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Abstract—In this paper, a new fractional order generalization
of the diffusion equation is developed to describe the anisotropy
of anomalous diffusion that is often observed in brain tissues
using magnetic resonance imaging (MRI). The new model embeds
three different fractional order exponents—corresponding to
the principal directions of water diffusion—into the governing
Bloch–Torrey equation. The model was used to analyze diffusion
weighted MRI data acquired from a normal human brain using
a 3T clinical MRI scanner. Analysis of the data revealed normal
Gaussian diffusion in the cerebral spinal fluid (isotropic fractional
order exponent of , and anomalous diffusion in both
the white and the gray matter. In
addition, we observed anisotropy in the fractional exponent values
for white mater ( along the fibers versus
across the fibers), but not for gray matter. This model introduces
new parameters to describe the complexity of the tissue microen-
vironment that may be sensitive biomarkers of the structural
changes arising in neural tissues with the onset of disease.

Index Terms—Anomalous diffusion, Bloch–Torrey equation,
fractional calculus, magnetic resonance imaging.

I. INTRODUCTION

S IGNAL propagation on an RC transmission line can be de-
scribed by a partial differential equation that is equivalent

in form to the equations describing classical Gaussian diffu-
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sion. Fractional order generalizations of this model reflect the
onset of anomalous, non-Gaussian diffusion. Anomalous diffu-
sion has been characterized in both space and time using a rich
variety of fractional order derivatives. The review by Metzler
and Klafter [1] provides an excellent historical background for
this approach. The mathematical description of the form and
properties of fractional order derivatives can be found in the
monographs by Podlubny [2], Herrman [3], and Meerschaert
and Sikorskii [4]. In addition, an excellent summary of both the-
oretical models and experimental applications is available in the
recent book by Klages et al. [5].
Fractional order operators provide a convenient way to gener-

alize the propagation of electrical signals in devices, circuits and
networks. Let represent a voltage or current on an elec-
trical transmission line with inductance (L), capacitance (C),
and resistance (R)—all expressed per unit length. If we further
allow to represent the fractional orders of the Caputo time
derivative and the Riesz space derivative, respectively (both
derivatives are defined in the Appendix), we can write the clas-
sical transmission line equation in the form

(1)

where is a generalized propagation constant with units
of mm (e.g., LC in the case of a lossless line, and RC
in the case of a very low inductance telegraph cable). As the
overall fractional order of the time and space derivatives span
the integer range from 0 to 2, the propagation of both the
voltage, and the current along the transmission
line smoothly morph from diffusion to wave
propagation .
Diffusion is also characterized through a stochastic model of

Brownian motion governed by Fick’s second law, which is iden-
tical in form to (1). Here, represents the local concen-
tration of diffusing particles, or equivalently, its probability den-
sity function—assuming an initial delta distribution of material
at and , and proper normalization. In this situation,

, is described as the diffusion propagator and the mean
squared displacement of the particles grows with time raised to
the power, , here is the Hurst index ( ,
subdiffusion; , Gaussian diffusion; , su-
perdiffusion). Thus, for values other than , the dif-
fusion is described as “anomalous.” By measuring the Hurst
index (fractional order) of water diffusion in tissue, we can ex-
tract a measure or biomarker for the underlying tissue structure.
This structure governs the flow of current (movement of ions) in
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TABLE I
ABBREVIATION AND NOTATION

axons and across cell membranes, the distribution ofmetabolites
(sugars, amino acids) in cells and the surrounding extracellular
matrix, and the uptake of drugs from capillaries. Fortunately, the
magnitude of the electrical signal acquired in MRI is sensitive
to the movement of water through local tissue structures as re-
flected in the detected frequency, relaxation times, and the ADC
(note, all abbreviations and definitions are listed in Table I).
The connection between diffusion and magnetic resonance

for water protons is described by the Bloch–Torrey equation [6].
Solving the Bloch–Torrey equation for an anisotropic material,
such as brain WM, provides the basis for DTI. In DTI, the ac-
quired DW signal, , is given by the equation

(2)

where is the initial signal intensity with very small or no DW,
is a symmetric positive definite 3 3 matrix, called the DT

(mm /s) with the form

(3)

is a unit vector in the direction of the applied magnetic field
gradient, and (s/mm ) is a user controlled parameter that de-
pends on the timing, duration and strength of the selected gra-
dient pulses [7]. Diagonalization of the DT gives the principal
directions of the diffusion process (eigenvectors) and the dif-
fusion coefficient in each direction (eigenvalues: .
Using the extracted eigenvalues, one can compute several met-
rics that provide valuable information about tissue microstruc-
ture [8]. Examples of such metrics are the trace

