADE replaces the Riemann-
Liouville fractional derivatives in the flux equation (5) with Caputo fractional
derivatives. We will call the fractional derivatives on the right hand side of (8)
mixed Caputo derivatives. These fractional derivatives, which lie in between the
Riemann-Liouville and Caputo forms, have been used in various contexts, see
for example Cushman and Ginn [21], Patie and Simon [52], and [43, Section 6].
On an infinite domain with sufficiently smooth concentration profiles that tend
to zero at ±∞, both the FADE and the modified FADE are equivalent, because
in that case the Riemann-Liouville and mixed Caputo derivatives are equal. On
bounded domains, however, their behavior can be quite different. We will return
to this issue in Subsection 6.2.

Finally, if we also fractionalize the advection term, we obtain the fully frac-
tional divergence ADE (FFD-ADE):

(9)

∂C

∂t
= − ∂α−1

∂xα−1 [v(x)C] + 1 + β

2
∂α−1

∂xα−1

[
D(x)∂C

∂x

]
− 1 − β

2
∂α−1

∂(−x)α−1

[
D(x)∂C

∂x

]
.

All three versions of the FADE govern Markovian random walk processes, where
the jump distribution depends on the current particle location [68]. The FF-ADE
(6), FD-ADE (7), and FFD-ADE (9) can be discretized using an implicit Euler
scheme, or alternatively a random walk particle tracking method [67]. The FF-
ADE (6) and FD-ADE (7) exhibit similar plume behavior if D(x) varies linearly
with position x; however, for nonlinear D(x) and small α near one, there is
a significant difference between these two models. Finally, solutions to the the
FFD-ADE (9) differ markedly from the FF-ADE and FD-ADE, with a much
heavier leading tail. See Zhang et al. [68] for more details.

2.3 Fundamental Solutions

The solution to the FADE (1) on the real line with point-source initial condi-
tion C(x, 0) = δ(x) for any 1 < α ≤ 2 can be written in terms of a stable
PDF f(x; α, β, σ, δ) (e.g., see Samorodnitsky and Taqqu [55] or Meerschaert and
Sikorskii [44, Proposition 5.8])

C(x, t) = f
(

x; α, β, (Dt|cos(πα/2)|)1/α , vt
)

. (10)

For α = 2, this solution reduces to a Gaussian. A brief derivation using Fourier
transforms is included in Benson et al. [8] and [35]. Although the stable PDF
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(a) β = 1.0 (skewed)
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(b) β = 0 (symmetric)

Fig. 2: Evolution of the point-source solution (10) at times t = 1 (solid), 2 (dashed), and
3 (dotted) relative to the plume center of mass. A stable index of α = 1.2 and fractional
dispersion coefficient of D = 1 are used. Panel a) shows a skewed plume with β = 1, while
panel b) shows a symmetric (β = 0) plume.

with 1 < α < 2 cannot be written in closed form in terms of elementary func-
tions, convenient computer codes are available to plot the stable PDF (e.g., see
Nolan [50]) and these have been applied to the FADE [44, Chapter 5]. A MAT-
LAB toolbox FracFit1 to plot FADE solutions, and fit parameters to observed
concentration data, is also available [34].

Figure 2 displays the evolution of the point-source solution (10) at times
t = 1, 2, and 3 relative to the plume center of mass. A stable index of α = 1.2
and fractional dispersion coefficient of D = 1 are used. Panel a) shows a skewed
plume with β = 1, while panel b) shows a symmetric (β = 0) plume. In both
panels, the solution has a nonlinear scaling rate proportional to t1/α, which
grows faster than the classical Boltzmann rate t1/2. That is, the point-source
solution to the FADE exhibits super-diffusion. In addition, both figures exhibit
heavy tails, which decay like inverse power laws with respect to x. For the skewed
plume in panel a), the plume has a heavy tail to the right (downstream) of the
plume center of mass x = vt, while in the symmetric case shown in panel b), the
plume has heavy tails on both sides.

