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Multidimensional advection and fractional dispersion
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Extension of the fractional diffusion equation to two or three dimensions is not as simple as extension of the
second-order equation. This is revealed by the solutions of the equations: unlike the Gaussian, the most general
stable vector cannot be generated with an atomistic measure on the coordinate axes. A random combination of
maximally skewed stable variables on the unit sphere generates a stable vector that is a general model of a
diffusing particle. Subsets are symmetric stable vectors that have previously appeared in the literature and the
well-known multidimensional Brownian motion. A multidimensional fractional differential operator is defined
in the process.S1063-651%99)08805-4
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I. INTRODUCTION tional dispersion, since extensions to fractional-in-time pro-
cesses are straightforwafd,5,8—1Q.

Diffusion equations that use fractional derivatives are at-
tractive because they describe a wealth of continuous time Il. DEVELOPMENT
random walk§CTRW 1]) that are good models of transport
in real systemg2-5]. Solutions to the fractional diffusion _ Let X(t) be the position of a particle id-dimensional
equations are Ly motions, a generalization of Brownian Euclidean spac&® at timet=0. LetP(x,t) denote the den-
motion using a-stable distributiong6]. Lévy motions are Sity of X(t) where the _VeCtOK:(le;--’Xd)ERd- The gen-
scaling limits of random walks with power-law transition €ral advection-dispersion equation is
probabilities, and their sample paths are random fra¢@ls POXL)
whose dimensiom coincides with the order of the fractional X, @
derivative. Therefore, a strong motivation driving the speci- ot —uVPOGD +eVy P, @
fication of the fractional derivative operator is that the Green
function of the generalized diffusion equation is the full fam-where veR?® is the drift coefficient (velocity), V
ily of stable laws. A number of the derivations have been=(g/dx,,...,d/dxy), ¢ describes the spreading rate of the
limited to special cases such as purely symmef8i®] or  dispersion, andvy, is the generalasymmetrig fractional
maximally skewed10,11] particle transitions. More general derivative operator for & @<2,a+#1. Using the Fourier
derivations4,5,12 recognize the need for weighted forward o - <¢orm convention (k) = fe~ (¥ (x)dx we specify this

ahd backward fractional derivative operators in One'operator by requiring tha & (x) has Fourier transform
dimensional space.

We require an extension to higher dimensions, since prob-
lems of fractional diffusion are common in two and three
dimensions. An asymmetric fractional derivative operator,
which is a weighted average of directional derivatives in
each radial direction, allows us to generate the full range ofvhereM(d#6) is an arbitrary probability measure on the unit
Lévy-stable motions. Since these processes can easily asphere{xe R%|x||=1}. We call M the mixing measure,
commodate drift, we call these Fokker-Planck equationssince Eq.(2) corresponds to a mixture of directional deriva-
“fractional advection-dispersion equations,” noting that tives taken in each radial direction. Solutions to EQ.with
only the dispersion derivative is fractional, and that the frac-nitial condition P[X(0)=0]=1 yield every possible multi-
tional diffusion equation is a subset. We now use the ternvariable Lary motion X(t) with index 0<a<2,a# 1. The
dispersion to include molecular diffusion and hydrodynamicfractional diffusion process is made up of many infinitesimal
dispersion[13]. We also concentrate only on spatially frac- particle jumps, and the mixing measu¥k gives the prob-

ability distribution for the radial direction of those jumps.
When a=2 we get multivariable Brownian motion, and in

J (i(k,6))*M(d6) |T(k), )
[o]=1

*Electronic address: mcubed@unr.edu this case Eq(1) reduces to the classical advection-dispersion
tAuthor to whom correspondence should be addressed. Electrongquation inRY. In one dimension we havgd| =1 only for
address: dbenson@dri.edu #==1 and sof (i(k, 8))*M (d8) = p(ik) “+q(—ik)“ where
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p+qg=1 and then Eq.(1) reduces to the general one- whose Fourier transform is given by E@). If M(d6)
dimensional fractional advection-dispersion equation=m(6#)dé# and the constanty is the volume of the unit
[4,5,12. sphere inRY then a change of variables yields

