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Multidimensional advection and fractional dispersion
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Extension of the fractional diffusion equation to two or three dimensions is not as simple as extension of the
second-order equation. This is revealed by the solutions of the equations: unlike the Gaussian, the most general
stable vector cannot be generated with an atomistic measure on the coordinate axes. A random combination of
maximally skewed stable variables on the unit sphere generates a stable vector that is a general model of a
diffusing particle. Subsets are symmetric stable vectors that have previously appeared in the literature and the
well-known multidimensional Brownian motion. A multidimensional fractional differential operator is defined
in the process.@S1063-651X~99!08805-4#

PACS number~s!: 05.40.Fb, 05.60.2k, 47.55.Mh, 02.50.Cw
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I. INTRODUCTION

Diffusion equations that use fractional derivatives are
tractive because they describe a wealth of continuous t
random walks~CTRW @1#! that are good models of transpo
in real systems@2–5#. Solutions to the fractional diffusion
equations are Le´vy motions, a generalization of Brownia
motion usinga-stable distributions@6#. Lévy motions are
scaling limits of random walks with power-law transitio
probabilities, and their sample paths are random fractals@7#
whose dimensiona coincides with the order of the fractiona
derivative. Therefore, a strong motivation driving the spe
fication of the fractional derivative operator is that the Gre
function of the generalized diffusion equation is the full fam
ily of stable laws. A number of the derivations have be
limited to special cases such as purely symmetric@8,9# or
maximally skewed@10,11# particle transitions. More genera
derivations@4,5,12# recognize the need for weighted forwa
and backward fractional derivative operators in on
dimensional space.

We require an extension to higher dimensions, since pr
lems of fractional diffusion are common in two and thr
dimensions. An asymmetric fractional derivative operat
which is a weighted average of directional derivatives
each radial direction, allows us to generate the full range
Lévy-stable motions. Since these processes can easily
commodate drift, we call these Fokker-Planck equatio
‘‘fractional advection-dispersion equations,’’ noting th
only the dispersion derivative is fractional, and that the fr
tional diffusion equation is a subset. We now use the te
dispersion to include molecular diffusion and hydrodynam
dispersion@13#. We also concentrate only on spatially fra
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tional dispersion, since extensions to fractional-in-time p
cesses are straightforward@4,5,8–10#.

II. DEVELOPMENT

Let X(t) be the position of a particle ind-dimensional
Euclidean spaceRd at timet>0. Let P(x,t) denote the den-
sity of X(t) where the vectorx5(x1 ,...,xd)PRd. The gen-
eral advection-dispersion equation is

]P~x,t !

]t
52v“P~x,t !1c¹M

a P~x,t !, ~1!

where vPRd is the drift coefficient ~velocity!, “

5(]/]x1 ,...,]/]xd), c describes the spreading rate of th
dispersion, and¹M

a is the general~asymmetric! fractional
derivative operator for 0,a<2,aÞ1. Using the Fourier
transform conventionf̂ (k)5*e2 i ^k,x& f (x)dx we specify this
operator by requiring that¹M

a f (x) has Fourier transform

F E
iui51

~ i ^k,u&!aM ~du!G f̂ ~k!, ~2!

whereM (du) is an arbitrary probability measure on the un
sphere$xPRd:ixi51%. We call M the mixing measure,
since Eq.~2! corresponds to a mixture of directional deriv
tives taken in each radial direction. Solutions to Eq.~1! with
initial condition P@X(0)50#51 yield every possible multi-
variable Lévy motion X(t) with index 0,a<2,aÞ1. The
fractional diffusion process is made up of many infinitesim
particle jumps, and the mixing measureM gives the prob-
ability distribution for the radial direction of those jump
When a52 we get multivariable Brownian motion, and i
this case Eq.~1! reduces to the classical advection-dispers
equation inRd. In one dimension we haveiui51 only for
u561 and so*( i ^k,u&)aM (du)5p( ik)a1q(2 ik)a where
ic
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p1q51 and then Eq.~1! reduces to the general one
dimensional fractional advection-dispersion equat
@4,5,12#.

Take Fourier transforms of Eq.~1! to obtain

dP̂~k,t !

dt
52 i ^k,v&P̂~k,t !

1cF E
iui51

~ i ^k,u&!aM ~du!G P̂~k,t !, ~3!

so that for our initial conditionP̂(k,0)[1 we obtain

P̂~k,t !5expF2 i ^k,vt&1ctE
iui51

~ i ^k,u&!aM ~du!G .
~4!

Using (iu)a5(eip/2u)a5uuuacos(pa/2)$11 i sgn(u)tan(pa
/2)% the right hand side above becomes

expF2 i ^k,vt&1ctE
iui51

u^k,u&uacosS pa

2 D
3H 11 i sgn~^k,u&!tanS pa

2 D J M ~du!G , ~5!

which is the Fourier transform of an arbitrary multivariab
stable distribution with indexaÞ1, compare@6#, p. 65. Thus
the Green function solution to Eq.~1! yields the entire class
of multivariable Lévy motions foraÞ1.

