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[1] Since aquifer parameters may have statistical dependence structures that are present
across a huge range of scales, the concepts of fractional Brownian motion (fBm) have
been used in both analytic and numerical stochastic settings. Most previous models have
used isotropic scaling characterized by a single scalar Hurst coefficient. Any real-world
anisotropy has been handled by an elliptical stretching random K field. We define a
d-dimensional extension of fBm in which the fractional-order integration may take on
different orders in the d primary (possibly nonorthogonal) scaling directions, and the
degree of connectivity and long-range dependence is freely assigned via a probability
measure on the unit sphere. This approach accounts for the different scaling found in the
vertical versus horizontal directions in sedimentary aquifers and allows very general
degrees of continuity of K in certain directions. It also allows for the representation of
fracture networks in a continuum setting: The eigenvectors of the scaling matrix describe
the primary fracture scaling directions, and discrete weights of fractional integration
represent fracture continuity that may be limited to a small number of directions. In a
numerical experiment, the motion of solutes through 2-D ‘‘operator-fractional’’ Gaussian
fields depends very much on transverse Hurst coefficients. Transverse scaling in the
range of fractional Gaussian noise engenders greater plume mixing and a transition to a
Fickian regime. Higher orders of integration, in the range of fractional Brownian motion,
are associated with thicker layering of aquifer sediments and more preferential,
unmixed transport. Therefore direct representation of the unique directional scaling
properties of an aquifer is important for realistic simulation of transport.
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solute mixing and dispersion, Water Resour. Res., 42, W01415, doi:10.1029/2004WR003755.

1. Introduction

[2] Predicting the movement of dissolved chemicals
through real-world aquifer material has been a priority of
hydrogeologists for decades. In the 1970s, an understanding
evolved that no aquifer could be completely characterized
[Freeze, 1975; Gelhar et al., 1979; Smith and Schwartz,
1980]. Uncertain aquifer properties, at every unsampled
point, must be represented by some statistical model. Two
interrelated methods evolved to model the effect of the
uncertain aquifer, using either analytic or numerical meth-
ods. The analytic method replaces the deterministic advec-
tion-dispersion equation with a stochastic version and
solves for the moments of the head and concentration
fields (see the extensive review by Gelhar [1993]). The
numerical approach uses classical Monte Carlo methods
[e.g., Tompson and Gelhar, 1990], and more recently,

Bayesian and other conditioning methods [Woodbury and
Ulrych, 2000; Feyen et al., 2002;Morse et al., 2003; Huang
et al., 2004], to simulate a large number of aquifer realiza-
tions (some more likely than others), and either analyzes the
ensemble statistics of the head and concentration fields or
solves the moment equations themselves [Graham and
McLaughlin, 1989; Li and McLaughlin, 1991; Li et al.,
2003, 2004; Guadagnini and Neuman, 1999a, 1999b, 2001;
Ye et al., 2004]. A number of techniques are widely used to
generate scalar random field replicas of aquifers for use in
the Monte Carlo studies [Tompson et al., 1989; Deutsch and
Journel, 1992; Dietrich and Newsam, 1993; Robin et al.,
1993; Carle and Fogg, 1997; Bruining et al., 1997; Hassan
et al., 1997; Ruan and McLaughlin, 1998; Painter, 2001; Lu
et al., 2003].
[3] Both the analytic and numerical methods have

enjoyed great success for various subsets of the variety of
aquifer types. The strength of the analytic method lies in the
simplicity of representing the aquifer statistical character-
istics, but is burdened with assumptions needed to gain well
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posedness (closure) of the stochastic equations (see a recent
discussion by Wood et al. [2003]). The strength of the
numerical method lies in the robustness of each determin-
istic solution, the ability to condition with data from specific
locations [e.g., Dietrich and Newsam, 1996], and the ability
to incorporate any number of uncertain parameters [Burr et
al., 1994; Cushman et al., 1995; Hu et al., 1995; Huang and
Hu, 2001]. Furthermore, the rapid and predictable advance-
ment of computer speed and addressable memory allows the
representation of aquifer features from many scales. The
downside of the numerical method, aside from the compu-
tational time required, is that the aquifer facsimiles must be
created according to some defined statistical model that is
typically an oversimplification. The chosen model should
adhere to the real characteristics of the aquifer, including the
statistical dependence structures that might be present
across all scales [Neuman, 1995; Molz and Boman, 1993;
Molz et al., 1997].
[4] One early statistical model that parsimoniously

accounts for evolving heterogeneity at all scales is a fractional
Brownianmotion (FBM), since this stochastic process has the
property of self-similarity [Mandelbrot and van Ness, 1968].
However, true multidimensional FBM is an overly restrictive
model for several reasons. First, non-Gaussian increments of
K or ln(K) may be the rule, not the exception. The distribution
of K or ln(K) is typically heavier tailed than a Gaussian
[Eggleston et al., 1996; Painter and Paterson, 1994; Painter,
1996, 2001; Rasmussen et al., 1993; Liu and Molz, 1996,
1997; Benson et al., 2001; Hyun and Neuman, 2003;
Meerschaert et al., 2004; Aban et al., 2006]. Since
simple FBM can replicate the long-range K dependence
that can account for continual faster-than-Fickian growth
rate of plumes [e.g., Kemblowski and Wen, 1993; Neuman,
1995; Rajaram and Gelhar, 1995; Zhan and Wheatcraft,
1996; Bellin et al., 1996; Cushman, 1997; Hassan et al.,
1997; Di Federico and Neuman, 1998; Painter and
Mahinthakumar, 1999], it is still the basis of several simula-
tion techniques that have relaxed the restrictive assumption of
Gaussian increments [Painter, 2001; Meerschaert et al.,
2004]. Second, a more serious drawback of simple FBM is
its functional, or scaling isotropy, in which the self-similarity
parameter is the same in all directions [Bonami and Estrade,
2003]. There is no physical reason that a sedimentary aquifer
should have the same scaling properties in the vertical and
horizontal directions. Evidence for different scaling of sedi-
mentary rock parameters or stream traces in different direc-
tions at several sites is presented by Hewitt [1986],Molz and
Boman [1993], Sapozhnikov and Foufoula-Georgiu [1996],
Molz et al. [1997], Deshpande et al. [1997], Tennekoon et al.
[2003], and Castle et al. [2004], among others. In this paper
we provide a brief reanalysis of the data collected by the latter
researchers. Techniques have been developed that can handle
this anisotropy in the scaling or the Hurst coefficients
[Dobrushin, 1978; Hudson and Mason, 1982; Schertzer
and Lovejoy, 1985, 1987; Kumar and Foufoula-Georgiou,
1993;Mason and Xiao, 2001;Bonami and Estrade, 2003] yet
the mathematical character of numerical implementations is
still under investigation, since many of the properties of these
fields have only recently been worked out in one dimension
[Pipiras and Taqqu, 2000, 2003].
[5] A third complication is that aquifers may possess

strong directionality in the K structure. Continuity within

high-K units may be restricted to a small subset of the unit
circle in two dimensions or the unit sphere in three dimen-
sions. For example, braided streams deposit gravel in
continuous channels with distinct preferential directions
associated with the mean transport direction (Figure 1).
One can easily calculate the proportion of the channels that
lie in any angular interval dq and construct a histogram of
the stream channel directions (Figure 2). If the high-K
portions of an aquifer are deposited within these channels,
then we presume that the continuity of the aquifer K should
follow the same directional control. For reasons that will
become clear in subsequent derivations, we describe the
proportion of the stream channel lying in any direction by
the so-called mixing measure, or weight function, M(q). The
histogram of directions (Figure 2) shows the strong prefer-
ence for flow, hence deposition of similar material, in the
direction parallel to the bottom edge of the photograph (0�/
180�) and almost none in the ±90� directions. The measure
of directional dependence M(q) is specific to any given site
and should be freely assigned within a statistical model of
that site. In this paper we construct random fields on the
basis of a convolutional formula that allows a general
degree of statistical dependence in any given direction. In
this example, only the direction of the channel was mea-
sured; therefore the measure in Figure 2 is symmetric with
the addition of 180�. When measuring actual K values, the
dependence may be nonsymmetric with respect to the
downstream direction, since a disturbance in the water flow
would be expected to deposit a fining downstream sequence
of gravel and sand. For supercritical flow, no random
disturbance should be reflected in the sediments in the
upstream direction at all. We investigate the influence of
directional ‘‘causality’’ in a subsequent section.
[6] Aside from the deposition of sediment grains of

various sizes, aquifers may gain permeability structure
through deformation. This is particularly important in
low-permeability rock, which may acquire fractures that
convey essentially all of the groundwater flow. This sce-
nario takes on increased importance, since most of the
nations that produce high-level nuclear waste plan to store
it within fractured, low-permeability host rock (hence the
numerous studies of Yucca Mountain in the United States
[Bodvarsson and Tsang, 1999; Bodvarsson, 2003], and the