A second fundamental solution of interest to field and experimental hy-
drologists is a continuous injection solution. These solutions model continuous
injection breakthrough curves (CBTCs) from laboratory experiments, such as
transport of organic matter through porous media columns. These experiments

1 https://github.com/jfk-inspire/FracFit-v-0.9
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display strong anomalous transport characteristics, e.g., see Dietrich et al. [28]
and McInnis et al. [38, 39].

At present, no closed form analytical solution for the FADE or the FD-
ADE using a continuous injection on the half-axis exists; however, an analyt-
ical approximation following what is done for the classical ADE (α = 2) in
Danckwerts [22] may be derived as follows. Consider the modified FADE (8)
on −∞ < x < ∞ subject to initial condition C0(x, 0) = C0 for x < 0 and
C0(x, 0) = 0 for x ≥ 0. Using the FADE pulse initial condition solution (10) ,
the continuous injection solution is approximated by

C(x, t) =
∫ ∞

−∞
C0(x′)f

(
x − x′; α, β, (Dt|cos(πα/2)|)1/α , vt

)
dx′. (11)

Evaluating the integral in (11)) yields

C(x, t) = C0

[
1 − F

(
x; α, β, (Dt|cos(πα/2)|)1/α , vt

)]
, (12)

where F (z; α, β, σ, δ) denotes the cumulative distribution function (CDF) for a
stable random variable.

To verify this approximation, we compare it to a complete numerical solu-
tion from Zhang et al. [66]. A prescribed concentration boundary condition was
imposed at the inlet C(0, t) = C0H(t) and a free drainage boundary condition
was imposed at x = L = 200. The parameters used in both simulations are
D = 2.5, v = 10.0, α = 1.6, which are identical to those used in Fig. 3a of [66].
Agreement between (12) and the numerical solution is very good, indicating that
(12) is a good approximation for continuous injection. For the case β = 1 shown
in panel a), we can see a heavier leading tail, while for the case β = −1 plotted
in panel b), we can observe a heavy trailing tail.

3 Multidimensional Fractional
Advection-Dispersion Equation

A multi-dimensional FADE was proposed in [40]

∂C

∂t
+ v · ∇C(x, t) = D∇α

M C(x, t), (13)

where v [L/T] is the d-dimensional average plume velocity and ∇α
M is a vector

fractional derivative [43] defined via an inverse spatial Fourier transform

∇α
M C(x, t) = F−1

[∫
∥θ∥=1

(ik · θ)αĈ(k, t)M(dθ)

]
, (14)
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(a) β = 1.0 (b) β = −1.0

Fig. 3: Comparison of the analytical approximation given by Eq. (12) and a semi-implicit
discretization of the modified FADE (8). The unitless parameters for the two simulation are
C0 = 1, α = 1.6, v = 10, D = 2.5. The left panel is positively-skewed (β = 1.0), while the
right panel is negatively-skewed (β = −1.0).

where θ is an d-dimensional unit vector, k is a wave-vector, Ĉ(k, t) = F [C(x, t)]
=

∫
e−ik·xC(x, t) dx is the spatial Fourier transform of concentration, and

M(dθ) is a mixing measure defined over the unit sphere in d-dimensions. If
α = 2, (13) reduces to the traditional vector ADE

∂C

∂t
+ v · ∇C(x, t) = ∇ · A∇C(x, t)

where the 2-tensor
A = D

∫
θθT M(dθ)

is the dispersion tensor using the outer product [44, Section 6.5]. For a general
mixing measure with 1 < α < 2, fundamental solutions to (13) cannot be
expressed in closed form. We will consider two special cases, in which case we
can write the fundamental solutions as products of stable PDFs. If jumps only
occur along the standard coordinate vectors ej : j = 1, 2, . . . , d with probabilities
M{ej} = p/d and M{−ej} = q/d, then the fractional directional derivative (14)
is evaluated as

∇α
M C(x, t) = p

d

d∑
j=1

∂α

∂xα
j

C(x, t) + q

d

d∑
j=1

∂α

∂(−xj)α
C(x, t). (15)
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Fig. 4: Level sets of the point-source solution to the multi-dimensional FADE (d = 2) at
time t = 1 relative to the plume center of mass. A stable index of α = 1.1 and fractional
dispersion coefficient of D0 = 1 are used. Panel a) shows contours of a skewed plume with
β = 1, while panel b) shows contours of a symmetric (β = 0) plume.

