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Normal and anomalous diffusion of gravel tracer
particles in rivers
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[1] One way to study the mechanism of gravel bed load transport is to seed the bed
with marked gravel tracer particles within a chosen patch and to follow the pattern of
migration and dispersal of particles from this patch. In this study, we invoke the
probabilistic Exner equation for sediment conservation of bed gravel, formulated in
terms of the difference between the rate of entrainment of gravel into motion and the rate
of deposition from motion. Assuming an active layer formulation, stochasticity in
particle motion is introduced by considering the step length (distance traveled by a
particle once entrained until it is deposited) as a random variable. For step lengths with a
relatively thin (e.g., exponential) tail, the above formulation leads to the standard
advection‐diffusion equation for tracer dispersal. However, the complexity of rivers,
characterized by a broad distribution of particle sizes and extreme flood events, can give
rise to a heavy‐tailed distribution of step lengths. This consideration leads to an
anomalous advection‐diffusion equation involving fractional derivatives. By identifying
the probabilistic Exner equation as a forward Kolmogorov equation for the location of a
randomly selected tracer particle, a stochastic model describing the temporal evolution of
the relative concentrations is developed. The normal and anomalous advection‐diffusion
equations are revealed as its long‐time asymptotic solution. Sample numerical results
illustrate the large differences that can arise in predicted tracer concentrations under the
normal and anomalous diffusion models. They highlight the need for intensive data
collection efforts to aid the selection of the appropriate model in real rivers.
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1. Introduction

[2] The stones that make up the bed of gravel bed rivers
are transported as bed load during floods. During periods of
overall transport, each particle undergoes alternating periods
of movement and rest. Movement consists of rolling, sliding
or saltation, which continues until a single step length of
motion is completed. The particle is at rest when it is
deposited, either on the bed or deeper within the deposit.
One way to study the mechanism of bed load transport in
gravel bed rivers is to seed the bed with marked tracer
particles within some small area of the bed (patch), and to
follow the pattern of migration and dispersal of particles
from that patch [e.g., Hassan and Church, 1991; Church

and Hassan, 1992; Wilcock, 1997; Ferguson and Wathen,
1998; Ferguson and Hoey, 2002; Pyrce and Ashmore,
2003]. Tracers provide a way of characterizing not only
mean parameters pertaining to transport, but also the sto-
chasticity of particle motion itself.
[3] This stochasticity was first elaborated by Einstein

[1937]. Einstein based his analysis on experimental
observations of painted tracer particles. He noted that: “The
results demonstrated clearly that even under the same
experimental conditions stones having essentially identical
characteristics were transported to widely varying dis-
tances…Consequently, it seemed reasonable to approach the
subject of particle movement as a probability problem.”
Einstein considered a particle that moves in discrete steps
punctuated by periods of inactivity. He quantified the
problem in terms of the statistics of step length and resting
period (waiting time). Einstein [1942] went on to explain
how these quantities enter into the delineation of macro-
scopic relations of bed load transport (i.e., relations that
represent averages over the stochasticity of sediment motion).
More specifically, Einstein [1942] showed that the bed load
transport rate is proportional to the step length and inversely
proportional to the resting period. Following the seminal work
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of Einstein [1942], many stochastic theories for sediment
transport have been proposed which account for the afore-
mentioned stochasticity [see, e.g., Einstein and El‐Sammi,
1949; Paintal, 1971; Nelson et al., 1995; Cheng and Chiew,
1998; Lopez and Garcia, 2001; Kleinhans and van Rijn,
2002; Cheng, 2004; Cheng et al., 2004; Charru et al., 2004;
Ancey et al., 2006, 2008; Ancey, 2010; Furbish et al., 2009;
Singh et al., 2009; Ganti et al., 2009, and references therein].
[4] Two macroscopic quantities that can be captured by

means of statistical analyses of tracer motion are the overall
tendencies of ensembles of tracers to be advected downstream,
and to disperse, or diffuse. (Various authors use the terms
“dispersion” or “diffusion” of tracers to describe the same pro-
cess: here we rather arbitrarily use the term “diffusion”.) Both
advection and diffusion are governed by a wide range of factors.
[5] Bed load particles may roll, slide or saltate over the

bed. In the case of grains of uniform size, mean saltation
length may be on the order of ten diameters [e.g., Niño and
Garcia, 1998]; whereas mean step length may be on the
order of 100 grain diameters [Einstein, 1950; Tsujimoto,
1978; Wong et al., 2007]. Einstein [1950] suggested that
mean step length can be approximated as a constant multiple
of grain diameters, whereas Wong et al. [2007] indicate a
weak variation with Shields number, which is a proxy for
flow strength. Step length is known, however, to vary sto-
chastically [e.g., Tsujimoto, 1978]. As illustrated below, this
stochasticity is one source of diffusion.
[6] When a particle comes to rest, it may deposit so as to

be exposed at the bed surface, or it may become buried at
depth [e.g., Hassan and Church, 1994]. From a statistical
point of view, deeper burial in general implies a longer
resting time before exhumation and reentrainment. This
effect can influence both diffusion and advection [Ferguson
and Hoey, 2002]. Most natural gravels consist of a mixture
of grain sizes, each of which undergoes steps and resting
periods according to size‐specific probabilities. For exam-
ple, Tsujimoto [1978] has shown that larger grains in a
mixture have longer step lengths, but also longer resting
times. As these different sizes move downstream, their
motion is affected by the presence of bed forms such as
dunes [e.g., Blom et al., 2006], bars and bends associated
with channel meandering/braiding [e.g., Pyrce and Ashmore,
2003], and large‐scale variations in channel width. In addi-
tion, the bed may be undergoing aggradation, which
enhances the capture of bed load particles, or degradation,
which causes the exhumation of grains that have undergone
long‐term storage [e.g., Ferguson and Hoey, 2002]. Grains
can also enter floodplain storage for long periods of time, and
then be exhumed as the channel migrates into the relevant
deposit [e.g., Bradley, 1970; Lauer and Parker, 2008a,
2008b]. Again, all these effects can influence the advection/
diffusion of tracer particles.
[7] The macroscopic transport of grains undergoing steps