Figure 1. Braided stream channels from above.
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Äspö repository in Sweden [Swedish Nuclear Fuel and
Waste Management (SKB), 2001]). Studies of the suitability
of these sites [e.g., Outters and Shuttle, 2000; Stigsson et
al., 2000; Bechtel SAIC Company (BSC), 2004a, 2004b]
have endeavored to map the locations of all important
fractures and faults that intersect tunnels and drifts. How-
ever, the final buildout of the repositories will uncover
multitudes of new, as yet unknown fractures, and the
regions of rock between the repository and potential recep-
tors will always remain uncharacterized. Some sort of
statistical representation of the aquifer (fracture) properties
is still needed to supplement the mapping information [SKB,
2001, chapter 8]. Real fracture networks are almost univer-
sally observed to possess fractal structure (see the extensive
review by Bonnet et al. [2001]). Permeability measurements
in fractured rock also show scale effects and may support
fractal models [Hyun et al., 2002; Neuman and Di Federico,
2003; Martinez-Landa and Carrera, 2005]. The specifics of
the more subtle fracture statistics have a large bearing on the
transport characteristics of the networks [Bour and Davy,
1998; Bour et al., 2003; Darcel et al., 2003a, 2003b; de
Dreuzy et al., 2004].
[7] When simulating flow through fracture networks,

several approaches can be adopted (see the recent review
by Neuman [2005a]). The first treats the network, or a
subset of the network [e.g., BSC, 2004a; Carrera and
Martinez-Landa, 2000], as an equivalent porous medium
(EPM), and derives or measures an effective upscaled K
tensor on the basis of the contributions of ‘‘subgrid’’
fractures. The EPM is justified in highly fractured media
where the fracture spacing is small compared to some
region of interest, say a numerical grid block or the distance
between observation points [Snow, 1969; Long et al., 1982;
Endo et al., 1984; Hsieh and Neuman, 1985; Hsieh et al.,
1985; Neuman et al., 1984; Neuman, 2005b]. However,

when the fracture spacing is large compared to the region of
interest, then an effective parameter does not reasonably
represent the subgrid features (as measured by either flow or
heads; see Wellman and Poeter [2005]). In this case, the
individual fractures, and perhaps as importantly the inter-
vening impermeable rock, may need to be explicitly repre-
sented. This can be done using discrete fracture networks
[Adler and Thovert, 1999; Benke and Painter, 2003;
Cvetkovic et al., 2004], or by accepting as an approximation
a continuous random field, preferably with conditioning on
the locations of fractures. One must accept that a continuous
random field might assign some regions of impermeable
rock a positive definite K tensor, which assumes sufficiently
dense subgrid fractures. In the case of fractal networks,
there may not be a convenient separation of scales such that
individual fractures can be ignored in favor of an equivalent
porous medium [Long et al., 1982]. In this paper, we show
that a random field, based on an extension of FBM, can
represent fractal fracture permeability and preserve fracture
orientations and unique scaling properties in different direc-
tions. As a result, no separation of scales is invoked to
divide the domain into large mappable fractures and subgrid
features that constitute an equivalent porous medium. Fur-
thermore, if fractures orientations are concentrated in a few
directions, the generation of a continuous random field
should be able to restrict the continuity of high-K areas to
those directions, as opposed to the more isotropic prior
definitions of FBM.
[8] To expand the capabilities of current generators of

continuous random fields including classical FBM, we
introduce operator-scaling scalar random field generators
based on multidimensional fractional integration. The ran-
dom fields have ‘‘operator scaling’’ that is described by a
matrix of values—the linear operator—instead of a single
scalar Hurst coefficient. The matrix-valued, or operator
rescaling properties mean that the scaling indices (for
example, Hurst coefficients for Gaussian fields) can be
different in each coordinate. For maximal generality, we
choose a fractional integration on the basis of the inverse of
the recently defined anisotropic fractional Laplacian
[Meerschaert et al., 2001]. The fields we describe in this
paper allow all of the following: (1) self-similar structure
at all scales, particularly when the scaling rates are unique in
different directions, (2) arbitrary strength of statistical depen-
dence along discrete directions, and (3) generality in choosing
the statistical distribution of the scalar random field, including
nonstationarity. Finally, in section 3, we investigate the
influence of simple operator-scaling K structure in synthetic
aquifers on the transport of solutes and compare the results to
previous stochastic analytic predictions.

2. Mathematical Background

[9] The first d-dimensional FBM BH(x) was defined as an
isotropic special case of the moving average

Bj xð Þ ¼
Z

j x� yð Þ � j �yð Þ½ �B dyð Þ; ð1Þ

with B(dy) the increment of a Brownian random field, j(y) =
kykH�d/2, and Hurst index 0 < H < 1 [Samorodnitsky and
Taqqu, 1994;Cushman, 1997]. The first term in the integral is
the convolution kernel, which mathematically spreads the

Figure 2. Approximate measure M(q) of the directional
proportion of the wet portions in Figure 1. Angles are in
degrees.
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random value at each point over space. The second term
centers the motion so that Bj(0) = 0. The stochastic integral
I( f ) =

R
f(y)B(dy) is the distributional limit of approximating

sums
P

j f(yj)B(Dyj) where Dyj is a small d-dimensional
rectangle, yj is a point inside that rectangle, B(Dyj) is a normal
random variable with mean zero and variance equal to the
volume of that rectangle, and these normal random variables
are independent for disjoint rectangles. A finite sum gives a
faithful approximation so long as the area covered spreads
over entire space as themesh of the partition tends to zero. The
integral I( f ) is a mean zero normal random variable with
variance proportional to

R
f(y)2dy, and the integral exists

so long as
R

f(y)2dy < 1 [e.g., Yaglom, 1987]. In this
case we say that the function f(y) is square integrable.
Since the volume of cDyj is cd times the volume of Dyj,
and using the formula VAR(aZ) = a2VAR(Z) for random
variables Z, B(cdy) = cd/2B(dy) in distribution for any
scale c > 0, and then it follows immediately from (1) that
an isotropic fractional Brownian field is self-similar:
BH(cx) = cHBH(x) in distribution. The restriction 0 < H < 1
comes from the requirement that the integrand in (1) is square
integrable. Fractional Gaussian noise is a stationary discrete
parameter process obtained by taking differences of a frac-
tional Brownian field, GH(j) = BH(j) � BH(j � 1) in one
dimension or the corresponding analogue in d dimensions:
GH(i, j) =BH(i, j)�BH(i, j� 1)�BH(i� 1, j) +BH(i�1, j�1)
in two dimensions and so forth. The noise process inherits
the same scaling:GH(cx) = cHGH(x).
[10] The spectral representation of the Brownian random

field (1) is given by

Bj xð Þ ¼
Z

eik	x � 1
� �

ĵ kð ÞB̂ dkð Þ; ð2Þ

where ĵ(k) = (2p)�d/2
R
e�ik	yj(y)dy. In the isotropic case,

ĵ(k) = CHkkk�H�d/2 and CH > 0 is a constant depending
only on H and d. The stochastic integral