Take Fourier transforms of Eql) to obtain L

~ a — ” —a—1 _
dP(k,t) mf(x) M(—a) f0|1for f(x—r@)dr m(6)de

it = —i(k,v)P(k,t)
___r f fwr‘“‘dm(a)
Pk, (3 degl'(—a) Jyg=1Jo

+cC

f (i(k, 6))"M(d6)
[lof=1

X f(x—r@)dcgrd 1drde

so that for our initial conditior15(k,0)zl we obtain
f(x—y)dy,

o e I R
degl'(—a) Jyerd Iyl

ﬁ’(k,t):exp{—i(k,vtwrctf (i(k,o))“M(dB)}.

lo=1 a “hypersingular integral with homogeneous characteristic,
(4)  [14], p. 518. Whemnm(#) is a constant function this integral
reduces to the well-known convolution equation for the
Riesz fractional derivativ® “f(x), [14], p. 483. We can also
write Eg. (6) in the compact formVyf(x)=[,.of(x

) —y)#(d6) where ¢(dy)=r" ¢ drM(d6)/T'(— ) in po-

Using (iu)®=(e'™u)*=|u|“cos@ra/2){1+i sgn{i)tan(ra
/2)} the right hand side above becomes

ex;{ —i(k,vt)+ctf|0|1|<k,0)|"cos<%

T

1+i sgr((k, 0>)tar< 5

lar coordinates.
When a¢=2 the mixing measur® determines the cova-
riance matrix. In this case the integral in EQ) reduces to

X d

_ K. 6.
flﬂll—l(J=l 1

where the matriA=(a;;) with a;;=J6;6;M(d6). Then Eq.
(1) reduces to the classical advection-dispersion equation
with V;\xﬂ = VAVT: Ei ’jaij 0"2/&Xi&Xj and

2
M(d@)=(ik)A(ik)T, (7)

]M(dﬁ)}, ©)

which is the Fourier transform of an arbitrary multivariable
stable distribution with indext# 1, compard6], p. 65. Thus
the Green function solution to E¢l) yields the entire class
of multivariable Lery motions fora # 1.

The asymmetric fractional derivative operadof; in Eq.
(1) is a mixture of fractional directional derivatives. The di- 2 _ . _ T
rectional derivative D ,f (x) = {6,V (x))= 3,6, (x)/dx; Pk =ex ~itk,ut) = ctkAkT,
=dg/ds at s=0 whereg(s)=f(x+s6). Its Fourier trans- which is the Fourier transform of a Gaussian with mean
formis 2, 6;ik;f(k)=i(k, 6)f (k) sinceik;f(k) is the Fourier ~and covariance matrix @A, so we recover multivariate
transform ofof (x)/dx; . We can define fractional derivatives Brownian motion with drift. WhenM(d¢) =M (—d#6) the
using convolutions of generalized functions in real space, ointegral in Eq.(2) reduces to
products in Fourier spadd4]. The scalar fractional deriva-

tive is %f (i(k,0))“+ (i(k,— 6))*“M(d6)
Lo l6l=1
Di (S):——n rniail (S_r)dra
9= Th—a) ds Jo g - 0{%) f H (k, 6)|*M (d6) ®)
0|=1

wheren=1+[«] is the smallest integer greater thanand

it is easy to check that this convolution integral has Fourietsing (u)“+ (—iu)*=2|u|“cos@ma/2). Furthermore, if
transform (u)“g(u) [5,14]. Take the derivative inside the M(d#) is uniform thenX(t) is symmetric stable, and by Eq.
integral and integrate by parts to obtain (4) its densityP(x,t) has Fourier transform

1 oc A . N TA
Dig(S)=mfo r-e"lg(s—r)dr, P(k,t)=exp —i(k,vt)+cagt/|K| 005{7)

where the constanay=f|6;|*M(d6) depends only ony

a convolution of generalized functiof$4], p. 154. The frac- and the dimension of the space.

tional order directional derivativeyf(x) is defined by
D% g(s) evaluated as=0, whereg(s) = f(x+s#6). Taking a

mixture over the unit sphergg||=1 we get the convolution lll. DISCUSSION
formula Every stable random vector is of the fotm- UR where
L U is a random unit vector andl is a stable random variable
VFf(x)= re Ll (x—ro)dr M(de wh_lch is maximally skewed .and mdependentLrthhe so-
uf(x) I'(-a) fﬁlfo ( ) (d6) lution X(t) to Eq. (1) is of this form with mearb=uvt and