and rest periods governed by statistical laws can be most
simply characterized in terms of the classical advection‐
diffusion model, according to which the particles spread
downstream with a constant diffusivity. When step lengths
and rest periods are governed by amultiplicity of mechanisms
over a very wide range of spatial and temporal scales,
however, the advection/diffusion of tracer particles may no
longer be characterizable in terms of the classical model. It
is widely known in the groundwater literature that a mul-

tiplicity of scales over which transport takes place can lead
to “anomalous diffusion”, for which the advection/diffusion
equation can be characterized by fractional derivatives [e.g.,
Benson, 1998; Berkowitz et al., 2002; Cushman and Ginn,
2000; Schumer et al., 2003].
[8] Nikora et al. [2002] have studied the diffusion of bed

load particles using the measured motion of individual
particles in a canal as the basis for ensemble averaging.
They extracted from their data various statistical moments
characterizing particle location as a function of time. They
delineated three ranges of temporal and spatial scales, each
with different regimes of diffusion: ballistic diffusion (at the
scale of saltation length), normal/anomalous diffusion (at a
scale of step length) and subdiffusion (at global scale). Their
study thus represents a pioneering effort in the identification
of anomalous diffusion of bed load particles.
[9] We develop here a theoretical model for the study of

anomalous diffusion of tracer particles moving as bed load.
The present model is not intended to be comprehensive, in
that it covers only a restricted set of phenomena that might
lead to anomalous diffusion. It is our desire, however, that
this first model should serve as an example illustrating the
pathway to more general models of anomalous diffusion.
[10] The paper is structured as follows. In section 2, a

straightforward formulation of the Exner equation for sedi-
ment conservation is presented which incorporates the
probability density function (pdf) for step lengths, i.e., the
distances traveled by particles once they are entrained until
when they are deposited again on the river bed. In section 3
we show that the assumption of step lengths having a dis-
tribution with thin tails (e.g., exponential, normal, lognormal
distributions) leads to a classical advection‐diffusion equa-
tion for tracer dispersal. However, in real rivers the com-
plexity resulting from broad distributions of particle sizes
and flood events can lead to a heavy tail in the pdf of step
lengths (arising, for example, from the combination of an
exponential distribution for step length conditional on a
particle size and a gamma distribution of particle sizes). In
section 4, we show that this consideration leads to an
anomalous advection‐diffusion formulation which includes
fractional derivatives. That model was introduced earlier in
the context of other problems, such as dispersion of con-
taminants in the subsurface. Section 5 shows how a heavy‐
tailed step length distribution can arise from a thin‐tailed
(exponential) pdf of step length for particles of a given
size, together with a thin‐tailed grain size distribution. In
section 6, we build a stochastic model to describe the time
evolution of the relative concentration of the tracers in the
active layer, and show that the approximate solutions
obtained in sections 3 and 4 are long‐time asymptotic solu-
tions of the derived model. Finally, in section 7, numerical
results are presented showing the difference between normal
and anomalous advection‐diffusion of gravel tracer particles.

2. Formulation

[11] The starting point for our analysis is the entrainment‐
based one‐dimensional Exner equation for sediment balance
[Tsujimoto, 1978; Parker et al., 2000; Garcia, 2008]:

1� �p

� � @� x; tð Þ
@t

¼ Db x; tð Þ � Eb x; tð Þ ð1Þ
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where h denotes local mean bed elevation, t denotes time, x
denotes the downstream coordinate, Db denotes the volume
rate per unit area of deposition of bed load particles onto the
bed, Eb denotes the volume rate per unit area of entrainment
of bed particles into bed load, and lp is the porosity of bed
sediment. We assume that, once entrained, a particle
undergoes a step with length r before depositing. We further
assume that this step length is probabilistic, with a proba-
bility density fs(r) (pdf of step length). The deposition rate of
tracers Db(x, t) is then given as

Db x; tð Þ ¼
Z 1

0
Eb x� r; tð Þfs rð Þdr ð2Þ

In the above formulation Eb is a macroscopically determined
parameter, which can be shown to vary inversely with the
mean resting time of a particle. The formulation thus
includes the effect of stochasticity in step length, but not in
resting time.
[12] A model formulation for tracers that simplifies the

above mentioned model of entrainment and deposition is the
active layer formulation. According to this formulation,
grains in an active bed layer of thickness La below the local
mean bed surface exchange directly with bed load grains.
Grains below the active layer, i.e., grains in the substrate,
exchange with the active layer only by means of bed
aggradation (when active layer grains are transferred to the
substrate) and degradation (when substrate grains are trans-
ferred to the active layer). In such a model, substrate grains
do not directly exchange with the bed load grains.
[13] Let fa(x, t) denote the fraction of tracer particles in

the active layer at any location x and time t. In addition, let
fI(x, t) denote the fraction of tracer particles in the sediment
that is exchanged across the interface between the active
layer and the substrate as the bed aggrades or degrades.
The equation of mass conservation of tracers can then be
written as

1� �p

� �
fI x; tð Þ @� x; tð Þ

@t
þ La

@fa x; tð Þ
@t

� �
¼ DbT x; tð Þ � EbT x; tð Þ

ð3Þ

where EbT denotes the volume entrainment rate of tracers
and DbT denotes the corresponding deposition rate, which
are given as [Parker et al., 2000]

EbT x; tð Þ ¼ Eb x; tð Þfa x; tð Þ ð4Þ

DbT x; tð Þ ¼
Z 1

0
Eb x� r; tð Þfa x� r; tð Þfs rð Þdr ð5Þ

Here we exclude the complication induced by bed forms
such as dunes [e.g., Blom et al., 2006] by considering
conditions of lower regime plane bed transport, such as
those investigated by Wong et al. [2007].
[14] The fraction fI of tracers exchanged at the interface as

the mean bed elevation fluctuates can be expected to differ
depending upon whether or not the bed is aggrading or
degrading. Hoey and Ferguson [1994] and Toro‐Escobar et
al. [1996] have suggested forms for interfacial exchange

fractions which can be adapted to the problem of tracers.
Here we restrict consideration to the case for which the
bed elevation is at equilibrium, so that La, Eb, h and the
pdf fs(r) are all constant in x and t. Under this condition,
equations (3), (4), and (5) reduce to