R
g(k)B̂(dk) is

the distributional limit of approximating sums
P

‘

g(k‘)B̂(Dk‘) where Dk‘ is a small d-dimensional rectangle
in wave space, and the complex-valued random measure
B̂(Dk‘) = m1(Dk‘) + im2(Dk‘). The real and complex parts
m1(Dk‘) and m2(Dk‘) are independent normal random
variables with mean zero and variance equal to half the
volume of the rectangle Dk‘, independent for disjoint
rectangles, except that m1(Dk‘) = m1(�Dk‘) and m2(Dk‘) =
�m2(�Dk‘) [Samorodnitsky and Taqqu, 1994]. The random
measure B̂ is the Fourier transform of the random measure
B in the sense that

B̂ Dk‘ð Þ 
 1ffiffiffiffi
N

p
X
j

e�ik‘	yj B Dyj

� 	
; ð3Þ

where N is the total number of grid points, the
distributional approximation becoming exact as the mesh
of the partition tends to zero. The conditions on m1 and
m2 follow from (3), since this formula implies that the
complex conjugate of B̂(�Dk‘) equals B̂(Dk‘). Then both
the integrand and the increment process in (2) are Fourier
transforms of the respective terms in (1). The restriction 0
< H < 1 is also shown in the requirement that the
integrand in (2) is square integrable, and the distributional
equality of the two forms (1) and (2) is a result of the

Parseval identity [cf. Samorodnitsky and Taqqu, 1994,
proposition 7.2.7].
[11] The fractional Brownian field (1) can be simulated

using discrete Fourier transforms. Using the spectral repre-
sentation (2) we approximate Bj(x) 
 �Bj(x) � �Bj(0) where

�Bj xð Þ ¼
X
‘

eik‘	xĵ k‘ð ÞB̂ Dk‘ð Þ; ð4Þ

which is evidently the inverse discrete Fourier transform of
the product ĵ(k‘)B̂(Dk‘). Then in order to simulate �Bj we
can begin by simulating B(Dyj) as iid random variables on a
regular grid yj, take discrete Fourier transforms to obtain
B̂(Dk‘) on a regular grid k‘, multiply by the Fourier filter
ĵ(k‘), and invert the discrete Fourier transform. Then we
subtract the result at grid point x = yj from the result at grid
point x = 0 to obtain Bj(x) 
 �Bj(x) � �Bj(0). The discrete
Fourier (and inverse Fourier) transforms can be efficiently
computed using fast Fourier transforms. While we have
described this simulation procedure for Gaussian random
fields, a variety of stochastic integrals can be used, allowing
a flexible and realistic tool for simulating K fields. For
example, ln(K) increments at several field sites are well
modelled by a Laplace distribution [Meerschaert et al.,
2004], which is essentially a double-sided exponential. A
different method for simulating only Gaussian processes,
starting in Fourier space [Voss, 1989; Peitgen and Saupe,
1988; Gelhar, 1993; Ruan and McLaughlin, 1998; Dieker
and Mandjes, 2003] will not be pursued here.
[12] Although the stochastic (convolution) integral

~Bj xð Þ ¼
Z

j x� yð ÞB dyð Þ ð5Þ

does not exist because the function j(x � y) is not square
integrable, we can heuristically write Bj(x) = ~Bj(x) �
~Bj(0), the convergent difference of two divergent stochastic
integrals. Since the form (5) represents a stationary process,
the theory of linear filters can be applied, and it turns out
that these filters correspond to certain fractional integrals.
For a simple example, consider fractional Brownian motion
(FBM) in one dimension. Mandelbrot and van Ness [1968]
defined a one dimensional fractional Brownian motion
(FBM) using

~BH xð Þ ¼ 1

G H þ 1=2ð Þ

Z x

�1
x� yð ÞH�1=2

B dyð Þ: ð6Þ

In this formulation, the stochastic integral depends only on
the values of B(dy) for y < x (the past, if x represents time)
and hence is termed ‘‘causal.’’ When x represents a spatial
variable, this restriction may not be needed, and Mandelbrot
[1982] introduced a symmetric, bilateral version of FBM
using

~BH xð Þ ¼ 1

G H þ 1=2ð Þ

Z 1

�1
jx� yjH�1=2

B dyð Þ: ð7Þ

[13] The convolutions in (6) and (7) take values of B(dy)
and spread them according to the respective power law
kernels. From the point of view of fractional calculus (see
Samko et al. [1993] for a comprehensive exposition), these
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integrals can be viewed as fractional-order integrals of the
‘‘white noise’’ B(dy) [Meyer et al., 1999; Pipiras and
Taqqu, 2000; Chechkin and Gonchar, 2001]. Fractional
derivatives and integrals are natural extensions of their
integer-order counterparts, easily understood in terms of
their Fourier transforms. Given a function f(x) with Fourier
transform f̂ (k) and compact support (i.e., f(x) = 0 for jxj
large), it is well known that the nth derivative of f(x) has
Fourier transform (ik)nf̂ (k), and hence the n-fold integral has
Fourier transform (ik)�n f̂ (k). Fractional derivatives and
integrals replace the integer exponent n with a rational
number a. A computation using generalized functions
shows that G(�a)(ik)a is the Fourier transform of the
function x�1�a on x > 0 [Samko et al., 1993]. Hence the
a-order fractional derivative of f(x) is the convolution of f(x)
with a power law:

daf xð Þ
dxa

¼ 1

G �að Þ

Z x

�1
x� yð Þ�a�1

f yð Þdy; ð8Þ

where this integral is to be understood in terms of
generalized functions. If a < 0 this formula defines a
fractional integral of order �a. Now the one-sided FBM
formula (6) can be viewed as an A = H + 1/2 fractional
integral of white noise. One also defines a negative-
direction fractional derivative

daf xð Þ
d �xð Þa ¼ 1

G �að Þ

Z 1

x

y� xð Þ�a�1
f yð Þdy; ð9Þ

and then the two-sided FBM formula (7) is seen as a
combination of positive- and negative-direction fractional
integrals of white noise with the same order A = H + 1/2.
Since 0 < H < 1, this means that heuristically FBM can be
written BH(x) = ~BH(x) � ~BH(0) where ~BH(x) is a white noise
fractional integral of order 1/2 < A < 3/2. One-sided FBM
can be simulated using the Fourier filter ĵ(k) = (ik)�A in (4).
Two-sided FBM results from using the equally weighted
forward and backward fractional integrals, hence the
symmetric filter ĵ(k) = (ik)�A + (�ik)�A = 2 cos(Ap/2)jkj�A

where again A=H + 1/2 is the order of fractional integration.
Using the filter ĵ(k) = jkj�A multiplies the resulting FBM
by a constant.
[14] We note here that the causal function (6) was

originally intended for time series, since the present cannot
influence the past. A similar treatment, in multiple dimen-
sions, must be considered for the deposition of sediment in
supercritical flow, since a disturbance in the flow is not
propagated upstream. Therefore a convolution kernel that
mathematically transmits fluctuations in the K field should
not necessarily have equal (or any) weight in certain
directions. In one dimension, a simple extension of the
symmetric kernel in formula (7) incorporates a weight
function M(q), where q = ±1: ĵ(k) = M(1)(ik)�A +
M(�1)(�ik)�A, where again, A = H + 1/2 is the order of
fractional integration. This concept of weights on the unit
circle extends to two and three dimensions (below). It is
also worth noting here that the one-sided and symmetric
FBM are models of different processes and have noticeably
different traces, even though the correlation structure of the
increments (i.e., the spectral density functions) are identical.
[15] Fractional Gaussian noise (FGN) GH(x) = BH(x) �

BH(x � 1) is the increment process of fractional Brownian

motion; hence we can simulate one-sided FGN using the
Fourier filter ĵ(k) = [1 � e�ik](ik)�H�1/2 in (4). Using a
Taylor series approximation we can simplify this to ĵ(k) =
(ik)�H+1/2. Similarly we can simulate two-sided FGN using
the filter ĵ(k) = jkj�Awhere now A = H � 1/2. This extends
the simulation procedure through the interval�1/2 < A < 1/2,
where againA indicates the order of fractional integration. For
simplicity, wewill continue to use this notation, since usingH
becomes somewhat confusing when referring to both FGN
and FBM.
[16] Symmetric FBM in one dimension is a special case

of an isotropic Brownian random field. The d-dimensional
isotropic version can be simulated using the Fourier filter
ĵ(k) = kkk�H�d/2 in (4), which corresponds to (1) with j(x) =
CkxkH�d/2 for some constant C depending only on H and the
dimension d of the variable x. A stretching of the random
field, resulting in greater strength or weight of correlation of
the increments in some direction, but still decaying with the
same power law (i.e., the same Hurst coefficient in all
directions), is achieved by a scalar multiplication of the
orthogonal vector components in the Fourier filter [Rajaram
and Gelhar, 1995; Zhan and Wheatcraft, 1996; Di Federico
et al., 1999]:

ĵ kð Þ ¼ kl 	 kk�A¼ l1k1ð Þ2 þ l2k2ð Þ2 þ l3k3ð Þ2
� 	�A=2

: ð10Þ

This approach does not address the possibility that the decay
of statistical dependence in any direction may fall off accord-
ing to a different power law. Hence, in contrast to previous
researchers, we call this stretched version with scalar H
‘‘functionally isotropic,’’ since the power law is the same
except for a prefactor, in all directions. Real aquifers may
show different fractal scaling properties in the horizontal
direction than the vertical [Hewitt, 1986; Molz and Boman,
1993; Liu and Molz, 1996]. Other aquifer characteristics that
may serve as surrogates toK, such as sonic velocity, may also
show differences in the scaling exponent in the direction of
strike versus dip [Deshpande et al., 1997].Molz et al. [1997]
suggest a scheme to change the order of integration in one
direction via an expression similar to:

ĵ kð Þ ¼ l1k1ð Þ2 þ l2k2ð Þ2 þ jl3k3j2b
� 	�A=2

: ð11Þ

In a subsequent section, we investigate the scaling properties
of the random field generated by this and more general
anisotropically scaling filters.
[17] Finally, in many depositional environments, the

degree of dependence and connectivity of high-K units
may have strong directionality and/or causality. If the
stretched isotropic filter (10) is represented in polar coor-
dinates ĵ(r, q) = M(q)r�A, then the set of weights is a
smooth ellipse with axes lengths given by li

�A, clearly
dissimilar to the shape measured in Figure 2. Even more
compelling examples are given by fractured aquifers, which
may have fractures restricted to a small number of preferred
orientations in three dimensions. In the directions transverse
to fracture sets, there may or may not be any correlation in
the fracture spacing or point K values. In the fracture planes,
however, the connectivity and long-range dependence of K
values will be much larger. Only upon upscaling of suffi-
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ciently dense fractures [Snow, 1964, 1969; Long et al.,
1982] can an equivalent porous medium with a K tensor
be defined. In the case of fractal fracture networks, it is
unclear whether a separation of scales exists that allows
upscaling to an equivalent porous medium with the typical
K tensor. Upon any upscaling, the flow may be dominated
by just a few major fractures brought into the observation
window.
[18] The isotropically scaling filter ĵ(k) = kkk�A corre-

sponds to multivariable fractional integration of order A,
since multiplication by kkkA in Fourier space is equivalent
to taking the fractional Laplacian D

A/2 = (@2/@x2 + @2/@y2 +
@2/@z2)A/2 in real space [Bojdecki and Gorostiza, 1999].
Similarly, the filter (10) corresponds to the inverse of the
operator (l1

2@2/@x2 + l2
2@2/@y2 + l3

2@2/@z2)A/2 and (11) to the
inverse of (l1

2@2/@x2 + l2
2@2/@y2 + l3

2@b/@jzjb)A/2. These are
three special cases of the general multivariable fractional
derivative operator recently introduced by Meerschaert et
al. [2001] to model anomalous diffusion, and applied to
solute transport by Schumer et al. [2003a]. The general form
of this operator allows the order of derivative, as well as the
weight M(q) that determines the strength, or prefactor, of the
derivative, to vary with coordinate.

3. Analytic Predictions of Solute Transport in
Monofractal K Fields

[19] Kemblowski and Wen [1993], Neuman [1995],
Rajaram and Gelhar [1995], Zhan and Wheatcraft [1996],
Bellin et al. [1996], and Di Federico and Neuman [1998]
predict the rate of plume spreading through a fractal
(typically FBM) K field on the basis of a single value of H
in the direction of transport. Our numerical experiments
(section 5) are most closely aligned with the assumptions of
Neuman [1995], Rajaram and Gelhar [1995], and Di
Federico and Neuman [1998], so we focus here on their
results. Neuman [1995] and Di Federico and Neuman
[1998] assume purely advective flow so that each particle
stays within a stream tube whose velocity autocorrelation
function then becomes a scaled copy of the K correlation
function in the direction of transport. This assumption is
based on low variance of the K field, since the flow will
bypass low-K zones and focus through high-K zones to a
greater degree as the variance grows, thereby allowing the
solute particles to subsample the random K field.
[20] Making three additional and distinct assumptions, Di

Federico and Neuman [1998] predict that the plume will
grow either in an early preasymptotic (pre-ergodic),
asymptotic (ergodic), or permanently preasympototic state.
Their results depend primarily on the average travel distance
of a plume relative to a large-scale (low-frequency) fractal
cutoff in either the K field or the plume itself. An early
preasymptotic plume may follow totally ‘‘unmixed’’
ballistic motion, similar to the stratified model described
by Mercado [1967]. This earliest stage is characterized by
linear growth of the ensemble particle trajectory standard
deviation and macrodispersivity versus travel distance (a‘ /
�X ). An asymptotic plume occurs when the plume has
travelled a greater distance than the scale of the largest
heterogeneity present. If the particles stop experiencing new
scales of heterogeneity (either through truncation of the K
field heterogeneity or by subsampling do to advective
mixing) the plume will transition to an asymptotic, or

Fickian, growth rate (aL= constant). Finally,Di Federico and
Neuman [1998] reason that a plume travelling in fractal
material is continually sampling larger scales of heterogeneity
that are, on average, the same size as the growing mean travel
distance. Such a plume is permanently preasymptotic and has
a longitudinal macrodispersivity (aL) that grows according to
[Di Federico and Neuman, 1998]:

aL � 1

2

d

d �X
VAR Xð Þ / �X 1þ2H ; ð12Þ

whereVAR(X) is the variance of the particle travel distance, �X
is the mean travel distance, and H refers to the Hurst
coefficient in the direction of travel.
[21] If one assumes that particles are free to roam a

domain with a fixed large-scale fractal cutoff (for example,
a finite domain), then at early time the mean travel distance
may be much smaller than both the possible particle
trajectories (because of the large heterogeneity of the flow
path velocities), and the large-scale K cutoff. Furthermore,
as time progresses, and a plume grows around its mean
position, the mean distance becomes smaller relative to the
increasing proportion of large excursions, which dominate
the plume variance. Hence the mean position may be much
smaller than either the plume or K large-scale cutoff and the
plume may be approximately ‘‘early preasymptotic’’. In any
case (early preasymptotic, permanently preasymptotic, or
asymptotic), Di Federico and Neuman [1998] predict the
plume dynamics on the basis of only the Hurst coefficient in
the direction of travel.
[22] Rajaram and Gelhar [1995] use a two-particle,

relative dispersion approach to calculate the macrodisper-
sivity in a plume-specific (not ensemble) manner that
corresponds most closely to Di Federico and Neuman’s
[1998] permanently preasymptotic results. Rajaram and
Gelhar [1995] compute the macrodispersivity in an FBM K
field with a single value of H as

aL / �XH : ð13Þ

[23] The common feature of the analytic results on
transport through fractal porous media is the isotropic
scaling according to a single scaling parameter H. Liu and
Molz [1996] posit that a different H in the direction
transverse to flow may influence transport, since lateral
mixing is determined by the layered structure of the aquifer
material. Larger values of A or H correspond to greater
persistence of the random increments, hence thicker
layering of similar material. The thicker, more extensive
layers should contribute to less mixing and more Mercado-
type [Mercado, 1967] (ballistic) dispersion. Less extensive
layering, characteristic of smaller values of A or H, should
promote more mixing and perhaps more Fickian-type
dispersion. In section 5 we investigate Liu and Molz’
[1996] forecast that knowledge of H in the direction of
transport alone is inadequate to predict plume growth.