Letting D0 = D/d and β = p − q yields a vector fractional diffusion equation

∂

∂t
C(x, t) + v · ∇C(x, t)

= D0
1 + β

2

d∑
j=1

∂α

∂xα
j

C(x, t) + D0
1 − β

2

d∑
j=1

∂α

∂(−xj)α
C(x, t). (16)

Assuming a velocity v =
∑d

j=1 vjej , the point source solution to (16) with
C(x, 0) = δ(x) may be computed via a Fourier transform, yielding

C(x, t) =
d∏

j=1
f

(
xj ; α, β, (D0t|cos(πα/2)|)1/α , vjt

)
. (17)

Figure 4 shows level sets of (17) for d = 2 dimensions at time t = 1 relative
to the plume center of mass. A stable index of α = 1.1 and fractional dispersion
coefficient of D0 = 1 are used. Panel a) shows contours of a skewed plume with
β = 1, while panel b) shows contours of a symmetric (β = 0) plume. Note that
the contours are anisotropic in both cases, including panel b) with symmetric
jumps (β = 0). Except for α = 2, the plume spreads in an asymmetric fashion,
thus providing a good model for anisotropic media.

Finally, consider the case where M(dθ) is uniform over the (d − 1)-
dimensional sphere. Using [44, Example 6.24], (14) is evaluated as the (symmet-
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ric) fractional Laplacian, yielding

∂

∂t
C(x, t) + v · ∇C(x, t) = cαD∆α/2C(x, t), (18)

where ∆α/2C(x, t) has Fourier transform −|k|αĈ(k, t) and cα is a coefficient
that only depends on the order α. The fundamental solution may be written as
a subordinated normal PDF [44, Example 6.5], yielding a symmetric level set.
Further extensions of the FADE in multiple dimensions are developed in Schumer
et al. [59], see also [41,68] and [44, Chapter 6]. This operator scaling FADE allows
a different order of the space-fractional derivative in each coordinate.

4 Time-Fractional Models
Unlike the space FADE, which models long particle jumps, the time-fractional
FADE models long waiting times between jumps, by replacing the first-order
time-derivative in the ADE with a time-fractional derivative. In this section, we
summarize two widely used time-fractional PDEs: the time-fractional FADE and
the fractional mobile-immobile equation (FMIM). In Subsection 6.1, we will see
how the space FADE and time FADE are related via duality.

4.1 Time-Fractional FADE

The time-fractional advection dispersion equation from Zaslavsky [63] or Liu et
al. [36] is given by (

∂

∂t

)γ

C = −v
∂C

∂x
+ D

∂2C

∂x2 , (19)

where the first term in (19) is a Caputo derivative with order 0 < γ < 1 on the
half-axis. In the case of γ = 1, (19) reduces to the classical ADE. In contrast to
the spatial FADE (1), the units of the velocity parameter v are L/Tγ and the
units of the dispersion coefficient are L2/Tγ .

This time-fractional equation governs the scaling limit of a continuous time
random walk (CTRW). For simplicity, suppose that v = 0. Assume as in Section
2 that Sn = X1 + · · · + Xn is a random walk of particle jumps. Now suppose
that a random waiting time Wn occurs before the nth jump. The random walk
Tn = W1 +· · ·+Wn gives the time of the nth jump, N(t) = max{n ≥ 0 : Tn ≤ t}
is the number of jumps by time t ≥ 0, and the CTRW SN(t) is the location of
a randomly selected particle at time t ≥ 0. If the waiting times are heavy tailed
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with P[Wn > t] = At−γ for some A > 0 and 0 < γ < 1, then

n−1/γ

[nt]∑
j=1

Wj = n−1/γT[nt] ⇒ Dt, (20)

another stable Lévy motion called a stable subordinator. The counting process
n−γN(nt) ⇒ E(t), where E(t) = inf{u > 0 : Du > t} is called the inverse stable
subordinator, and a continuous mapping argument yields the CTRW limit ZE(t)
[44, Section 4.4]. The PDF C(x, t) of the CTRW limit is the point source solution
to the time-fractional dispersion equation (19) [42]. From a hydrological point
of view, the waiting times model resting periods between particle movements.