, the MD , and
the FA defined as

(4)

FA varies from zero to one, a value of zero FA indicates isotropic
diffusion and an FA of one indicates anisotropic diffusion. In the
isotropic case the DT can be written in the form , where

is a 3 3 unit matrix and is a scalar with the same units as
. Hence, (2) becomes

(5)

In brain tissues, is usually called the ADC and has a value
approximately one third that of pure water ( mm /s at
room temperature) [9].
In situations where the data deviate from the mono-exponen-

tial decay, one can utilize a stretched exponential function of the
form

(6)

where DDC (mm /s) is the distributed diffusion coefficient, and
(dimensionless) is the stretching or anomalous diffusion expo-

nent, . This function was introduced by Bennett et
al. [6] and found to provide an improved fit to the collected data
[10]. Hall and Barrick [11] also used a stretched exponential
function—derived from a fractal model—to describe diffusion
in human brain tissue. In addition, Magin et al. [12] general-
ized the Bloch–Torrey equation by introducing fractional space
derivatives of order and found that the signal decay following
a Stejskal–Tanner diffusion pulse sequence could be expressed
as a stretched exponential of the form

(7)

where (dimensionless) is the stretching exponent
(mm) is a fractional order space constant needed

to preserve units, (MHz/Tesla) is the gyromagnetic ratio
of the proton, (Tesla/mm) is the magnitude of the applied
magnetic field gradient, and (s) and (s) are the pulse sepa-
ration interval and the diffusion gradient duration, respectively
[11]. Setting to unity, one recovers the classical exponential
decay model in (5) [9]. By applying this model to trace MRI
image data acquired from samples of Sephadex gel with known
complexity and tortuosity, the new parameter was found to
be directly proportional to tortuosity, while was found to be
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inversely proportional to the complexity of the surroundings.
In a further study of normal adult brain tissue, Zhou et al. [12]
found the WM to exhibit lower values than nearby regions of
GM, reflecting the greater complexity and anisotropy of WM
compared with GM.
Recently, several studies have examined the directional de-

pendence of the stretched exponential model of anomalous dif-
fusion. Hall and Barrick [13], for example, proposed a two-step
anomalous diffusion tensor imaging scheme based on extending
the DTI model using a fractional tensor exponent of the form

(8)

where (mm /s) and (dimensionless) are both rotationally
invariant tensors called the distributed diffusivity tensor and the
anomalous exponent tensor respectively. Both tensors are as-
sumed to be symmetric 3 3 matrices and to be described by el-
lipsoids. Decomposition of both tensors into their corresponding
eigenvalues and eigenvectors yields behavior for that is sim-
ilar to the classical DT, while the behavior of decomposes
in a similar manner, but now reflecting the principal directions
of tissue complexity. Analysis of human brain data using this
model found good correlation between the principal eigenvalue
of the diffusion tensor and highest (closer to one) value of the
fractional tensor , that is, the directions of highest diffusion
corresponds to normal Gaussian diffusion [13].
In another study by De Santis et al. [14], these workers com-

bined the directional information of DTI with stretched expo-
nential fitting. First, they determined the principal eigenvectors
from DTI for each voxel and then they fit the multiple -value
data to three stretched exponentials, each aligned along the prin-
cipal DTI axes according to the equation

(9)

where (mm /s is a generalization of the diffusion con-
stant. In the fitting procedure of (8), De Santis et al. assumed a
correlation between the principal axis of the DT and the direc-
tional dependence of tissue complexity. Using this fitting pro-
cedure, De Santis et al. reported a strong correlation between
anomalous anisotropy ( A) (the mean squared difference be-
tween the stretching exponents and their mean values) and DTI
FA. Anomalous anisotropywas computed using (5) by replacing
by . Moreover, a positive correlation was found between

MD and the mean value of the stretched exponents .
In summary, the work to date suggests that there is additional

information in the directional dependence of the stretched or
anomalous diffusion exponent. In order to investigate this phe-
nomenon, we solved the fractional order Bloch–Torrey equa-
tion in a multidimensional formulation that separates the tissue
anisotropy from the directional dependence of the stretched ex-
ponential parameters.
This paper is organized as follows. First, Section II de-

scribes a multidimensional generalization of the fractional
Bloch–Torrey equation, and presents a proposed solution.
Second, in Section III we describe image acquisition and

analysis procedures as well as a new parameter estimation pro-
cedure. In Section IV, the new parameters are displayed in the
form of brain maps and the supporting statistics are provided.
This section is followed by the discussion in Section V. Finally,
we have provided a short Appendix with the fundamental def-
inition of both the Caputo and the Riesz fractional derivative.
A summary of the tools used for vector fractional calculus and
a multidimensional generalization of the fractional diffusion
equation are also provided in the Appendix.