4. Operator-Scaling Random Fields

[24] A functionally isotropic fractional Brownian random
field BH(x) in d dimensions results from applying the
Fourier filter ĵ(k) = kkk�A to a Gaussian white noise in the
spectral representation (2), where the scalar exponent A=H +
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d/2 is used. Using the scaling relations ĵ(ck) = c�Aĵ(k) and
B̂(cdk) = cd/2B̂(dk) we get

BH cxð Þ ¼
Z

eick	x � 1
� �

ĵ kð ÞB̂ dkð Þ

¼
Z

eik	x � 1
� �

ĵ c�1k

 �

B̂ c�1dk

 �

¼
Z

eik	x � 1
� �

cAĵ kð Þc�d=2B̂ dkð Þ;

and the last integral equals cHBH(x) sinceH = A� d/2. Hence
the scaling property BH(cx) = cHBH(x) also follows directly
from the scaling of the Fourier filter. The stretched Fourier
filter in (10) also satisfies ĵ(ck) = c�Aĵ(k); hence the process
(2) with this filter has the same scaling property Bj(cx) =
cHBj(x) as a fractional Brownian field.
[25] The Fourier filter (11) proposed byMolz et al. [1997]

has a more complicated scaling ĵ(ck1, ck2, c
1/bk3) = c�Aĵ(k)

most conveniently handled using matrix powers [see, e.g.,
Meerschaert and Scheffler, 2001, section 2.2]. The matrix
power cQ is defined by a Taylor series [cQ = exp(Q ln c) = I +

Q ln c +
Q ln cð Þ2
2! +

Q ln cð Þ3
3! + 	 	 	] where I is the d � d identity

matrix. Using this notation, the scaling for the Fourier
filter (11) can be written as ĵ(cQk) = c�Aĵ(k) where Q�1 =
diag(1, 1, b). In this respect, we see that the matrixQ denotes
deviations from the overall order of integration A. Then the
random field of Molz et al. [1997] satisfies

Bj cQx

 �

¼
Z

eic
Qk	x � 1

h i
ĵ kð ÞB̂ dkð Þ

¼
Z

eik	x � 1
� �

ĵ c�Qk

 �

B̂ c�Qdk

 �

¼
Z

eik	x � 1
� �

cAĵ kð Þjc�Qj
1
2B̂ dkð Þ; ð14Þ

where jc�Qj = c�1�1�1/b is the determinant of the matrix
c�Q. Hence this random field satisfies the scaling relation
Bj(c

Qx) = cA�1� 1
2bBj(x). Recalling thatA=H+3/2 for a three-

dimensional field, we can also write this in the form,

Bj cx1; cx2; c
1=bx3

� 	
¼ cHþ1

2
� 1

2bBj xð Þ

which reduces to the familiar scaling for a fractional
Brownian field if we take b = 1.
[26] A wide variety of multiscaling random fields can be

obtained in this manner (using equation (2)), so long as the
integrand in (13) is square integrable. Another suitable
choice of Fourier filter yields a random field with
Bj(c

1/H1x1, c1/H2x2, c1/H3x3) = cBj(x) so that a different
Hurst index 0 < Hi < 1 applies to each coordinate. For
example, the random field of Molz et al. [1997] has Hurst
coefficient Hi = H + 1

2
� 1

2b for coordinates i = 1, 2 and H3 =
b H þ 1

2


 �
� 1

2
. A more general form of the filter comes from

the theory of multivariable fractional differentiation where
the generalized fractional derivative of a suitable function
f(x) is defined as the inverse Fourier transform of y(k)f̂ (k)
and exp[�y(k)] is the Fourier transform of an operator
stable density function [Meerschaert et al., 2001]. Using an
example from section 2, the unstretched, isotropic Laplacian
operator has the Fourier symbol y(k) = kkk2 corresponding
to the Fourier transform of a zero mean multi-Gaussian
density exp[�kkk2]. The general form of the Fourier

symbol y(k), given by the Lévy representation
[Meerschaert and Scheffler, 2001; Schumer et al., 2003a]
is somewhat complex, but for our purposes it suffices to
note that this function always satisfies a matrix scaling
relation cy(k) = y(cQk). Then the filter corresponding to a
fractional integration ĵ(k) = y(k)�A, where A = H + d/2,
scales according to cAĵ(k) = ĵ(c�Qk). Once again a change
to polar coordinates splits the function into the weight
function M(q) and a scaling function rQ; however, since Q
may specify a different power law in any direction, a
modified polar coordinate system is needed. A procedure
for calculating this filter is listed in the Appendix A.

4.1. Examples

[27] To illustrate the effect of the weight function alone, we
generated several two-dimensional random fields (Figure 3)
with identical ‘‘random’’ Gaussian input fields but with four
different functions M(q). The fields are all isotropic with
respect to the scaling coefficient H = 0.3. These realizations
are typical for this scaling parameter. The first field uses the
measure estimated by the directions of the braided stream in
Figure 1 without respect to flow direction (Figure 3a). We
then assume that the K values can only be influenced by
upstream perturbations by zeroing upstream weights and
adding them to those in the downstream direction (Figure 3b).
Finally, we approximate the measure using a classical
elliptical stretching (Figure 3d) and a simple ‘‘cross’’ of four
weights on the x and y axes (Figure 3c). The plots clearly show
the effect of generalizing the description of weights. The
‘‘downstream’’ measure develops much more continuity in
the x direction than any other measure, while the classical
elliptical measure shows the least. The latter is due to the
unavoidable and possibly unrealistic placement of convolu-
tion weight transverse to the prevailing stream flow direction.
The simple four-point ‘‘cross’’ measure develops a random
field (Figure 3c) that bears a closer resemblance to the
‘‘downstream’’ measure. In section 5, we use this simple
‘‘cross’’ measure to construct fields with operator scaling (H
different in the transverse and longitudinal directions) to
investigate the impact of transverse H values on plume
migration.
[28] In general, the eigenvalues of the scaling matrix Q,

and the overall order of integration A, define the Hurst index
in each coordinate. The eigenvectors of Q specify those
coordinates, and the weight function M(q) indicates the
importance of each direction in determining the dependence
structure. The primary scaling directions (eigenvectors of
the matrix Q) need not be orthogonal, and the various
directions can be given unequal weight of overall correla-
tion. Because of the multiple scaling directions, these fields
have the property of ‘‘generalized scale invariance’’
[Schertzer and Lovejoy, 1989], but do not have the multiple
scaling dimensions associated with multiplicative cascades
[Mandelbrot, 1974; Frisch and Parisi, 1983; Benzi et al.,
1984; Lovejoy and Schertzer, 1985; Gupta and Waymire,
1990; Boufadel et al., 2000; Veneziano and Essiam, 2003].
However, we note one serious consequence of the operator
scaling relationship: In general, the random process is
distributionally self-similar along curves in physical space
(Figure 4) unless one samples along the eigenvectors of the
scaling matrix Q. Sampling the process along straight lines
between the eigenvectors will not follow a single power law
(for any measure), and the observed scaling (Hurst)
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coefficient will change. For some measures used to
distinguish multiplicative multifractals [see Schertzer and
Lovejoy, 1987; Boufadel et al., 2000; Tennekoon et al.,
2003], such as the structure function and spectral methods,
the perceived fractal dimension will change unless care is
first taken to find the eigenvectors of the scaling process.
[29] A closed form expression for y(k) or ĵ(k) can only

be written in certain instances. For a simple example of a
filter that can be written in closed form, specify an order of
integration A, and let the deviation matrix Q be diagonal in
two dimensions with eigenvalues Q1 and Q2. Furthermore,
let there be 4 weights on the unit circle of 0.45 on the ±x
axis and 0.05 along the ±y axis. Then the orders of

integration in the two coordinates are A1 = A/Q1 and A2 = A/
Q2, and the kernel can be built from the Fourier symbol of
the fractional derivative:

y kð Þ ¼ 0:45C1 ik1ð Þ1=Q1 þ �ik1ð Þ1=Q1

� 		

þ 0:05C2 ik2ð Þ1=Q2 þ �ik2ð Þ1=Q2

� 		
; ð15Þ

where Ci = G(1 � 1/Qi). A plot of ĵ(k) = (y(k))�A—the
convolution kernel—with A1 = 1.2 and A2 = 0.2 (Figure 5)
shows the different decay rates in the two directions and the
discrete weights that transfer correlation in the chosen
directions. In section 5, we use (15) to fractionally integrate