1� �p

� � La
Eb

@fa x; tð Þ
@t

¼
Z 1

0
fa x� r; tð Þfs rð Þdr � fa x; tð Þ ð6Þ

The nature of the pattern of tracer diffusion predicted by
equation (6) depends on the nature of the pdf fs(r) of step
lengths. As shown in sections 3 and 4, a thin‐tailed pdf, i.e.,
one for which all moments of fs(r) exist, leads to a classical
Fickian advection‐diffusion equation, while a heavy‐tailed
pdf, i.e., one for which moments larger than a given order
do not exist, can lead to an anomalous advection‐diffusion
equation.

3. Tracer Transport With Thin‐Tailed Step
Length Distribution

[15] In this section, we show that a thin‐tailed pdf for the
step length distribution, fs(r), in equation (6) leads to a
classical Fickian (normal) advection‐diffusion equation. For
simplicity, we assume the porosity to be zero, i.e., lp = 0.
The simplest way to solve the integral equation (6) is to use
Fourier transforms, since the convolution becomes a product
in Fourier space. The Fourier transform of a function fa(x, t)
is given by

f̂a k; tð Þ ¼
Z 1

�1
e�ikxfa x; tð Þ dx ð7Þ

Taking the Fourier transforms in equation (6) and manipu-
lating yields

La
Eb

@ f̂a k; tð Þ
@t

¼ f̂s kð Þ � 1
� �

f̂a k; tð Þ ð8Þ

Expanding the Fourier transform of fs(r) as a Taylor series
gives

f̂s kð Þ ¼ 1� ik�1 þ 1

2
ikð Þ2�2 þ � � � ð9Þ

where mn =
R
rn fs(r) dr denotes the nth order moment of the

step length distribution. The above expansion is valid pro-
vided that the moments mn exist and are finite, and the series
converges uniformly in a neighborhood of k = 0 [Papoulis
and Pillai, 2002]. Substituting equation (9) into (8) we obtain

La
Eb

@ f̂a k; tð Þ
@t

¼ �ik�1 þ 1

2
ikð Þ2�2 þ � � �

� �
f̂a k; tð Þ ð10Þ

Recall that (ik)f̂ a(k, t) is the Fourier transform of ∂fa(x, t)/∂x.
By making the approximation that higher‐order terms can be
neglected (which will be shown equivalent, in section 6, to
considering a long‐time asymptotic solution), and by setting
v = m1 and 2Dd = m2, it follows by an inverse Fourier
transform that the function fa(x, t) is the approximate solu-
tion to the advection‐diffusion equation:

La
Eb

@fa
@t

¼ �v
@fa
@x

þ Dd
@2fa
@x2

ð11Þ
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This is the standard form of the advection‐diffusion equa-
tion for tracer dispersal, and applies under equilibrium bed
load conditions where v and Dd can be considered constant.
The associated Green’s function, i.e., the solution to the
above equation with a pulse as the initial condition at t = 0,
is the Gaussian distribution, which describes the tracer
concentration at any given time t > 0. If the source is dis-
tributed in space and/or time, the solution to equation (11) is
the convolution of the Green’s function with the source.

4. Tracer Transport With Heavy‐Tailed Step
Length Distribution

[16] As detailed in section 5, a heavy‐tailed, power law
distribution for step lengths in gravel bed rivers can result
from a thin‐tailed pdf of step length for particles of a given
size, together with a thin‐tailed pdf of grain sizes. In this
section, we develop a formalism that incorporates heavy
tails for the step length distribution into the probabilistic
Exner equation. In equation (6), consider fs(r) to be a step
length distribution with power law decaying tail, i.e., fs(r) ≈
Car−a−1 for r > 0 sufficiently large, some constant C > 0,
and some power law index 1 < a < 2. In this case, the
Fourier transform expansion (9) in terms of statistical
moments of fs(r) is not valid, as the integrals mn =

R
rnfs(r)dr

do not converge for n > 1 [e.g., Lamperti, 1962]. Instead, we
may use a fractional Taylor expansion to write [Odibat and
Shawagfeh, 2007; Wheatcraft and Meerschaert, 2008]

f̂s kð Þ ¼ 1� ik�1 þ c� ikð Þ�þ � � � ð12Þ

where ca is a constant that depends only on C and a. Sub-
stituting back into equation (8) we obtain

La
Eb

@ f̂a k; tð Þ
@t

¼ �ik�1 þ c� ikð Þ�þ � � �ð Þf̂a k; tð Þ ð13Þ

Equation (13) can be understood in terms of fractional
derivatives. Fractional derivatives are close cousins of
their integer order counterparts. The fractional derivative
∂afa(x, t)/∂xa can be defined simply as the function whose
Fourier transform is (ik)af̂ a(k, t). As in the normal advection‐
diffusion case, we make an approximation by including the
first two terms in the expansion and neglecting the higher‐
order terms (shown equivalent in Appendix A to a long‐time
asymptotic solution). Then by setting v = m1 and Dd = ca, it
follows from (13) that the function fa(x, t) is approximately
the solution of the fractional advection‐diffusion equation:

La
Eb

@fa
@t

¼ �v
@fa
@x

þ Dd
@�fa
@x�

ð14Þ

Fractional advection‐diffusion has been extensively used in
modeling the dispersal of tracers or pollutants in porous
media which exhibit multiple scales of variability, as in
subsurface transport [e.g., Benson et al., 2000a, 2000b;
Berkowitz et al., 2002] and pollutant transport in rivers [e.g.,
Deng et al., 2005, 2006]. However, to the best of our
knowledge, its application has not yet been explored in the
context of river transport, apart from a recent study which
uses fractional advection for transporting sediment in buff-
ered bedrock rivers [Stark et al., 2009] and the study of
Bradley et al. [2010] for dispersion of tracers in sand bed

rivers (see also Foufoula‐Georgiou and Stark [2010] for an
overview of recent applications of fractional transport for
modeling Earth‐surface processes).
[17] In most natural rivers, the distribution of step lengths

holds in the near field, but eventually transport steps become
limited by river features (e.g., bars) that change the inter-
mediate and far field distributions. The application of the
governing equations (11) and (14) depends on the natural
truncation of the step length distributions. If the truncation
occurs at a very small threshold, then the Central Limit
Theorem applies and a standard advection‐diffusion equa-
tion will be the governing equation for the fraction of tracers
in the active layer. However, if the truncation occurs at a
large threshold, then the distribution can still be approxi-
mated by a power law in the intermediate field and the
governing equation for the fraction of tracers in the active
layer is the fractional advection‐diffusion equation. It is
worth noting that equation (14) is the governing equation on
scales where the power law approximation of the step length
distribution is accurate. In section 5, we explain how a power
law distribution for step lengths could emerge by combining
a thin‐tailed pdf of step length for particles of a given size
with a thin‐tailed pdf of grain sizes. Then in section 6 we
describe the stochastic model underlying the probabilistic
Exner equation (6), and we show how equations (11) and
(14) represent long‐time asymptotic solutions.

5. Transport of Sediment Mixtures

5.1. Generalized Exner Equation

[18] A generalization of equation (6) for a range of grain
sizes D can be expressed as follows. Let fad (x, t, D) denote
the fraction of tracers in the active layer with grain size D, so
that

fa x; tð Þ ¼
Z 1

0
fad x; t;Dð ÞdD ð15Þ

In addition, let Ebu(D) denote the entrainment rate per unit
bed content of size D. The generalization of equation (6) is
then [e.g., Parker, 2008]

1� �p

� �
La

@fa x; t;Dð Þ
@t

¼ Ebu Dð Þ
Z 1

0
fad x� r; t;Dð Þfs rjDð Þdr

�
�fad x; t;Dð Þ

�
ð16Þ

In the above formulation, the conditional pdf of step length
fs is specified as a function of grain size, but the thickness of
the active layer La is taken to be a constant for all grain
sizes. The form corresponding to equation (6) is obtained by
integrating over all grain sizes

1� �p

� �
La

@fa x; tð Þ
@t

¼
Z 1

0
Ebu Dð Þ

Z 1

0
fad x� r; t;Dð Þfs rjDð Þdr � fad x; t;Dð Þ

� �
dD

ð17Þ

In general, Ebu and fad can both be expected to vary sig-
nificantly with D. Closure of equation (17) requires speci-
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fication of forms for Ebu and fad as functions of, among other
parameters, grain size D. Such forms are available in the
literature [e.g., Tsujimoto, 1978].
[19] The goal of the present analysis is, however, to study

the role of heavy‐tailed pdfs for step lengths in driving the
diffusion of tracer particles. With this in mind, the problem
is simplified for the purposes of illustration to one in which
fad varies in D but Ebu does not. More specifically, by
assuming independence of grain size D on space‐time loca-
tion (x, t), one can write fad(x, t, D) = fa(x, t)f (D). Then
unconditioning of fs(r∣D) with respect to the grain size pdf
f (D) in equation (17) is used to develop the Exner equation
for a grain size mixture. In section 5.2, we show that a heavy‐
tailed pdf for step lengths in amixture of particles can emerge,
under certain conditions, from two thin‐tailed pdfs.

5.2. Power Laws Emerging From Thin Tails

[20] A typical finding in sediment transport is that step
lengths r are exponentially distributed for a given grain size
D [e.g., Nakagawa and Tsujimoto, 1976, 1980]:

P R > r jDð Þ ¼ e�r=�r Dð Þ ð18Þ

where mr(D) is the mean step length as a function of grain
size D. If we let f denote the pdf of grain sizes, then the
unconditional distribution of step length can be derived from

P R > rð Þ ¼
Z 1

0
e�r=�r Dð Þ f Dð Þ dD ð19Þ

The resulting pdf for step length, relating to a mixture of
particle sizes, depends on both the mean step length mr(D)
for grains of size D, and the pdf of grain sizes.
[21] In this study we explore two distinct cases, one in

which mr(D) increases with grain size, and another for which
mr(D) decreases with grain size. The true dependence of
mean step length on grain size in sediment mixtures remains
somewhat ambiguous. In the case of uniform sediment,

Niño and Garcia [1998] found that grain saltation length
decreases with increasing grain size. One step length,
however, typically consists of around 10 saltation lengths.
Hassan and Church [1992] have studied the travel distance
of size mixtures of stones in gravel bed rivers, and have
found a marked tendency for travel distance to decrease with
increasing grain size. This result must be qualified in light of
the fact that the distance traveled by a grain during a flood
can be expected to be associated with multiple step lengths.
This qualification notwithstanding, the data suggest a range
of conditions under which the dependence between grain
size and mean travel distance can be approximated by the
simplified model:

�r Dð Þ ¼ �=D ð20Þ

where � is a constant. A lognormal pdf of grain sizes

f Dð Þ ¼ 1

D�
ffiffiffiffiffiffi
2�

p e�
1
2
lnD��ð Þ2

�2 ð21Þ

was invoked byWilcock and Southard [1989],Garcia [2008],
Lanzoni and Tubino [1999], Parker [2008], where m, s are
the mean and standard deviation of the sedimentological
scale y = ln D. The overall (unconditional) step length
distribution can then be obtained, in principle, by substituting
equations (20) and (21) into equation (19) and computing the
integral. However, this integral is difficult to compute ana-
lytically with a lognormal form for f(D). Figure 1 shows the
grain size data fromWilcock and Southard [1989] along with
a lognormal fit, as well as an alternative gamma distribution
fit to the same data. The gamma pdf

f Dð Þ ¼ 		

� 	ð ÞDm
	 D

	�1 exp �	
D

Dm

� �
ð22Þ

with mean Dm and shape parameter n provides a convenient
alternative to the lognormal distribution that makes it pos-