II. THEORY

A. The Bloch–Torrey Equation

In this paper, we only consider changes in signal intensity
due to diffusion. Neglecting Larmor precession and and
relaxation, the Bloch–Torrey equation describing the magneti-
zation (Amp/mm) of a sample undergoing diffusion in
a time varying gradient can be described by the following
equation:

(10)

where is the gyromagnetic ratio (42.58 MHz/Tesla for pro-
tons), (mm) is a position vector in the lab-
oratory frame, (Tesla/mm) is the
time-varying applied gradient,
and is the DT which has the form in isotropic diffusion
with being the coefficient of self-diffusion and a 3 3 unit
matrix. In anisotropic diffusion, is a positive definite sym-
metric matrix as defined in (3). If we let ,
where , then we can write

(11)

Following the analysis presented in Abragam [15] and Haacke
[16], one assumes a solution to this partial differential equation
of the form

(12)

where, and . Substituting (12) into
(11), and applying the gradient operator and integrating, we ob-
tain

(13)

In order to remove the explicit time dependence in (13), Ste-
jskal and Tanner proposed a two pulse sequence consisting of
a pair rectangular gradient pulses [11]. A Stejskal–Tanner gra-
dient pulse sequence consists of two rectangular gradient pulses
(each of duration and separated by interval ), amplitude

, and direction . For this sequence, (12)
and (13) yield

(14)
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The term is usually referred to as the value
(s/mm ) [17]. Using (14), we can describe the acquired diffu-
sion signal for a Stejskal–Tanner pulse sequence as

(15)

which for isotropic diffusion reduces to (5).

B. Fractional Order Bloch–Torrey Equation

Assume that the coordinate system described by the principal
directions of diffusion can be related to
the laboratory coordinates using a unitary
transformation (as shown in Table I). Further, let be a uni-
tary matrix that diagonalizes the classical DT: ,
where is the matrix whose columns are the eigenvectors of

, and (mm /s) is a diagonal matrix whose en-
tries are the corresponding eigenvalues of .
Hence, as described in Appendix C, the fractional order gen-

eralization of (11) can be written in the coordinate system in
the form

(16)

where , and is the gradient operator applied in
the coordinate system, with Fourier symbol

, and is the fractional integral operator
as defined in Appendix B acting in the coordinate system
and having the Fourier symbol as shown in the equation at the
bottom of the page. Themu parameters (mm) in the operator
are space constants needed to preserve units [18]. We assume a
solution to (16) in the form

(17)

Substituting (17) into (16), and applying the above operator, we
obtain

(18)

where and
are the stretched exponents. Finally, if we again consider the
Stejskal–Tanner gradient pulse pairs, as defined above, we find

(19)

Using (18), we can describe the acquired signal as follows:

(20)

Note that when equals only , we recover (7). Moreover, when
all of the beta values are set to one, we recover the classical
model described in (15) since (20) becomes

(21)

III. MATERIALS AND METHODS

In order to evaluate the proposed model, multiple value
dMRI scans were acquired from a healthy subject. The subject
was scanned on a 3T Siemens “Allegra” scanner equipped with
a circularly polarized transmit-receive coil. DW axial images
through the optical tracts were acquired using double SE EPI
sequences with ms, slice thickness
mm,matrix cm bandwidth
Hz/pixel. DW images were acquired at 16 values, ranging
from 0 to 5000 s/mm , generated by varying the applied gra-
dient amplitude while fixing the pulse width and pulse sep-
aration at 35 and 107 ms, respectively. At each value,
the DW gradient was applied at six noncollinear directions. The
whole acquisition took min.