Figure 3. Effect of different weight functions M(q), discretized at intervals of p/10 (polar plots),
on isotropically scaling FBM (shaded plots): (a) measure estimated from braided stream directions,
(b) downstream effects only, (c) simplified four-point measure, and (d) elliptical approximation. All weight
functions are normalized to sum over q to unity.
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Gaussian noise and create a series of random fields, each with
an identical A1 but a different value of the parameter A2. The
resulting operator-fractional Gaussian fields are then used to
investigate the effect of the order of aquifer scaling, transverse
to mean flow, on contaminant migration.
[30] The possibility of nonorthogonal eigenvectors

makes an operator-fractional field a good candidate for
simulating physical properties of structurally deformed
rock, since the fracture sets formed by stress relief are
rarely orthogonal [e.g., Davis, 1984]. Presently, geostatis-
tical simulation is used primarily to simulate undeformed
sedimentary rock. Notable exceptions are Ando et al.’s
[2003] nonparametric simulation of the densely fractured
Fanay-AugPres site, and Tsang et al.’s [1996] sequential
simulation and addition of fracture sets as an equivalent
porous medium. In these studies, the scaling properties of the
simulated fields were not fractal. In the latter study,
individual fields were generated for each of the correlation
structures and recombined, potentially altering the overall
statistical properties of the fields. Using operator-fractional
random fields, realistic self-similar permeability structures
can be generated in one pass by varying the d principal
scaling directions in d-dimensional space and their corre-
sponding Hurst coefficients, as well as their relative weights.
[31] To illustrate, we chose two fracture sets (scaling

eigenvectors) oriented ±p/8 radians from the x axis. The
weight function M(q) is zero everywhere except for the p/8
and 7p/8 directions (Figure 6, polar plots). Along those
directions, the weights were made equal along both fracture
sets (Figure 6, left), and three times greater on one of the
fracture sets (Figure 6, right). The input uncorrelated noise
(with no conditioning) was chosen to be Gaussian. The
output field was normalized to have a standard deviation of
0.9 and exponentiated. The darker areas shown in Figure 6
are those with higher value of K. Note the fracture-like
sparse and linear regions of connected high permeability.

The positions of known fractures can be placed in the input
noise, and the variability of effective K in individual
fractures (or zones) is explicitly represented. Flow through
such a limited ‘‘network’’ would strongly depend on both
the scale of simulation and the specifics of both the weight
function M(q) and the fractal dimensions (power laws of the
convolution) in various fracture directions. Such behavior is
a hallmark of DFN simulations [e.g., Bour and Davy, 1998;
Bour et al., 2003; Darcel et al., 2003a, 2003b; de Dreuzy et
al., 2004]. In a future study, we will investigate the
correspondence of flow and transport through these random
fields to DFN. In the next section, we investigate transport
through operator-fractional granular aquifers and the
applicability of monofractal analytic theories.

4.2. Field Evidence

[32] To motivate the numerical experiment in the next
section, we reexamine the gas minipermeameter data that
was collected near Escalante, Utah, and presented by
Castle et al. [2004]. Point permeability data were collected
along several horizontal and vertical transects in (1) an
undisturbed upper shoreface cross-bedded sandstone and
(2) an underlying bioturbated (disturbed) lower shoreface
sandstone. The researchers calculated Hurst coefficients for
a mixture of all horizontal transects (two in the disturbed
and one in the undisturbed facies) and four vertical transects
that span both facies. We calculated the rescaled range
statistic (RS) for each horizontal line (with 110, 132, and
135 data points spaced 15 cm apart) and found that the
lower two in the bioturbated facies do not show fractal
structure. We assume that the extensive reworking of the
sediments by burrowing animals altered any fractal structure
that might have been present. Therefore we used only data
from the upper cross-bedded unit, which left one horizontal
and the upper portion of two vertical transects (with only 16
and 18 data points with spacing of 15 cm). While the
vertical transects are severely shortened, the range statistics
show reasonably fractal structure indicative of FBMwithH

0.33 over a small range (Figure 7a).

Figure 4. Ellipses of the operator rescaling of two-
dimensional space cQx for various rescaling values c and
Q = diag(0.6, 1.4). The dashed line corresponds to the
remapping of the point on the 45� angle for c = 1 (thick
circle) onto other ellipses.

Figure 5. One possible convolution kernel leading to an
operator-self-similar random process: two-dimensional ker-
nel representing Ax = 1.2, Ay = 0.5 with total weights
concentrated on the x and y axes of 0.9 and 0.1, respectively.
Note both the slower decay due to a larger order of
integration, and the greater convolution weight, in the x
direction.
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[33] On the other hand, the horizontal RS plot shows
fractal structure indicative of FBM with H 
 0.45 over a
wider range of scales (Figure 7a). The RS is only valid for
larger lags [Molz et al., 1997]. Dispersional analysis of the
deviations of means taken over different partitions [Caccia
et al., 1997] is a less biased measure than the RS or
variogram for FGN, and indicates slightly different
structure—FBM with H 
 0.6—at smaller partitions
(Figure 7b). This points to either a multifractal structure,
or that the measurement transects were not aligned with the
principal scaling directions. One of the principal directions
may, in fact, coincide with the cross beds [e.g., Ritzi et al.,
2004], which dip at low angle [Castle et al., 2004]. Given
the wide confidence intervals associated with the RS, and
all other measures including the semivariogram and
structure functions of various order [see, e.g., Tennekoon
et al., 2003], a number of different dependence models
cannot be ruled out. For the purposes of our numerical
experiment, we simply acknowledge that the statistics for
this site support a model of ln(K) that is an operator-FBM
with horizontal H > 0.5 and a lower H in the vertical. We
have not attempted to find the principal directions of the
scaling process.
[34] Numerous K measurements, like those from the

Escalante site, very seldom are taken in the horizontal
direction. One exception is Desbarats and Bachu’s [1994]
large-scale (up to 100 km) analysis of aquifer transmissivity,

which is consistent with an FBM with H 
 0.26. Further
evidence for fractal K structure in the horizontal direction
comes indirectly by inference from tracer data [Neuman,
1995; Benson, 1998]. Using the asymptotic assumption and
(12) applied to apparent dispersivity data from a large
number of sites, Neuman [1995] argues that Hhoriz should be
on the order of 0.25 for an FBM.
[35] More extensive vertical K data from boreholes have

been analyzed to estimate the vertical Hurst coefficient
[Molz and Boman, 1993; Molz et al., 1997]. Very often,
surrogate data are used to infer long-range dependence, such
as gamma ray, spontaneous potential, or porosity logs from
borehole geophysical surveys. Reported values of vertical H
from a variety of these surrogates measured in sediments
from various depositional environments span a very large
range that includes both FGN and FBM [Hewitt, 1986;
Tubman and Crane, 1995; Pelletier and Turcotte, 1996;
Deshpande et al., 1997]. The latter study also directly
looked at the anisotropy of fractal structure of fluvial and
deltaic sediments on the multikilometer scale using well
logs and seismic reflection data. Using reflection amplitude
from two planes extracted from distinct sandy horizons,
they analyzed N-S and E-W transects for fractal structure.
They concluded that the fluvial sediments (with high-
amplitude channels trending north-northwest) in one
horizontal plane were consistent with FBM with H 
 0.4
to 0.65 in roughly the direction of channels (along dip) and

Figure 6. Operator-fractional Brownian fields (unconditional) for nonorthogonal scaling directions and
weight functions. High K values are depicted by darker shading. The Hurst coefficient is isotropic with a
value of H = 0.3. The dots on the polar plots illustrate the weights used in the upper simulations; that is,
the right field has three times more weight along the p/8 radian direction.
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H 
 0.05 transverse to the channels (along strike).
Deshpande et al. [1997] found less striking evidence of
horizontal anisotropy in the deltaic sediments, with different
H values of 0.26 versus 0.4. All of their vertical data was in
the FBM range, with H 
 0.3 to 0.5. To sum up the K and
surrogate data from many studies using different data types
and different scales, vertical measurement may show a large
range of the order of integration, consistent with both FGN
and FBM, while horizontal sediments typically are
consistent with an FBM with H 
 0.25 to 0.65. Also note
that these studies do not always test the assumption that the
increments are normally distributed. Many studies have
shown that the K and/or ln K data from a particular site are
distinctly non-Gaussian.