Closed-form solutions to (19) are constructed via subordination. Starting
with a solution CADE(x, t) to the ADE (19) with γ = 1, the time variable
is randomized by the inverse stable subordinator (e.g., see Meerschaert and
Straka [45]). For a pulse initial condition C(x, 0) = δ(x) on the real axis, this
subordination integral is written as [44, Equation (4.39)]

C(x, t) =
∫ ∞

0
hγ(u, t) 1√

4πDu
exp

(
− (x − vu)2

4Du

)
du, (21)

where hγ(u, t) is the pdf of the inverse γ-stable subordinator E(t). The density
hγ(u, t) may be written in terms of a stable density [44, Equation (4.47)], and
evaluated using available codes (e.g., Nolan [50] or [34]).

4.2 Fractional Mobile Immobile Equation

The fractional mobile-immobile (FMIM) model from Schumer et al. [58] general-
izes the classical mobile-immobile (MIM) model (e.g., see Coats and Smith. [18]),
which partitions the concentration into mobile Cm(x, t) and immobile Cim(x, t)
phases. All MIM models equate the divergence of the total (advective and disper-
sive) flux to a weighted sum of the time rate of change of each phase. The rate
of change from the immobile to the mobile phase is expressed as a convolution
with a memory function f(t). In particular, the FMIM model [58] uses a power
law memory function f(t) = t−γ/Γ(1 − γ) with 0 < γ < 1.

A CTRW model for the FMIM, that segregates mobile from immobile parti-
cles, was developed by Benson and Meerschaert [10]. It models the long waiting
times experienced by solute particles in the immobile phase by a power law,
exactly as for the time-FADE. The memory function is explicitly computed in
terms of the CTRW model. Power law waiting times have been observed in river
transport studies by Haggerty et al. [32] and Schmadel et al. [56].
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The FMIM equation with Fickian flux for mobile concentration is given by
Schumer et al. [58] as

∂Cm

∂t
+ βc

∂γCm

∂tγ
= −v

∂Cm

∂x
+ D

∂2Cm

∂x2 , (22)

where the second term in (22) is a Riemann-Liouville derivative on the half-axis,
βc [Tγ−1] is the capacity coefficient, defined as the ratio of the porosity in the
immobile phase to that of the mobile phase (see Haggerty and Gorelick [30]),
D [L2/T] is the dispersion coefficient, and v [L/T] is the average velocity. This
FMIM is similar to an earlier model proposed in Carrera et al. [15] and to a
truncated power-law model proposed in Haggerty et al. [31].

Like the time-FADE, solutions to (22) may be expressed via a subordination
integral [58, Equation (21)]

Cm(x, t) =
∫ t

0
gγ (t − u, βcu) 1√

4πDu
exp

(
− (x − vu)2

4Du

)
du, (23)

where gγ(t, u) is the density of the γ-stable subordinator Du, with Laplace trans-
form g̃(s, u) = e−usγ . A calculation [58] shows that Cm(x, t) falls off like t−γ−1

at late time.

5 Parameter Estimation and Source
Identification

Application of the FADE to observed field or laboratory data often requires
solving an inverse problem. In this section, we briefly discuss two such inverse
problems: source identification and parameter identification.

5.1 Source Identification

In groundwater hydrology, source identification determines the source location,
release history, and/or strength of a contaminant source given one or more mea-
surements. One approach is to solve the forward equation multiple times to
identify the source. While straightforward, this method is computationally ex-
pensive. Alternatively, one may derive a backward equation whose solution is
a PDF for the source location/time. This backward equation only needs to be
solved once, and is hence computationally more efficient.