The asymmetric fractional derivative operator¹M
a in Eq.

~1! is a mixture of fractional directional derivatives. The d
rectional derivative Du f (x)5^u,“ f (x)&5( ju j] f (x)/]xj
5dg/ds at s50 whereg(s)5 f (x1su). Its Fourier trans-

form is ( ju j ik j f̂ (k)5 i ^k,u& f̂ (k) sinceik j f̂ (k) is the Fourier
transform of] f (x)/]xj . We can define fractional derivative
using convolutions of generalized functions in real space
products in Fourier space@14#. The scalar fractional deriva
tive is

D1
a g~s!5

1

G~n2a!

dn

dsn E
0

`

r n2a21g~s2r !dr,

wheren511@a# is the smallest integer greater thana, and
it is easy to check that this convolution integral has Fou
transform (iu)aĝ(u) @5,14#. Take the derivative inside th
integral and integrate by parts to obtain

D1
a g~s!5

1

G~2a!
E

0

`

r 2a21g~s2r !dr,

a convolution of generalized functions@14#, p. 154. The frac-
tional order directional derivativeDu

a f (x) is defined by
D1

a g(s) evaluated ats50, whereg(s)5 f (x1su). Taking a
mixture over the unit sphereiui51 we get the convolution
formula

¹M
a f ~x!5

1

G~2a!
E

iui51
E

0

`

r 2a21f ~x2ru!dr M ~du!

~6!
n

r

r

whose Fourier transform is given by Eq.~2!. If M (du)
5m(u)du and the constantcd is the volume of the unit
sphere inRd then a change of variables yields

¹M
a f ~x!5

1

G~2a!
E

iui51
E

0

`

r 2a21f ~x2ru!dr m~u!du

5
1

dcdG~2a!
E

iui51
E

0

`

r 2a2dm~u!

3 f ~x2ru!dcdr d21dr du

5
1

dcdG~2a!
E

yPRd
iyi2a2dmS y

iyi D f ~x2y!dy,

a ‘‘hypersingular integral with homogeneous characteristic
@14#, p. 518. Whenm(u) is a constant function this integra
reduces to the well-known convolution equation for t
Riesz fractional derivative¹a f (x), @14#, p. 483. We can also
write Eq. ~6! in the compact form¹M

a f (x)5*yÞ0f (x
2y)f(du) where f(dy)5r 2a21drM (du)/G(2a) in po-
lar coordinates.

Whena52 the mixing measureM determines the cova
riance matrix. In this case the integral in Eq.~2! reduces to

2E
iui51

S (
j 51

d

kju j D 2

M ~du!5~ ik !A~ ik !T, ~7!

where the matrixA5(ai j ) with ai j 5*u iu jM (du). Then Eq.
~1! reduces to the classical advection-dispersion equa
with ¹M

a 5“A¹T5( i , jai j ]
2/]xi]xj and

P̂~k,t !5exp@2 i ^k,vt&2ctkAkT#,

which is the Fourier transform of a Gaussian with meanvt
and covariance matrix 2ctA, so we recover multivariate
Brownian motion with drift. WhenM (du)5M (2du) the
integral in Eq.~2! reduces to

1

2 Eiui51
~ i ^k,u&!a1~ i ^k,2u&!aM ~du!

5cosS pa

2 D E
iui51

u^k,u&uaM ~du! ~8!

using (iu)a1(2 iu)a52uuuacos(pa/2). Furthermore, if
M (du) is uniform thenX(t) is symmetric stable, and by Eq
~4! its densityP(x,t) has Fourier transform

P̂~k,t !5expF2 i ^k,vt&1cadtikiacosS pa

2 D G ,
where the constantad5* uu1uaM (du) depends only ona
and the dimensiond of the space.

III. DISCUSSION

Every stable random vector is of the formb1UR where
U is a random unit vector andR is a stable random variabl
which is maximally skewed and independent ofU. The so-
lution X(t) to Eq. ~1! is of this form with meanb5vt and
P@UPA#5M (A). SinceX(t) is a Markov process with sta
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tionary independent increments, the probability distribut
M governs the direction of infinitesimal jumps. Numeric
simulation of the fractional dispersion processX(t) can be
accomplished by adding small jumpsX(t1Dt)2X(t) of
stable random vectors. Each jump is of the formvDt1UR
where the jump directionU has probability distributionM on
the unit sphere. In terms of the standard parametrization
stable random variables@6#, the jump sizeR is centereda
stable with skewness11 and scale s satisfying sa

52cDt cos(pa/2), soR can be simulated using the formu
of Kanter @15#. For a,2 the fractional dispersionX(t) is
symmetric if and only if jumps in any direction are equa
likely, while X(t)5„x1(t),...,xd(t)… has independent com
ponentsxj (t) if and only if jumps are restricted to the coo
dinate axes,@6#, p. 68. Fora52 both randomly directed an
orthogonal jumps generate the same Brownian motion. T
property is unique to the multivariate normal,@16#, p. 258.
Different mixing measuresM yield different processes whe
a,2, while for a52 we saw in Eq.~7! that the moments o
M suffice to parametrize the dispersion process.