5. Solute Transport in Granular Aquifers

[36] To examine the effect of the difference of the Hurst
coefficients in different directions, we conducted a numer-

ical experiment. K fields were created that are identical in
every way, except for the Hurst coefficient in the direction
transverse to the mean flow. The fields were created using
the same input Gaussian noise, so only the Fourier filter
ĵ(k) was different. The two-dimensional Gaussian noise
consisted of a 1024 � 1024 array of independent and
identically distributed standard normal random variables.
The noise was fast Fourier transformed, multiplied by the
Fourier filter, and inverse fast Fourier transformed. The
middle 1/4th of the field (now 512 � 512) was removed for
flow and transport simulation.
[37] On the basis of the limited data in the horizontal

direction, we specified an FBM with Hurst index of H1 =
0.7 in the horizontal direction of flow, and varied the scaling
index in the transverse direction, using orders of integration
from Avert = 0.1 to 1.5, signifying FGN with H = 0.6 up to
an FBM with H = 1.0. Four of these fields are shown in
Figure 8. The weights in the horizontal are equal left to right
for a total of 0.9, versus similarly symmetric weight in the
vertical of 0.1. For reference, when the vertical order of
integration Avert = Ahoriz = 1.2, the field is similar to
previous isotropic and stretched models of FBM [Rajaram
and Gelhar, 1995; Zhan and Wheatcraft, 1996]. The only
difference is our use of four discrete, rather than continuous
(elliptical) weights. The output fields were adjusted to have
zero mean and a standard deviation of 1.5, then exponen-
tiated, so that each field is a lognormal operator-fractional
field. The fields were tested for scaling properties in the two
principal scaling directions by sampling all rows and
columns from the field and applying both rescaled range
and dispersional analyses [Liu and Molz, 1996; Caccia et
al., 1997]. These plots are not shown for brevity.
[38] After solving the head field using MODFLOW

(assuming an average hydraulic gradient of 0.01 and no-
flow boundaries on the top and bottom), particles were
placed on the high-head side and tracked using LaBolle et
al.’s [1996] particle tracking code. To make the simulations
representative of real-world conditions, we included a small
local dispersivity (equal in longitudinal and transverse
directions) of 0.1 times the constant grid size of 0.3 m.
Since this does not correspond exactly to Neuman’s [1995]
and Di Federico and Neuman’s [1998] analytic results, we
performed additional simulations with no local dispersion
and found no noticeable differences. Cushman [1997] and
Hassan et al. [1998] more fully discuss the influence of
local and nonlocal fluxes on the accuracy of analytic
methods in monofractal media.
[39] Increased orders of vertical integration (Avert) have a

distinct effect on both the simulated aquifer structure and the
plume statistics. Lower values have less persistence of aquifer
layers and allow (1)more advectivemixing, (2) less spreading
from persistent preferential flow, and (3) a transition from
Mercado (ballistic) to Fickian flow (Figure 9). In contrast, as
aquifer gains more vertical structure and layering from the
increased order of integration, the plume spreads at a nearly
Mercado-like (ballistic) rate over the entirety of the simula-
tion. Even thought the mean and variance of the overall K
distribution are exactly the same in all simulations, greater
orders of transverse integration (Avert) lead to thicker layers of
high- and low-Kmaterial, hencemoremass in the leading edge
and trailing edges of the plume (Figure 10). The duration of
breakthrough is greater by over an order of magnitude for the

Figure 7. (a) Calculated range statistic (RS) from
horizontal transect and portions of vertical transects within
the undisturbed cross-bedded sandstone unit [Castle et al.,
2004]. The dashed lines indicate FBM in the transects with
Hhoriz 
 0.45 and Hvert 
 0.33. Solid lines indicate RS plus
or minus one standard deviation. Note that for small lags, the
RS is biased low, since it equals zero for lag 1. (b) Dispersion
statistic (standard deviation ofmeans) versus partition size for
the horizontal transects.
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most, versus least, layered aquifer. The contribution of early
arrivals and late tailing are roughly equal. The lowest value of
Avert = 0.1 shows a near-Gaussian plume after 10,000 days
(Figure 11a). The plumes become progressively less
Gaussian and multimodal with greater transverse Avert.
[40] Our numerical K fields have a low wave number

cutoff equal to twice the domain size, since we subsampled
the original 1024 � 1024 field. The Nyquist high wave
number cutoff corresponds to the size of an individual cell.
Therefore the mean positions of our numerical plumes are
between the large and small cutoffs. According to the
criteria of Di Federico and Neuman [1998], the plumes
should be in a permanently preasymptotic state, where the

apparent dipersivity should spread supralinearly (denoted
by the steepest, solid line in Figure 9). The K fields should
not foster asymptotic (Fickian) growth, if the assumptions
inherent to the analytic theories are applicable. Since the
elimination of local dispersion had negligible effect, we
conclude that the transition to a Fickian regime by plumes in
the aquifers with the least persistent layering is due primarily
to advective mixing. The particles do not experience the exact
K correlation structure in the longitudinal direction pre-
scribed by the value of Hhoriz, contrary to the assumption
inherent to the analytic solutions [Neuman, 1995; Di
Federico and Neuman, 1998; Rajaram and Gelhar, 1995].
The particles are free to ‘‘shortcut’’ between high-K zones

Figure 8. Shaded plots of four of the ln(K) fields. The fields are identical except for the order of vertical
integration: (a) 0.1, (b) 0.5, (c) 0.9, and (d) 1.3. The fields are FBM in the horizontal direction with H =
0.7, or an order of integration Ahoriz = 1.2. For particle tracking, 10,000 particles were released from the
right side between nodes 128 and 384 (brackets).
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and avoid the low-K zones, making the Lagrangian
correlation structure different from the Eulerian K structure.
[41] Only the fields that are nearlymonofractal, withAvert =

0.9 and 1.3, agree qualitatively with the analytic predictions
of Rajaram and Gelhar [1995] (Figure 9). In these cases the
particles experience roughly the same Hurst coefficient
along a trajectory no matter how much lateral mixing is
taking place. Since these are single, not ensemble plumes, it
is not surprising that Rajaram and Gelhar’s two-particle
predictions are more accurate in the nearly monofractal
cases. However, these plumes are far from Gaussian in
shape (Figures 11c and 11d). The plumes in the aquifers
with the least persistent layering—with lower values ofAvert=
0.1 and 0.5—show convergence to a Fickian growth rate and
an approximately Gaussian plume shape (Figures 10, 11a,
and 11b), since we specified a finite variance lognormal K
distribution. However, all of the plumes have significant
fractions that travel well ahead of the Gaussian best fit
(Figure 11). Because of the low ln(K) variance, none of
the plumes show as much rapid transport in the leading
edge as an a-stable plume undergoing fractional-order
dispersion [Benson et al., 2001]. One can expect that
monofractally scaling fields with heavy-tailed, a-stable K

increments can create even more rapid transport and a-stable
plumes [Herrick et al., 2002; Grabasnjak, 2003]; however,
Trefry et al. [2003] show that lognormally distributed aquifers
with exponential correlation decay may also engender highly
channelized flow and a-stable growth behavior when both
the integral scale and the variance of ln(K) are large.
[42] On the other end of the transport spectrum, the non-