A. Data Analysis and Model Fitting

All DW images were corrected for eddy current distortions
using FSL version 4 software (http://www.fmrib.ox.ac.uk/fsl).
As a first step, tensor calculations as well as DT diagonaliza-
tion were performed using theDTIStudio program (http://www.
mristudio.org) using the s/mm subset of the acquired
data in order to compute . Afterward, the whole spectrum of
values was used to fit different and values in (20) using
the Levenberg–Marquardt algorithm implemented in MATLAB
R2011a (MathWorks, Natick, MA, USA). The initial values
were chosen as 0.75, and the initial values were computed
from (20), with being the only variables (the initial values
of and were used in this computation). After determining
the initial values, (20) was used to analyze the set of DW im-
ages to yield the final values of and on a voxel-by-voxel
basis (the fitted results were insensitive to the chosen initial
values). In applying the LM algorithm, the bounds on all ele-
ments of and were taken as and
mm. It is assumed that the eigenvalues of the DT are ordered
such that: . The same order is followed in the
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Fig. 1. Spatially resolved maps of the unit preserving space constants ( ,
and ) (top row), and the dimensionless operational order parameters, (
and ) (bottom row) in the model described by (20).

TABLE II
MEAN AND STANDARD DEVIATION SUMMARY OF THE FITTED

PARAMETERS AND THE COMPUTED METRICS

eigenvector matrix . To perform the analysis on the resolved
parameters of the different types of tissues, WM, GM, and CSF
masks were generated using the segmentation tool embedded in
the well-known Statistical Parametric Mapping (SPM8) soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/).

IV. RESULTS

Fig. 1 displays maps for the six fitted parameters using the
model in (20): the three dimensionless operational order pa-
rameters , and the unit-preserving space constants

(with units of mm). A high contrast exists be-
tween the GM and WM tissues in the maps. It is qualitatively
clear from Fig. 1 that both and are larger than in the
WM regions, which is presented in Table II. This result indicates
a lower value in the principal direction of diffusion along the
WM fibers.
In order to test the previous result, we have computed

using the same formula used to compute the DTI FA [8]. It is
defined as

(22)

Fig. 2. (a) MD, (b) FA, (c) MAE, and (d) anomalous anisotropy maps.

Fig. 2 shows maps of the conventional FA, MD (computed
by averaging the eigenvalues of the DT), MAE (computed by
averaging the stretched exponents), as well as in order
to compare our results with De Santis’ et al. and anoma-
lous anisotropy presented in the introduction [14]. Indeed,
qualitatively, one can see that has higher values in WM
fibers and lower values in GM. These results are similar to those
found for A, which are quantitatively displayed in Table II.
Moreover, we report a high correlation between the and
the FA in the WM region with the correlation coefficient being
0.8 and a -value .

V. DISCUSSION

Diffusion MRI is a noninvasive technique that produces im-
ages whose contrast is modulated by the random translational
motion of water molecules [16]. In biological tissues, where the
water can explore the passageways between cells, organelles,
membranes and macromolecules, dMRI reflects the hetero-
geneity of local tissue structure. At every voxel in a DW image,
the logarithm of the normalized detected signal is
directly proportional to the ADC at the corresponding location
in the brain, as shown in (5). Combining the information from
DW images acquired in different gradient directions allows
us to infer the principal directions of diffusion as well as the
ADC in each of those directions through the diagonalization of
the DT. Therefore, dMRI is used clinically to view disruption
of the fiber structure of neural tracks in WM disease, and cell
death in GM following acute stroke [16], [19].
Fractional order generalization of the multidimensional form

of the diffusion equation extends the Bloch–Torrey equation by
introducing two new sets of parameters: the fractional order
parameters (dimensionless), and the unit preserving space
constants (with units of millimeters). Using this approach in
human brain, our values (Table II) were found to be lower in
WM than in GM , suggesting a
higher complexity in WM. In CSF, the values were found to
be close to unity as expected.
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In recent studies [13], [14] that applied the diffusion gradient
in different directions researchers found that the value of the
stretched exponent was sensitive to gradient direction, particu-
larly inWM. In this paper, we found that the stretched exponents
were lowest in the direction of the WM fibers, as illustrated in
Fig. 1 and 2. In particular, , which represents the stretched ex-
ponent in the direction of the principal eigenvector, was found
to be lower than and in WM . More-
over, and were found close in values in
WM regions, which explain the higher anisotropy along WM
tracts in the map (Fig. 2).
The existence of low beta values along the WM fibers may