A backward model for the classical ADE was derived in Neupauer and Wil-
son [49] using an adjoint-based approach. This method was extended to the



14 Kelly and Meerschaert

FADE (specifically, the FD-ADE) in Zhang et al. [71] and later to bounded do-
mains in Zhang et al. [72]. Since the primary application is groundwater flows,
we consider a special case of the FD-ADE (7) with only positive jumps (β = 1)
and source and sink terms given by [71, Equation 1 with effective porosity θ = 1]

∂

∂t
C = − ∂

∂x
[v(x)C] + ∂

∂x

[
D(x)∂α−1C

∂xα−1

]
+ qiCi − q0C, (24)

where the mean velocity v and dispersion coefficient D may vary with x (hetero-
geneous), qi is the source inflow rate, q0 is the sink outflow rate, and Ci is the
inflow concentration. Letting A(x, t) be the adjoint state, the backward FADE
is given by [71, Equation 10 with θ = 1]

∂

∂t
A = ∂

∂x
[v(x)A] + ∂α−1

∂(−x)α−1

[
D(x) ∂A

∂(−x)

]
− qiA + δ(x − xd)δ(τ), (25)

where xd is the detection location, T is the detection time, and τ = T − t is
the “backward time”. Given an observed contaminant at location xd at backward
time τ = 0 assuming no other source or sink, the backward location PDF fx(x; τ)
satisfies (25) with qi = 0. If both v and D are assumed constant, then (25) has
an analytical solution specified by (10):

fx(x; τ) = f
(

x − xd; α, −1, (Dτ |cos(πα/2)|)1/α , vτ
)

. (26)

Figure 5 evaluates the PDF (26) using MADE-2 concentration data [12] for day
a) 132, b) 224, and c) 328 using α = 1.1, v = 0.12 m/day, and D = 0.14 mα/day.
The vertical solid bar shows the actual release location, while the long and short
dashed lines show the 75th and 25th percentiles of the displayed PDF. Although
the predicted source location does not coincide with the median, the predicted
source location does lie between the 25th and 75th percentiles. The variability
in this estimation motivates further study, such as including a scale dependent
dispersion coefficient and the effects of a finite boundary [72].

5.2 Parameter Estimation

A statistically optimal parameter estimation method based on the weighted non-
linear least squares (WNLS) approach is described in Chakraborty et al. [16].
This method is applicable to both snapshot data x 7→ C(x, t) with time t fixed
and breakthrough curve (BTC) data t 7→ C(x, t) with position x fixed. Using a
particle-tracking approach, [16] demonstrated that concentration variance is pro-
portional to concentration (heteroscedasticity). As a result, weighted nonlinear
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Fig. 5: PDF of contaminant release location predicted by the backward FADE using MADE-
2 concentration data for day a) 132, b) 224, and c) 328 using α = 1.1, v = 0.12 m/day,
and D = 0.14 mα/day. The vertical solid bar shows the actual release location, while
the long and short dashed lines show the 75th and 25th percentiles of the displayed PDF.
Reprinted from [71].

regression is used where the weights are proportional to the reciprocal of mea-
sured concentration, thereby assigning a greater weight to lower concentration
values. This WNLS approach is important for capturing anomalous transport
characteristics (e.g., heavy leading or trailing tails). This estimation procedure
was adapted to time-fractional, tempered time-fractional models (e.g., see [48]),
and continuous injection data in [34].

To illustrate the WNLS approach, assume we have N measurements of a
BTC Ci = C(x, ti) at times ti, 1 ≤ i ≤ N , and we wish to fit the parameters
Θ = (α, β, v, D) of the FADE to observed data by minimizing the weighted mean
square error (WMSE) function

E(Θ) = 1
N

N∑
i=1

wi (Ci − C(x, ti))2 , (27)

where C(x, t) is the modeled concentration (e.g., (10) for the space FADE) and
the weights are given by wi = 1/Ci. Either local optimization using a reasonable
guess or global optimization (e.g., genetic algorithm) may be used to minimize
(27) to find the optimal parameters Θ. We fit both the spatial FADE model
(1) and the fractional mobile-immobile (FMIM) model, (22) and compare the
results, using the FracFit package.