Fickian plumes (Figure 10) do not display the anomalous
(power law) late-time tailing associated with fractal mobile/
immobile and typical continuous time random walk for-
mulations [Berkowitz and Scher, 1997; Berkowitz et al.,
2000; Schumer et al., 2003b; Dentz and Berkowitz, 2003].
Since our VAR(ln K) was only 2.25 with a geometric mean
of 0.3 m/d, the minimum K values were on the order of
10�4 m/d. This value is not low enough to make diffusion a
dominant flux in our low-K zones [Haggerty et al., 2000].
Had the variance of ln(K) been on the order of 4.0 or more,
the presence of a fractal distribution of low-K zones, with
flux dominated by diffusion, should induce this type of
fractal delayed transport [Haggerty et al., 2000].
[43] To summarize the results of the numerical experi-

ment, we confirmed the fact that higher orders of integration
in the vertical direction (corresponding to FBM with high H
values) describe increased persistence of random values,
hence greater layering or stratification. Plumes released in
operator-fractional aquifers will spread at different rates,
even with the same value of H in the direction of flow and
identical ln(K) mean and variance. Those plumes in nearly
monofractal aquifers plumes agree best with the mono-
fractal analytic solution of Rajaram and Gelhar [1995],
perhaps because their theory is developed for single, not
ensemble plumes. A more extensive analysis of ensembles
of operator-fractional plumes would be needed to confirm
this. The breakthrough of plumes is drastically affected by
the transverse scaling properties of the aquifer. The most
stratified aquifer (FBM in the vertical with H = 0.8) had
particles arrive nearly an order of magnitude before and after
the least stratified aquifer. We used a simplistic measure of

Figure 9. Apparent dispersivity versus mean particle
distance for various orders of integration (Avert) in the
vertical direction. Solid and dash-dotted lines indicate
permanently preasymptotic and early preasymptotic (i.e.,
Mercado) solutions, respectively, for monofractals [Di
Federico and Neuman, 1998]. The dotted line indicates
two-particle (single-plume) slope from Rajaram and Gelhar
[1995]. The dashed line indicates Fickian motion.

Figure 10. Breakthrough of particles at the boundary x =
156 m.
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directional K dependence in our approximation of a granular
aquifer. Our measure of the directionality within the surface
expression of a braided stream environment may show more
complex structure and different plume mixing effects. We
have not yet examined the effect of more complex
directional measures M(q), whether they represent granular
(Figure 3) or fractured media (Figure 6).

6. Conclusions

[44] 1. A multidimensional operator-fractional Gaussian
noise/Brownian motion, or combination of the two, can be
created via Fourier transform by convolving an uncorrelated
Gaussian noise with a function that has the correct matrix
scaling relationship.
[45] 2. Many other distributions can be chosen for the

uncorrelated noise in the numerical procedure, yielding a
process with operator-self-similar increments. Furthermore,
the input noise may be given nonstationary statistics to
represent sequences of geologic material.
[46] 3. In d dimensions, the d primary scaling directions

of the self-similar random field need not be orthogonal.
Furthermore, the weights assigned to the directional

fractional integrals, that is, the convolution kernel, are
freely assigned to the d-dimensional unit sphere.
[47] 4. The longitudinal moments of a moving plume

depend largely on the scaling (e.g., Hurst) coefficients in the
directions transverse to flow. Prior analytic results do not
account for this.
[48] 5. Smaller orders of integration, representing noise or

motion with small Hurst coefficients, lead to less persistent
aquifer layering and greater advective mixing of a plume. In
contrast to previous analytic predictions, plumes in material
with small orders of integration (i.e., noisy or less persistent
layering) in the transverse direction may converge relatively
quickly to Fickian-type transport, regardless of the K
structure in the direction of transport.

Appendix A: Calculation of Ĵ(k)

[49] Recall that the Fourier filter ĵ(k) =y(k)�A, where A =
H + d/2 and y(k) is the log characteristic function of some
operator stable law with exponent Q. It follows [e.g., Jurek
and Mason, 1993] that y(k) has the representation

y kð Þ ¼
Z
kQk¼1

Z 1

0

e�ik	 rQQð Þ � 1� ik
�

	 rQQ

 �� dr

r2
l dQð Þ ðA1Þ

Figure 11. Semilog plots of vertically integrated concentration (plumes) versus longitudinal distance for
the fields shown in Figure 8 with Avert = [0.1, 0.5, 0.9, 1.3]. Best fit Gaussian curves underlie points.
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if the real parts of the eigenvalues ofQ are in the interval (1/2,
1), whereas

y kð Þ ¼
Z
kQk¼1

Z 1

0

e�ik	 rQQð Þ � 1
� 	 dr

r2
l dQð Þ ðA2Þ

if the real parts of the eigenvalues ofQ are greater than one. In
the following we will only consider the latter case. The first
case can be dealt with similarly. The measure l on the unit
sphere is called themixingmeasure or the spectral measure of
y.
[50] Let 1 < a1 � a2 � . . . � ad denote the real parts of

the eigenvalues of Q. Then Bj(x) defined by (2) exists, if
(d/2)(ap � 1) < H < (d/2)(a1 � 1) + a1 which is only
possible if ad < (1 + 2/d)a1, putting some restriction on
Q. It follows that

Bj cQx

 �

¼ cA�Tr Qð Þ=2Bj xð Þ ðA3Þ

in distribution, where Tr(Q) is the sum of the eigenvalues
of Q. Furthermore, the variance V(x) = VAR(Bj(x)) has
the scaling relation V(cQx) = c2A�Tr(Q)V(x). Note that in
the isotropic fractional Brownian field case, corresponding
to y(k) = kkk, we have a1 = ad = 1, so our condition in
this special case reduces to the standard 0 < H < 1
condition on H and (A3) is just Bj(cx) = cHBj(x).
[51] In order to compute y(k) we use a discrete mixing

measure l(dq) =
P

M(qi)dqi, a sum of point masses dqi with
user-specified weights M(qi) (indicating the strength of the
directional dependence). For a continuous measure l(dq) we
use a discrete approximation.
[52] An important special case, generalizing the example in

equation (15) can be obtained in the following way (we only
describe the case d = 2, higher dimensional examples are
obtained similarly): Fix any two nonparallel vectors q1 and
q2 on the unit sphere and any two numbers 1 < a1 < a2 <
2a1. Pick any weights M(±qi) and define the
spectral measure l(dq) = M(q1)dq1 + M(�q1)d�q1 +
M(q2)dq2 + M(�q2)d�q2. Let Q be a 2 � 2-matrix with
eigenvectors q1 and q2 and corresponding eigenvalues a1
and a2, respectively, so that Qqi = aiqi. Then, by some
calculations we get from (A2) for some constants C1,
C2 > 0 (only depending on a1 and a2) that

y kð Þ ¼ C1 M q1ð Þ ik 	 q1ð Þ1=a1
�

þ M �q1ð Þ �ik 	 q1ð Þ1=a1
	

þ C2 M q2ð Þ ik 	 q2ð Þ1=a2
�

þ M �q2ð Þ �ik 	 q2ð Þ1=a2
	
;

which corresponds to a weighted fractional derivative of
order 1/a1 in direction ±q1 and of order 1/a2 in direction ±q2.
If we let ĵ(k) = y(k)�H�1 for some a2 � 1 < H < 2a1 � 1
then Bj(x) defined by (2) exists and scales as Bj(c

Qx) =
cH+1�(a1+a2)/2Bj(x).

Notation

aL longitudinal dispersivity [L].
A order of fractional integration.

B(dx) uncorrelated (white) Gaussian noise.
BH(x) isotropic fractional Brownian motion.
Bj(x) (operator) fractional random field.
FBM fractional Brownian motion.

d number of dimensions.
H Hurst coefficient.
I identity matrix.
k wave vector [L�1].
K hydraulic conductivity [LT�1].

M(q) measure of directional weight within j(x).
Q deviations from isotropy matrix.

VAR(Y) variance of random variable Y.
�X mean particle longitudinal travel distance.
q unit vector on the d-dimensional unit sphere.

j(x) scaling (convolution) kernel.
y(k) log-characteristic function of operator-stable

density.
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