(6) P[UeA]l=M(A). SinceX(t) is a Markov process with sta-
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tionary independent increments, the probability distributionis AP[a(\)Z e A]— ¢1(A) as\—o [18]. The same Ley

M governs the direction of infinitesimal jumps. Numerical measureg; appears in the formula for the generator of the
simulation of the fractional dispersion procesét) can be convolution semigroug{P(x,t):t=0} [19]. Point process
accomplished by adding small jumps$(t+At)—X(t) of theory says thaX(t) is the limit of compound Poisson ran-
stable random vectors. Each jump is of the farthit+ UR ~ dom vectors, whereb,(dy) gives the intensity of jumps of
where the jump directiok) has probability distributiom on  sizey [20]. Finally, convolution with a Ley measure is the
the unit sphere. In terms of the standard parametrization fasimplest way to describe the full range of fractional deriva-
stable random variablg$], the jump sizeR is centerede  tives. In our development, we obtained the formula
stable with skewness+1 and scaleo satisfying o  cVyf(x)=[,.of(x—y)#1(dy). This surprising connection
= —CAt cos(ral2), soR can be simulated using the formula between Lgy measures and fractional derivativEs Riesz

of Kanter[15]. For «<2 the fractional dispersioX(t) is  potential$ is new even inR?l.

symmetric if and only if jumps in any direction are equally

likely, while X(t)=(xy(t),...,X4(t)) has independent com- IV. SUMMARY

ponentsx;(t) if and only if jumps are restricted to the coor-

dinate axeg6], p. 68. Fora=2 both randomly directed and

orthogonal jumps generate the same Brownian motion. Thi1€ir governing partial differential equation is well known. In
property is unique to the multivariate norméL6], p. 258. particular, Brownian motion implies a second-order diffusion

Different mixing measure! yield different processes when €duation19]. We have shown a similar implication between

a<2, while for a=2 we saw in Eq(7) that the moments of (€ superset of diffusive motions—the stable vie
M suffice to parametrize the dispersion process. motions—and the fractional advection-dispersion equation.

Levy motions are scaling limits of random walks. Sup- ghg implicgtlgn Ids shown by tlhe_l-dlmgnhspnal fractional
poseZ,Z,,Z,,Z3,...,Z, are independent and identically dis- Tﬁrlvanvg € |ge "?‘s 3 gon;/ho u?ont'wn la\,l;erpeasgre'. d
tributed random vectors iRY. If the rescaled random walk & motions described by the iractional equation derive

. . herein are characterized by occasional large jufi§2l].
a(\)(Z1+:-+Zp)=L(t) ash— thenl(t) is a Levy ) . ;
motion [17]. If E|Z|2<= thena(\)=A"2 andL(t) is a The particle paths are fractals whose dimension corresponds

Brownian motion. If we haveP[|Z||>r]~Cr~* and LO the ordetr of thegractl(;r;]al %ee”\;gg\[gg';-krgv?gst??ﬁ (;aer\]/eral
PLIZ|[>r,2/|Z] e A1~ P[|Z| >rIM(A) asr—c, }hen we d?mzxr:ignr?s“coﬁé sﬁ\éﬁld e&pec% skewed and fractional mo-
get convergence With()\):.)\.illa andL(t) is a Levy pro- lecular diffu-sion in the midst of high chemical gradients and
cess with indexa<2 and mixing measur®l [17]. Hence the X . )

fractional dispersion procesé(t)=vt+ L(t) described by concentration$4]. Dissolved solutes moving through porous
Eq. (1) gives a very robust model for particle motions. Only aquifer material may exhibit nearly symmetf22] to highly

some generic tail properties of the jumps must be specified?kewed[zs] dispersion.
and every possible limiting process is obtained.

The formula (5) for the Fourier transform ofX(t) is
computed using the My measure ¢(dy) D.A.B. received financial support from the U.S. Depart-
=ctar *“ 1drM(d6)/T'(— ), see[6], p. 66. Whena<2 ment of Energy, Basic Energy Sciences under Grant No.
the general convergence criterion for rescaled random walkBE-FG03-98ER14885.

The connection between certain stochastic processes and
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