The first dataset is from a fluorescein dye tracer test conducted in the Red
Cedar River (Michigan, USA) by Phanikumar et al. [53]. BTCs were measured
at locations x = 1.4 km, 3.1 km, and 5.08 km downstream of the tracer source.
The data was fit to the FADE (1) in previous work [16]. We replicated that fit
at these three locations and also fit the FMIM model (22). The model fits and
data are shown in panel a) of Figure 6 for location x = 3.1 km. The FMIM
parameters are γ = 0.96, v = .145 km/min, βc = 3.87 min−.04, and D = .0012
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Fig. 6: BTCs for the Red Cedar river at x = 3.1 km (panel a) and the Selke river at x =

667 m (panel b). The FADE (1) and time-fractional model (22) are fit using the FracFit
toolbox. Parameters are given in the text.

km2/min. The FADE parameters are α = 1.56, β = −1, v = .0259 km/min, and
D = .0013 km1.56/min. It is apparent that both models fit the data reasonably
well.

The second dataset is a similar dye tracer test conducted in the Selke River
(Germany) by Schmadel et al. [56]. Eight tracer injections were released and
measured at seven downstream locations. We fit data from injection 7 at site
4, located 667 m downstream. The optimal fits and data are shown in panel b)
of Figure 6. The FMIM parameters are γ = 0.906, v = 0.8549 m/s, βc = 0.844
s−0.094, and D = 0.3204 m2/s. The FADE parameters are α = 1.33, β = −1,
v = 0.313 m/s, and D = 0.223 m1.56/s. Again, both models match the data
reasonably well. These parameter fits suggest that there could be a relationship
between time-fractional models and the space-FADE, which is discussed in the
next section.

6 Current and Future Research

6.1 Space-Time Duality

As the parameter fits in Figure 6 illustrate, applications of the FADE to river
flow hydrology employ a negatively skewed space-fractional derivative (β = −1),
which models long upstream jumps in the random walk model outlined in Section
2. Deng et al. [27] suggest that this negatively skewed space-fractional deriva-
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tive is capturing a “wide spectrum of dead zones” in the velocity field. The
time-FADE models particle retention using a time-fractional derivative, which
captures long resting periods between particle movements in the CTRW model
discussed in Section 4. Zhang et al. [69] recommend the time-FADE (19) instead
of the negatively skewed FADE (1) to model contaminant transport in rivers,
because it does not seem physical for particles to make long upstream jumps.
However, it is important to note that these jumps are moving upstream relative
to the center of mass. In the space-FADE model, a particle moves downstream
and then jumps back upstream. In the time-FADE model, the particle remains
upstream while the bulk of the plume moves downstream. Either way, the par-
ticle ends up behind the plume center of mass.

This controversy between the space-FADE and the time-FADE for river
flows was resolved in [35] by establishing a mathematical equivalence between
the negatively skewed space-FADE and the time-FADE. This duality principle,
which was applied to the space-fractional diffusion equation in Baeumer et al.
[5], can be illustrated by considering the point source solution C0(x, t) to the
negatively skewed FADE (1) with β = −1, v = 0 and D = 1:

∂C0
∂t

= ∂αC0
∂(−x)α

. (28)

Apply a Fourier transform with respect to both x and t, yielding

[(iω) − (−ik)α]Ĉ0(k, ω) = 0, (29)

where k is the the wavenumber and ω is the angular frequency. This dispersion
relationship is equivalent to (iω)γ = (−ik) where γ = 1/α. Substituting back
into (29) and inverting the FT leads to the dual equation

∂γC0
∂tγ

= −∂C0
∂x

(30)

since ∂/∂(−x) = −∂/∂x. Note that (30) is a special case of the time FADE (19)
with v =1 and D = 0 using a Caputo derivative. In the case α = 2 (γ = 1/2),
this space-time duality for the traditional diffusion equation was observed by
Heaviside in 1871, perhaps the first real application of the fractional calculus. A
rigorous derivation of space-time duality is laid out in [35], including the FADE
(1) with any skewness. If the advection term in (1) is retained, it is shown in [35]
that the dual time-fractional PDE involves the fractional material derivative
from Sokolov and Metzler [60].
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6.2 FADE in Bounded Domains