Lévy motions are scaling limits of random walks. Su
poseZ,Z1 ,Z2 ,Z3 ,...,Zn are independent and identically di
tributed random vectors inRd. If the rescaled random walk
a(l)(Z11¯1Z@lt#)⇒L(t) as l→` then L(t) is a Lévy
motion @17#. If EiZi2,` then a(l)5l21/2 and L(t) is a
Brownian motion. If we haveP@ iZi.r #;Cr2a and
P@ iZi.r ,Z/iZiPA#;P@ iZi.r #M (A) as r→`, then we
get convergence witha(l)5l21/a andL(t) is a Lévy pro-
cess with indexa,2 and mixing measureM @17#. Hence the
fractional dispersion processX(t)5vt1L(t) described by
Eq. ~1! gives a very robust model for particle motions. On
some generic tail properties of the jumps must be specifi
and every possible limiting process is obtained.

The formula ~5! for the Fourier transform ofX(t) is
computed using the Le´vy measure f t(dy)
5ctar 2a21drM (du)/G(2a), see@6#, p. 66. Whena,2
the general convergence criterion for rescaled random w
s
ch
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is lP@a(l)ZPA#→f1(A) as l→` @18#. The same Le´vy
measuref1 appears in the formula for the generator of t
convolution semigroup$P(x,t):t>0% @19#. Point process
theory says thatX(t) is the limit of compound Poisson ran
dom vectors, wheref t(dy) gives the intensity of jumps o
sizey @20#. Finally, convolution with a Le´vy measure is the
simplest way to describe the full range of fractional deriv
tives. In our development, we obtained the formu
c¹M

a f (x)5*yÞ0f (x2y)f1(dy). This surprising connection
between Le´vy measures and fractional derivatives~or Riesz
potentials! is new even inR1.

IV. SUMMARY

The connection between certain stochastic processes
their governing partial differential equation is well known.
particular, Brownian motion implies a second-order diffusi
equation@19#. We have shown a similar implication betwee
the superset of diffusive motions—the stable Le´vy
motions—and the fractional advection-dispersion equati
The implication is shown by then-dimensional fractional
derivative defined as a convolution with a Le´vy measure.
The motions described by the fractional equation deriv
herein are characterized by occasional large jumps@6,21#.
The particle paths are fractals whose dimension correspo
to the order of the fractional derivative@7#. The motions can
be symmetric or have any degree of skewness in sev
dimensions. One should expect skewed and fractional
lecular diffusion in the midst of high chemical gradients a
concentrations@4#. Dissolved solutes moving through porou
aquifer material may exhibit nearly symmetric@22# to highly
skewed@23# dispersion.
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@3# E. Weekset al., in Lévy Flights and Related Topics in Physic,

edited by M. Shlesinger, G. Zaslavsky, and U. Fris
~Springer-Verlag, New York, 1995!, p. 51.

@4# D. Benson, Ph.D. thesis, University of Nevada, Reno, 19
~unpublished!.

@5# D. Benson, S. Wheatcraft, and M. Meerschaert~unpublished!.
@6# G. Samorodnitsky and M. Taqqu,Stable Non-Gaussian Ran

dom Processes: Stochastic Models with Infinite Varian
~Chapman and Hall, London, 1994!.

@7# S. Taylor, Math. Proc. Camb. Philos. Soc.100, 383 ~1986!.
@8# A. Compte, Phys. Rev. E53, 4191~1996!.
@9# R. Metzler, J. Klafter, and I. Sokolov, Phys. Rev. E58, 1621

~1998!.
@10# G. M. Zaslavsky, Physica D76, 110 ~1994!.
@11# A. Compte, Phys. Rev. E55, 6821~1997!.
@12# A. S. Chaves, Phys. Lett. A239, 13 ~1998!; A. I. Saichev and

G. M. Zaslavsky, Chaos7, 753 ~1997!.
8

e

@13# J. Bear,Dynamics of Fluids in Porous Media~Dover, New
York, 1972!.

@14# S. Samko, A. Kilbas, and O. Marichev,Fractional Integrals
and Derivatives: Theory and Applications~Gordon and
Breach, London, 1993!.

@15# M. Kanter, Ann. Prob.3, 697 ~1975!.
@16# S. Ross,A First Course in Probability, 5th ed.~Prentice Hall,

New York, 1998!.
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