first seem counter intuitive, especially when we try to connect
it with the concept of complexity. However, a deeper under-
standing of the underlying distribution, described in (A10), can
explain our result in light of the CTRWmodel. The stretched ex-
ponential model of the anomalous diffusion can be explained by
setting to 1 and solving (1), whichwill result in an alpha stable
distribution for the . This model is known as the Lévy
flight, in which particles are allowed to occasionally perform
large jumps in their random walks. Alpha stable distributions
are heavy tailed functions having power law probability tails

and their Fourier transform is known to be
a stretched exponential [1]. It has been proven that a Fourier re-
lationship exists between the diffusion propagator and the nor-
malized DW signal under the short pulse assumption
(when the pulse separation period pulse duration which
holds in the current experiment setup) [20]. Hence, it is expected
that a streched exponential relationship in the -space (where

is assumed to be the spatial Fourier frequency of units
mm described by the acquired DW signal.
According to the CTRW model, the heavy tailed solution for

the space fractional diffusion model reflects the probability that
distant randomly walking particles could jump to the current
position [21]. From Fig. 3, one can deduce that decreasing the
stretched exponents, , will result in stretching the tail of the

distribution in the corresponding direction [this can be
seen when comparing Fig. 3(a) to Fig. 3(c), where a lower
has caused a longer tail in the direction in (c) compared to
(a)]. Hence, it is more likely that distant particles along the WM
fibers will be able to perform long jumps than particles ran-
domly walking in the transverse directions, which explains the
lower beta found in the principal direction of diffusion along the
optical fibers in Fig. 1. In order to tie this result to the anatomy
of the brain, we postulate the entrapment of water molecules
along the WM fibers. When the molecules are freed, they might
commit long jumps. Unlike WM, values were isotropic in
GM tissues as well as the CSF appearing as low values
in Fig. 2 and similar average values for the stretched exponents
in Table II.
The unit preserving constants, , were found to follow the

same trend previously reported when the Magin et al. isotropic
model [18] was used to study brain tissues [12], [22], although
they did not show a good tissue contrast (Fig. 1) unlike what
have been reported for the map in [12]. The parameters ex-
hibit higher values in WM compared to GM tissues in all direc-
tions. Instability was seen in the fitting for CSF voxels where
the diffusion process approaches the normal case with values

Fig. 3. Contour plot (isomap) of different versions of a 2-D version of
by varying five parameters (two scale parameters: and , rotation angle:
, and two stretched exponents: and ). Coordinate system is shown in

red.

closer to unity, as evidenced by the large standard deviations in
Table II. The blurriness in the maps may be due to the low
SNR (around 1.25 in GM and around 1.4 for WM at a value
of 5000 s/mm ) of the acquired data compared to that used in
[12] (reported to be around 3.5 in GM and around 6 for WM at
a value of 4700 s/mm ). Indeed, fitting our data to the Magin
et al. model resulted in a blurred map. In general, we posit
that both fitting the parameter in the isotropic model or the
parameters in our anisotropic model are sensitive to the SNR of
the data. Moreover, increasing SNR without sacrificing resolu-
tion requires averaging multiple acquisitions, which increases
the acquisition time.
Overall, our results reflect the existence of three different

diffusion phenomena occurring in brain tissue. The first—dif-
fusion in anisotropic media—depends on the structure and
composition of the environment in which the water molecules
move. Barriers such as macromolecules, membranes, and
bundles of axons will create a restricted diffusive medium in
which the directions of allowed motion are constrained causing
a reduction in the measured ADC, when compared with a
barrier-free environment. The second—diffusion in multi-scale
or fractal structures—has been demonstrated to occur in brain
tissue that exhibits fractal-like appearance [23]–[26], and thus
it has been linked to the use of fractional order stretched
exponents (which quantify sub-diffusion processes in terms
of random walk particle trajectories). Such a process could
shed light on the relationship between subdiffusion and the
anisotropy found in the fractional order parameters [18],
[25], [27], [28]. The third—diffusion in porous heterogeneous
media—is related to the anomalous diffusion description
for which or [1]. This could be due to the
complexity of the random walk executed by the spins (water
protons) caused by magnetic susceptibility differences between
different tissues, water compartments and chaotic travel paths
[29]–[31].
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Finally, it is important to note that our model has two main
limitations. First, similar to DTI, the model does not take
into consideration partial volume contamination inside a voxel
where multi-fiber crossings are known to influence the principal
direction of diffusion, which then skews the fitted FA values. A
suggested solution is the utilization of spherical harmonics in
order to solve for fiber crossing. However, this would compli-
cate the formulation of the problem. Second, a long processing
time is required in order to fit the six fractional order parame-
ters. On a 3 GHz Intel core 2 Duo machine equipped with 8 GB
RAM, Matlab based built-in LM implementation takes about 3
min per slice to fit for all parameters. This time could be signif-
icantly reduced by using a more efficient C++ based LM fitting
method, such as the NAG library (http://www.nag.co.uk),
which can render the model suitable for group studies.
In conclusion, we have developed a new model based on