Most problems in hydrology and fluid dynamics occur on bounded domains,
such as contaminant transport in column experiments [38,39]. Application of the
FADE on a bounded domain is a challenging problem, since the boundary con-
dition may itself be nonlocal. Most available numerical schemes assume Dirich-
let boundary conditions (BCs), including finite difference methods [46, 47, 54]
and spectral methods [37, 64]; however, many problems involving the FADE in
bounded domains require either mass conservation or a specification of flux. Con-
siderable effort has been spent on developing mass-preserving, reflecting BCs for
space fractional diffusion equations [3,4,23]. In particular, Baeumer et al. [3] pro-
posed explicit Euler schemes for the one dimensional space-FADE using either
a positive RL derivative or a mixed Caputo derivative. They show that the ap-
propriate mass-preserving schemes involve a fractional boundary condition. The
same fractional BCs were also applied to the (forward) FADE in Zhang et al. [70]
and to the backward FADE in Zhang et al. [72].

As a simple example, consider the FADE model (1) on the unit inter-
val [0, 1] with v(x) = 0, D(x) = 1 and β = 1. Assume some initial mass
M0 =

∫ 1
0 C(x, t) dx is conserved for all time t. Integrating the mass conser-

vation equation (4) with respect to x and applying the fundamental theorem of
calculus yields

∂M0
∂t

=
∫ 1

0

∂

∂t
C(x, t) dx

= −
∫ 1

0

∂

∂x
q(x, t) dx

= q(0, t) − q(1, t).

If the flux q(0, t) and q(1, t) at both endpoints is identically zero, then mass is
conserved. From (5), the zero flux BC is

∂α−1C

∂xα−1

∣∣∣∣
x=0

= ∂α−1C

∂xα−1

∣∣∣∣
x=1

= 0. (31)

Figure 7 shows a numerical solutions using the explicit Euler method outlined
in Baeumer et. al. [3] of a) the FADE (1) with Riemann-Liouville reflecting
boundary conditions (31) and b) the FADE with Caputo flux (8) with Caputo
reflecting boundary conditions. As t increases, the solution in Figure 7(a) con-
verges to the steady-state solution C∞(x) = M0(α−1)xα−2, which is singular at
x = 0. Figure 7(b) shows numerical solutions of the modified FADE (8) with zero
flux BCs. These BCs are the same as (31), except that the Riemann-Liouville
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Fig. 7: Numerical solution of a) the FADE (1) with Riemann-Liouville reflecting boundary
conditions (31) and b) the FADE with Caputo flux (8) with Caputo reflecting boundary
conditions. Both panels use parameters α = 1.5, v = 0, β = 1, and D = 1 on 0 ≤ x ≤ 1 at
time t = 0 (solid line), t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).

fractional derivatives are replaced by Caputo derivatives. Since the Caputo frac-
tional derivative of a constant is zero, the steady state solution is a constant
C∞(x) = M0. Consideration of the steady state solution is one useful method
for selecting the appropriate FADE model on a bounded domain.

7 Summary
The space FADE (1) models a wide range of observed anomalous dispersion us-
ing a fractional RL derivative in space. This RL derivative is a nonlocal operator
and models large jumps of solute particles in heterogeneous media. The funda-
mental solutions to the space FADE in 1D exhibit both heavy tails and skewness,
which are observed in many tracer tests. The space FADE has been extended
to media with space-dependent material parameters and multiple dimensions.
The time FADE and fractional mobile immobile (FMIM) models, which utilize
time-fractional derivatives to model long-waiting times (retention), are also used
to model anomalous dispersion. A connection between long upstream particle
jumps and long waiting times is established using space-time duality, which pro-
vides an equivalence between the negatively-skewed space FADE and the time
FADE. Finally, the FADE in bounded domains with nonlocal, reflecting bound-
ary conditions is discussed.
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