Figure 1. Plot showing fitted lognormal (dashed line) and gamma (solid line) distributions to a grain size
distribution (solid points) reproduced from Wilcock and Southard [1989].
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sible to analytically evaluate the integral (19). Following the
argument of Stark et al. [2009], we substitute equations (20)
and (22) into equation (19) and evaluate the integral to obtain
the unconditional probability distribution of step length:

P R > rð Þ ¼ 1þ Dm

	�

� �
r

� ��	

ð23Þ

Equation (23) represents a heavy‐tailed power law pdf for the
step length distribution arising from a thin‐tailed pdf of step
length combined with a thin‐tailed pdf of grain sizes. The
distribution in equation (23) is known as the Generalized
Pareto distribution, and its variance exists only when the
shape parameter n > 2 [Feller, 1971]. The Generalized Pareto
distribution also arises from exceedances over a fixed high
threshold, and has consequently been used in modeling
extreme floods and other hydrological phenomena [e.g.,
Hosking and Wallis, 1987].
[22] The relationship (20) between mean step length and

grain size may not be applicable in all situations. Depending
upon the grain size distribution and the flow conditions,
large particles may roll over holes that trap smaller particles,
so that step length increases with grain size. Such a tendency
has been reported in the experiments of Tsujimoto [1978].
Also, Wong et al. [2007] observed that, in the case of uni-
form sediment subject to the same bed shear stress, step
length increases with grain size. Such an increase in step
length does not directly translate into a higher bed load
transport rate for coarser grains, because the entrainment
rate Ebu(D) in equation (17) may decline with increasing
grain sizes. In the present simplified analysis, where Ebu is
assumed to be independent of grain size, the tendency for
step length to increase with grain size can be captured in
terms of the following simple form:

�r Dð Þ ¼ �D ð24Þ

where � is a constant.
[23] If D has an inverse gamma pdf with mean Dm and

shape parameter n, also similar in shape to the lognormal,

f Dð Þ ¼ 	 � 1ð Þ	Dm
	

� 	ð Þ D�	�1 exp � 	 � 1ð ÞDm

D

� �
ð25Þ

then a change of variables y = 1/D in (19) leads to another
generalized Pareto:

P R > rð Þ ¼ 1þ 1

	 � 1ð ÞDm�

� �
r

� ��	

ð26Þ

as shown by Hill et al. [2010], so that again the step length
distribution averaged over all particle sizes has a heavy tail.
[24] Note that in both cases considered above, whether

mean step length increases or decreases with grain size, a
heavy‐tailed distribution for step lengths can emerge from a
combination of two thin‐tailed distributions. The gamma
and inverse gamma distributions are used for particle sizes,
as opposed to the more typical lognormal distribution, in
order to derive analytically the heavy‐tailed pdf of the
resulting step length distribution for a mixture of grain sizes.
The alternative pdf assumption should be considered rea-
sonable if the reader accepts that the fitted lognormal and
gamma distributions for the grain size data from Wilcock

and Southard [1989] in Figure 1 are practically indistin-
guishable. We hasten to emphasize, however, that the
finding of a possible heavy‐tailed pdf for step length is by
no means universal. Many different choices of the grain size
pdf f(D) would certainly lead to a thin‐tailed pdf of step
length. Our point is simply that both thin‐ and heavy‐tailed
models are reasonable, and hence it becomes very important
to investigate the grain size distributions more exhaustively,
to determine which type of overall step length pdf applies in
a given situation.

6. Stochastic Model for Gravel Transport in
Rivers

[25] In this section, we develop a stochastic model to
describe the time evolution of the relative concentration of
gravel tracer particles in rivers. We derive an exact solution
for fa(x, t) and show that, in the long‐time asymptotic limit,
a thin tail for the step length distribution leads to classical
advection‐diffusion, whereas heavy tails for the step length
distribution leads to anomalous advection‐diffusion. We
start by rewriting (6) in the equivalent form:

@fa x; tð Þ
@t

¼ ��fa x; tð Þ þ �

Z 1

0
fa x� r; tð Þfs rð Þ dr ð27Þ

where l = Eb/La is the rate at which particles are entrained.
The Fourier transform of the above equation is given by

@ f̂a k; tð Þ
@t

¼ ��f̂a k; tð Þ 1� f̂s kð Þ
� �

ð28Þ

Equation (27) describes the time evolution of the pdf fa(x, t)
and can be regarded as a Kolmogorov forward equation for
some Markov process X(t), where X(t) represents the loca-
tion of a randomly selected gravel particle at time t > 0 [see
Feller, 1971]. In this context, fa(x, t) is the pdf of the random
variable X(t). In this Markov process, the waiting time
between entrainments has an exponential distribution with a
rate parameter l, and the number of entrainment events,
N(t), by any time t > 0 has a Poisson distribution with
mean lt [Feller, 1971]:

P N tð Þ ¼ n½ � ¼ e��t �tð Þn
n!

ð29Þ

Let Yn denote the travel distance during the nth entrain-
ment period. Since there are N(t) entrainment periods by
time t > 0, the particle location at some time t > 0 is given by
the random sum

X tð Þ ¼ Y1 þ � � � þ YN tð Þ ¼
XN tð Þ

i¼1

Yi ð30Þ

This random sum is a compound Poisson process [e.g.,Feller,
1971]. Its pdf can be derived directly from equation (28)
whose point source solution is

f̂ a k; tð Þ ¼ exp ��t 1� f̂s kð Þ
� �� �

ð31Þ
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As a result, the fraction of tracers in the active layer, fa(x, t),
can be obtained by taking the inverse Fourier transform of
(31) and is given by

fa x; tð Þ ¼ e��t
X1
n¼0

�nð Þn
n!