the fractional order generalization of the Bloch–Torrey equation
that is capable of measuring anisotropy due to anomalous diffu-
sion. In future studies, we plan to test the model using phantoms
with known structural complexity and anisotropy, and to inves-
tigate the utility of using these parameters as a new imaging
biomarker in animal and clinical studies.

APPENDIX

A. Fractional Derivatives

For real values of in the range , the Caputo
fractional derivative is defined as [3]

(A1)

where is the first derivative of . For real values of
in the range , the Riesz fractional derivative is

defined as [3]

(A2)

Using the Fourier transform, a simpler definition of the Riesz
derivative can be stated in the form [5]

(A3)

For example, when , its Fourier transform is
, and then using (A3), it is easy to compute

(A4)

B. Fractional Vector Calculus

In this section, we extend the theory of fractional vector cal-
culus, presented in [32], to allow the order of the fractional
derivative to change with the coordinate direction in an arbitrary
orthogonal coordinate system. The usual model for anisotropic
diffusion is

(A5)

where is a symmetric positive definite matrix (an order 2
tensor). The simplest case is when is , where is a 3 3
identity matrix, and is a scalar, then we can write

(A6)

where is the Laplacian operator.
Since the gradient has Fourier symbol , we can write

as the Fourier transform of where is
the vector Fourier transform of the function in terms of the
wave vector . Then, the Laplacian has the
Fourier symbol . If is a diag-
onal tensor

then has the Fourier symbol

Let the fractional dispersion tensor be a fractional inte-
gration tensor of order . More generally, to allow the order
of the fractional derivative to vary with the coordinate, we can
take to be the operator with Fourier symbol, as shown in
the equation at the bottom of the page. Then, it follows that the
dispersion operator has Fourier symbol

This operator applies a one dimensional fractional Riesz deriva-
tive of a different order in each coordinate. Applying formula
(A4) in each coordinate direction we obtain

(A7)
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C. Multidimensional Fractional Diffusion Equation

In this section, we will define a multidimensional fractional
diffusion equation based on the mathematical notations intro-
duced in Appendixes A and B. Let be the diffusion prop-
agator of the diffusing particles, which represents the proba-
bility of finding a particle at location and time such that

. Assuming that the principal directions
of diffusion coincide with the laboratory coordinates, the new
fractional diffusion equation can be written in the form

(A8)

where is a fractional dispersion tensor as defined in
Appendix B, and is the usual gradient operator. Taking the
Fourier transform of (A8), we obtain

(A9)

where the are dimensionless operational order parameters,
and the are unit preserving space constants. Assuming

, the solution to (A9) is

(A10)

Equation (A10) describes the characteristic function of a mul-
tidimensional operator stable Lévy distribution with indepen-
dent alpha stable distributions in each coordinate, each with a
different stretched exponent. This is more general than the con-
ventional multivariate alpha stable PDF, which applies the same
stretched exponent in all directions. For more details, see [4, Ch.
6].
In order to gain a better understanding of the solution in

(A10), which represents the Fourier transform of the solution
of (A8), we need to take a closer look at the PDF that
underlies the model. For simplicity, we write the characteristic
function in a 2-D form of with oriented in a
rotated coordinate system by an angle in the form

(A11)

where and are scale constants and are the
stretched exponents, and

(A12)

The PDF was numerically evaluated in MATLAB by varying
the five parameters: , and in (A11) and then
the inverse Fourier transform was computed in order to display
its value in the space domain. Note that the rotation matrix used
as the relationship between the and coordi-
nate systems in the Fourier domain can be used to relate the

and coordinate systems in the space domain.

It is clear from Fig. 3 that increasing the scale parameters will
increase the spread in the corresponding direction [(b) compared
to (a)], while lowering one of the stretched exponents will elon-
gate the tail in the corresponding direction [(c) compared to (a)].
Finally the change of the rotation angle will change the principal
axes of the function [(d) compared to (a), (b), and (c)].
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