f n*s xð Þ ð32Þ

where fs
n*(x) is the n fold convolution of the density function

fs(x) (recall that fs
n*(x) is the inverse Fourier transform

of f̂ s(k)
n), which is also the pdf of Y1 + � � � + Yn. One

way to understand this formula for fa(x, t) is that it rando-
mizes the density of the sum of the particle movements
according to the pdf of the number of jumps N(t). The
random sum, equation (30), is a special case of a continuous
time random walk (CTRW) [Montroll and Weiss, 1965;
Scher and Lax, 1973;Meerschaert and Scheffler, 2004]. It is
important to note that the connection of the probabilistic
Exner equation with CTRWs allows one to obtain the
exact solution of equation (27) via simulation of the tracer
particle motion. For example, a forward Kolmogorov equa-
tion of a Markov process can be solved by simulating a
CTRW with an exponential waiting time distribution and
step length distribution fs(r) [e.g., Scalas et al., 2004; Fulger
et al., 2008]. Even if the complete shape of the pdf of step
lengths is not known, the behavior of the stochastic process
X(t) is well defined in the long‐time limit as shown below.
[26] Consider the following standardized particle location:

Z tð Þ ¼ X tð Þ � ��1tffiffiffiffiffiffiffiffiffi
��2t

p ð33Þ

This random process has a mean 0 and variance 1 at every
time t > 0. An easy calculation shows that the pdf of Z(t) has
Fourier transform:

f̂a
kffiffiffiffiffiffiffiffiffi
��2t

p ; t

� �
exp

ik��1tffiffiffiffiffiffiffiffiffi
��2t

p
� �

ð34Þ

Combining this equation with

f̂a k; tð Þ ¼ exp ��t ik�1 � 1

2
ikð Þ2�2 þ � � �

� �� �
ð35Þ

which is obtained by substituting equation (9) into
equation (31) results in the Fourier transform of the pdf of
Z(t) taking the form

exp ��t � 1

2

ikð Þ2
��2t

�2 þ 1

3!

ikð Þ3
��3tð Þ32

�3 þ � � �
 ! !

ð36Þ

As t → 1, (36) tends to exp (−1
2k

2) which is the Fourier
transform of a standard normal density. This shows that
Z(t) tends to a standard normal deviate, Z, for large times t.
Substituting into equation (33) and solving, we see that the
long‐time asymptotic solution for the particle location is

X tð Þ � ��1t þ
ffiffiffiffiffiffiffiffiffi
��2t

p
Z ð37Þ

By taking the Fourier transforms of the corresponding pdfs
we obtain

f̂a k; tð Þ ¼ exp ���1t ikð Þ þ 1

2
��2t ikð Þ2

� �
ð38Þ

which is the point source solution to the differential
equation

@ f̂a x; tð Þ
@t

� ���1 ikð Þ þ 1

2
��2 ikð Þ2

� �
f̂a k; tð Þ ð39Þ

Inverting this Fourier transform yields the advection‐
diffusion equation (11) with v = lm1 and 2Dd = lm2, as in
section 3. In summary, equation (11) governs the asymptotic
particle density in the long‐time limit.
[27] Now consider the case of a particle jump length

density with a heavy tail. A similar argument shows that
equation (14) governs the asymptotic particle density in the
long‐time limit, when the particle jump length density fs(r)
has a heavy tail with a power law decay, i.e., fs(r) ≈ Car−a−1

for r > 0 sufficiently large, some constant C > 0, and some
power law index 1 < a < 2 (see Appendix A for a detailed
proof). In this case, we note that the governing equation in
the long‐time asymptotic limit for f̂ a(k, t) is given by

@ f̂a k; tð Þ
@t

� ���1 ikð Þ þ �c� ikð Þ�ð Þf̂a k; tð Þ ð40Þ

Inverting the Fourier transform yields the fractional advec-
tion‐diffusion equation (14) with v = lm1 and Dd = lca, as
in section 4. We remark that, while the derivation in this
section is new in the context of stone tracer dispersion, a
similar approach was taken to derive the fractional advec-
tion‐diffusion equation for tracers in groundwater, under a
different set of assumptions [Schumer et al., 2001]. Section
7 provides a numerical demonstration to illustrate how a
source of tracers will disperse over time under normal or
anomalous diffusion.

7. Tracer Dispersal Under Normal and
Anomalous Diffusion

[28] Consider a patch of tracers entrained instantaneously
in the flow at a location x0 and initial time t0. This patch will
advect and diffuse on the gravel bed over time. It is useful to
track the time evolution of the fraction of tracers fa(x, t) in
the active layer at any location x and time t. As was shown
in sections 3 and 4, the probabilistic Exner equation can be
approximated at late time by a normal or anomalous diffu-
sion, equations (11) and (14) respectively, depending on the
pdf of step length. In this section we illustrate the time
evolution of a patch of tracers under normal and anomalous
advection‐diffusion. We know from theory that the Green’s
function solution to the normal advection‐diffusion equation
is the Gaussian distribution, and the Green’s function
solution to the fractional advection‐diffusion is the a‐stable
distribution [Benson et al., 2000b]. The a‐stable distribu-
tions are also known as Lévy distributions. Specifically, in
our case, the Green’s function solution to the fractional
advection‐diffusion equation is an a‐stable distribution with
a skewness parameter b = 1, owing to the fact that step
lengths are positive, so that the stable pdf has a heavy
leading tail (see Appendix B for a description of stable
distributions) [Podlubny, 1999]. Figure 2a shows the evo-
lution of fa(x, t) under normal advection‐diffusion from a
pulse at t = 0 and x = 0, i.e., fa(0, 0) = 1. Figure 2b shows the
evolution of fa(x, t) under anomalous advection‐diffusion
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with a = 1.5 from a pulse at x = 0. The a‐stable densities in
Figures 2a and 2b were simulated using the method of
Nolan [1997]. In this hypothetical experiment, we chose the
parameter values of the normal and anomalous diffusion
equations to be unity, i.e., v = 1 m/day and Dd = 1 ma/day.
Note that the units of the diffusion coefficient, Dd, is [L

a/T].
As can be seen by comparing Figures 2a and 2b, anomalous
advection‐diffusion predicts a faster spreading of tracers
downstream (heavy leading tails). For example, the leading
tails of the fraction of tracers at t = 100 reaches a near‐zero
value at ∼50 m downstream of its mean in normal advection‐
diffusion, whereas it reaches this value at ∼200 m down-
stream of its mean in fractional advection‐diffusion with a =
1.5. The mean of fa(x, t) in both cases is the same. It is worth
noting that both the Gaussian pdf, and the skewed stable
pdf, assign some extremely small but mathematically non-
zero probability to the interval left of the particle source,

while the probabilistic Exner equation assigns zero proba-
bility to that interval. This illustrates the fact that both the
Gaussian and skewed stable pdfs are only approximations to
the relative concentration of tracer particles. However, the
probability assigned to the interval left of the particle source
is exceedingly small, since both the Gaussian and skewed
stable pdfs fall off at a superexponential rate on the left tail
[Zolotarev, 1986], and this approximation is perfectly rea-
sonable in practice.
[29] As seen in section 6, under equilibrium bed load

transport conditions, the long‐time asymptotic solutions of
the probabilistic Exner equation converge to the normal and
anomalous advection‐diffusion equation depending on the
pdf of the step length. Therefore, long‐time asymptotic
solutions of the probabilistic Exner equation are the
Gaussian and a‐stable distributions in the respective cases
of thin or heavy tailed pdfs for step length. In Figure 3 we

Figure 2. Time evolution of the fraction of tracers in the active layer, fa(x, t), by (a) normal advection‐
diffusion (a = 2) and (b) anomalous advection‐diffusion with a = 1.5. Note that the advection term has
been removed to facilitate comparison of the dispersion of the tracers at different times. The initial con-
dition is a pulse at x = 0. The solutions are obtained with parameters v = 1 m/day and Dd = 1 ma/day. The
times (in days) at which the solutions are obtained are labeled.
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compare the long‐time asymptotic solutions for several
values of a, starting from a = 2 (Gaussian corresponding to
the solution of normal advection‐diffusion equation) to a =
1.1. One can easily see the marked difference in the dis-
persal of tracers downstream in normal and anomalous
advection‐diffusion. For example, after 500 days, only ∼5%
of the tracers have been recovered at ∼550 m in standard
advection‐diffusion, whereas ∼8% and ∼18% of tracers are
recovered at the same distance in fractional advection‐
diffusion for a = 1.5 and a = 1.1, respectively. In the case of
a = 1.1 the gravel tracer particles are transported very long
distances downstream when compared with the normal
advection‐diffusion case (a = 2). The parameter a of the
fractional advection‐diffusion relates to the heaviness of the
tail of the pdf of particle step lengths, in effect determining
how far downstream the tracers disperse from the source. In
practice, the parameter a will have to be estimated from
observations which typically will not be in the form of step
lengths but in the form of “breakthrough curves” or pdfs of
particle concentration at a given location downstream of the
source. Tracer experiments in a large experimental flume are
currently under development to document the possibility of
faster than normal diffusion of tracers and the estimation of
the parameter a.

8. Conclusions

[30] In this work, a mathematical framework for the
continuum treatment of tracer particle dispersal in rivers has
been proposed, based on the probabilistic Exner equation.
We have shown that when the step length distribution is thin
tailed, the governing equation for the tracer dispersal in the
long‐time limit is given by the standard advection‐diffusion
equation. However, the step length distributions can be
heavy tailed with power law decay arising from heteroge-
neity in grain sizes and other complexities in real gravel bed
rivers (similar arguments of heterogeneity in hillslope
forming processes leading to a heavy‐tailed step length

distribution was used by Foufoula‐Georgiou et al. [2010] to
develop a fractional diffusive model for sediment transport
on hillslopes). It was shown that these heavy tails can be
modeled using fractional derivatives, akin to contaminant
transport in subsurface hydrology [e.g., Benson, 1998;
Benson et al., 2000a, 2000b; Berkowitz et al., 2002]. For a
simplified active layer formulation, the probabilistic Exner
equation was shown to be governed by a Markov process
that describes the tracer dispersal problem. Further, it was
shown that the classical (normal) advection‐diffusion and
fractional (anomalous) advection‐diffusion equations arise
as long‐time asymptotic solutions of that stochastic
model. A numerical example was then provided to illustrate
the profound effect of fractional diffusion on the leading
edge of the particle distribution.
[31] The material presented here is intended to serve as an

introduction to the problem of anomalous diffusion in the
context of transport in gravel bed rivers. The full power of
the techniques introduced here remains to be realized
through future research. For example, the innate variability of
rivers is such that the entrainment rate Eb and bed elevation
h are unlikely to be constant in x and t. This variability can
lead to long‐term sequestration, and subsequent long‐
delayed exhumation of tracers. Parker et al. [2000] and
Blom et al. [2006] have shown how the Exner equation (1)
can be generalized to a formulation that assigns a probabi-
listic structure not only to step length, but also to the
probabilities of entrainment and deposition as continuously
varying functions of vertical position within the bed deposit.
These complications can lead to anomalous subdiffusion if
particle resting times have a heavy, power law tail. A model
that can explain the deposition and exhumation of particles
at arbitrary depth, including variability in entrainment rate
and bed elevation as well as grain size, has the potential to
explain at least part of the tendency for a decrease in
advection velocity over time described by Ferguson and
Hoey [2002]. One possible approach to modeling anoma-
lous subdiffusion caused by power lawwaiting times between

Figure 3. Long‐time asymptotic solutions of the anomalous advection‐diffusion equation for three dif-
ferent values of a. The solutions shown above are for 500 days after a patch of tracers is entrained into the
flow. Normal advection‐diffusion corresponds to a = 2.
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particle movements is by using fractional time derivatives, as
discussed in the paper of Schumer and Jerolmack [2009] in
this volume in the context of interpreting geological deposi-
tion records. The anomalous advection‐diffusion model
proposed herein, as well as further extensions to accom-
modate additional stochastic elements of transport as dis-
cussed above, will require extensive experiments and data
collection to directly verify the nature of the distribution of
step lengths, waiting times and entrainment rates of parti-
cles in order to select the most appropriate model for
transport.

Appendix A: Long‐Time Asymptotics
for Heavy‐Tailed Distributions

[32] The standardized particle location cannot be
expressed using equation (33) when the step length distri-
bution has a heavy tail, because the second moment m2 of
the distribution fs(r) does not exist, i.e., the population
variance is infinite while the sample variance diverges
unstably as the number of samples increases [Lamperti,
1962]. Instead, we consider the normalized process:

S tð Þ ¼ X tð Þ � ��1t

�c�tð Þ1�
ðA1Þ

The pdf of S(t) has the Fourier transform:

f̂a
k

�c�tð Þ1�
; t

 !
exp

ik��1t

�c�tð Þ1�

 !
ðA2Þ

Substitution of equation (12) into equation (31) results in

f̂a k; tð Þ ¼ exp ��t ik�1 � c� ikð Þ��d� ikð Þ2�þ � � �
� �� �

ðA3Þ

which combined with (A2) gives the left‐hand side of the
equation (A4) for the Fourier transform of the PDF of S(t).
In the long‐time limit, i.e., as t→1 this tends to the limit in
the right‐hand side below:

exp �t c�
ikð Þ�
�c�t

þ d�
ikð Þ2�
�c�tð Þ2 þ � � �

 ! !
! exp ikð Þ�ð Þ ðA4Þ

since the higher‐order terms tend to zero as t → 1. This
limit is the Fourier transform of a standard stable density,
and the limit argument is closely related to the convergence
criterion for compound Poisson random variables (see
Meerschaert and Scheffler [2001, chapter 3] for more details
and extensions). Hence, S(t) ≈ S is standard stable for large
times t. Substituting into equation (A1) and solving, we see
that the long‐time asymptotic approximation for the particle
location is

X tð Þ � ��1t þ �c�tð Þ1�S ðA5Þ

Taking the Fourier transforms of the corresponding pdfs, we
obtain

f̂a k; tð Þ � exp ���1t ikð Þ þ �c�t ikð Þ�ð Þ ðA6Þ

This is the Fourier transform of fa(x, t) with the higher‐order
terms removed, as well as the point source solution to the
differential equation:

@ ^fa k; tð Þ
@t

� ���1 ikð Þ þ �c� ikð Þ�ð Þf̂a k; tð Þ ðA7Þ

Inverting this Fourier transform results in the fractional
advection‐diffusion equation (14).

Appendix B: Stable Distributions

[33] If X, X1, X2, … are mutually independent random
variables with a common distribution Fs, then the distribu-
tion Fs is said to be stable if for each n 2 Z, there exists
constants Cn and rn such that [e.g., Lamperti, 1962; Feller,
1971]

Sn¼d CnX þ rn ðB1Þ

where Sn = X1 + X2 + � � � + Xn and ¼d means identical in
distribution. In other words, stable distributions are aggre-
gation invariant up to a scale parameter, Cn, and location
parameter, rn. The normalizing constant Cn is of the form
n

1
� for 0 < a ≤ 2, where a is called the characteristic

exponent of the distribution Fs. The distribution Fs is said to
be strictly stable when rn = 0. Closed‐form expressions of
the density functions of stable distributions exist for values
of a equal to 2,1 and 0.5. In general, the stable pdf is
defined by its Fourier transform [see Stuart and Ord, 1987]:


̂ kð Þ ¼ �i�k � j�kj� 1þ isgn kð Þ tan ��

2

� �� �n o
ðB2Þ

for 0 < a ≤ 2 and a ≠ 1. In the above equation sgn(·) denotes
the signum function. The remaining parameters of the dis-
tribution are the location parameter (−1 < d < 1), scale
parameter (g > 0) and the skewness parameter (−1 ≤ b ≤ 1).
The distribution is symmetric for b = 0 and is said to be
completely skewed for b = −1 and b = 1. For a = 2, 
̂(k)
gives the Fourier transform of a Gaussian density with mean d
and variance 2g2. For the special case a = 1, the Fourier
transform is expressed in a slightly different way.Whena = 1
and b = 0, the stable distribution is also called a Cauchy
distribution.
[34] If a random variable X has an a‐stable distribution,

then its theoretical statistical moments exist only up to order
a. The mean of the distribution exists when 1 < a ≤ 2, but
when 0 < a < 1 both the mean and variance of the distri-
bution are undefined. Thus, the Gaussian distribution is the
only stable distribution with finite mean and variance. Stable
distributions provide good approximations for spatial rain-
fall fluctuations in convective storms [e.g., Kumar and
Foufoula‐Georgiou, 1993], daily discharges in river flows
[e.g., Dodov and Foufoula‐Georgiou, 2004], spatial snap-
shots of tracer plumes in underground aquifers [e.g., Benson
et al., 2000a] and river flows [e.g., Deng et al., 2004].

Notation

x streamwise coordinate.
t time.
h local mean bed elevation.
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v shape parameter of the gamma distribution.
lp porosity.
Db volume rate per unit area of deposition of

bed load particles.
Eb volume rate per unit area of entrainment of

bed load particles.
fs(r) pdf of step lengths.

fs(r∣D) pdf of step lengths conditioned on grain size.
fa(x, t) fraction of tracer particles in the active layer.
fI(x, t) fraction of the tracer particles in the

sediment that is exchanged across the interface
between active layer and substrate.

La thickness of the active layer.
EbT volume entrainment rate of tracers.
DbT volume deposition rate of tracers.

v advection velocity of tracers.
Dd diffusivity of tracers.
D grain size.

Dm arithmeticmeanof the grain size distribution.
Dg geometricmean of the grain size distribution.
a tail index of the stable distribution and the

order of fractional differentiation.
mr(D) mean step length for grain size D.

fad(x, t, D) fraction of tracers in the active layer with
grain size D.

Ebu(D) entrainment rate per unit bed content of
grain size D.
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