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Abstract

Fractional advection–dispersion equations are used in groundwater hydrology to model the transport of
passive tracers carried by &uid &ow in a porous medium. In this paper we develop practical numerical
methods to solve one dimensional fractional advection–dispersion equations with variable coe4cients on a
5nite domain. The practical application of these results is illustrated by modeling a radial &ow problem. Use
of the fractional derivative allows the model equations to capture the early arrival of tracer observed at a
5eld site.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional derivatives are almost as old as their more familiar integer-order counterparts [23,30].
Fractional derivatives have recently been applied to many problems in physics [3,7,8,10,16,19,20,22,
29,31,36], 5nance [14,25,28], and hydrology [2,4–6,33,34]. Fractional space derivatives are used to
model anomalous di$usion or dispersion, where a particle plume spreads at a rate inconsistent with
the classical Brownian motion model. When a fractional derivative replaces the second derivative in
a di$usion or dispersion model, it leads to enhanced di$usion (also called superdi$usion). For a one
dimensional advection–dispersion model with constant coe4cients, analytical solutions are available
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using Fourier transform methods [5,10]. However, many practical problems require a model with
variable coe4cients [3,11].

In this paper, we develop the basic theory of numerical solution for the space-fractional advection–
dispersion equation

9c(r; t)
9t = −v(r) 9c(r; t)9r + d(r)

9�c(r; t)
9r� + f(r; t); (1)

on a 5nite domain L¡r¡R. Physical considerations restrict 1¡�6 2, see [33]. We assume
v(r)¿ 0 and d(r)¿ 0 so that the &ow is from left to right. We also assume an initial condi-
tion c(r; t = 0) = F(r) for L¡r¡R and a natural set of boundary conditions for this problem:
c(r= L; t) = 0 for all t¿ 0 and 9c(r=R; t)=9t= 0 for all t¿ 0. Physically, the boundary conditions
mean that no tracer leaks past the left boundary, and that the tracer moves freely through the right
boundary. With these assumptions, we show that the implicit Euler method is unconditionally stable
when a modi5ed form of the GrJunwald formula is used to approximate the fractional derivative.
Without this modi5cation, the implicit Euler method is unstable and therefore its solution does not
converge to the true solution. The explicit Euler method is also unstable when the standard GrJunwald
formula is used.

Eq. (1) uses a Riemann fractional derivative of order �, de5ned by

d�f(r)
dr�

=
1

�(n− �)
dn

drn

∫ r

L

f(�)
(r − �)�+1−n d�; (2)

where n is an integer such that n − 1¡�6 n. In most of the related literature, the case L = 0 is
called the Riemann–Liouville form, and the case L=−∞ is the Liouville de5nition for the fractional
derivative. Fractional derivatives are nonlocal operators of convolution type [1,12,21]. The value of
the fractional derivative at a point r depends on the function values at all the points to the left of
the point of interest. With our boundary conditions, the Riemann and Liouville forms in (1) are
equivalent. For more details on fractional derivative concepts and de5nitions, see [23,24,30].

A di$erent method for solving the fractional partial di$erential Eq. (1) is pursued in the recent
paper of Liu et al. [18]. They transform this partial di$erential equation into a system of ordinary
di$erential equations (Method of Lines), which is then solved using backward di$erentiation formu-
las. In another very recent paper, Fix and Roop [13] develop a 5nite element method for a two-point
boundary value problem. We are unaware of any other published work on numerical solutions of
fractional partial di$erential equations.

2. Numerical methods

In this section we develop the basic theory for numerical solution of the fractional advection–
dispersion Eq. (1) on a 5nite domain L¡r¡R with the initial condition c(r; t = 0) = F(r) for
L6 r6R, and the boundary conditions c(r = L; t) = 0 and 9c(r = R; t)=9t = 0 for all t¿ 0. A
discrete approximation to the fractional derivative term may be de5ned from the standard GrJunwald
formula

9�c(r; t)
9r� =

1
�(−�)

lim
M→∞

1
h�

M∑
k=0

�(k − �)
�(k + 1)

c(r − kh; t); (3)
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where M is a positive integer, h= (r − L)=M and �(·) is the gamma function [23,24,30]. Note that
the value of the fractional derivative at a point r depends on the function values at that point and
all the points to the left of that point of interest.

Given a numerical approximation scheme, we de5ne tn=nLt to be the integration time 06 tn6T ,
Lr = h¿ 0 is the grid size in space, K = (R− L)=h, ri = L+ ih for i= 0; : : : ; K so that L6 ri6R,
and cni is the numerical approximation to c(ri; tn). Similarly di = d(ri), vi = v(ri), fni = f(ri; tn).

In what follows, we will demonstrate some surprising results. In the classical ADE, the implicit
Euler method (and also the Crank–Nicholson method) is unconditionally stable, and is therefore
preferred to the explicit Euler method. For the fractional ADE with the standard GrJunwald estimates,
the explicit Euler method, the implicit Euler method, and the Crank–Nicholson method are all
unconditionally unstable. A shifted GrJunwald formula allows the implicit Euler method (and also
the Crank–Nicholson method) to be unconditionally stable.

Proposition 2.1. The explicit Euler method solution to Eq. (1), based on the Gr7unwald approxi-
mation (3) to the fractional derivative, is unstable.

Proof. We have

cn+1
i − cni

Lt
= −vi

cni − cni−1

h
+

di
h��(−�)

i∑
k=0

�(k − �)
�(k + 1)

cni−k + fni (4)

for i = 1; 2; ::K − 1. We de5ne the ‘normalized’ GrJunwald weights by

gk =
�(k − �)

�(−�)�(k + 1)
: (5)

Note that these normalized weights only depend on the order � and the index k. (For example, the
5rst four terms of this sequence are given by g0 = 1; g1 = −�; g2 = �(� − 1)=2!; g3 = −�(� − 1)
(�− 2)=3!). The resulting equation can be explicitly solved for cn+1

i to give:

cn+1
i =

(
1 − Lt

h
vi +

Lt
h�
di

)
cni +

(vi
h

− �
h�
di
)

Ltcni−1 +
diLt
h�

i∑
k=2

gkcni−k + fni Lt: (6)

Assume that c0
i is the only term that has an error, so the perturbed value is c0

i = c0
i + �0i . This

perturbation produces a perturbed value for c1
i given by c1

i = c1
i + �1i . So (6) yields

c1
i = �ic0

i +
(vi
h

− �
h�
di
)

Ltcni−1 +
diLt
h�

i∑
k=2

gkcni−k + fni Lt = �i�0i + c1
i ;

where the factor

�i = 1 − Lt
h
vi +

Lt
h�
di:

Therefore we have �1i =�i�0i . That is, the error is ampli5ed by the factor �i when the 5nite di$erence
equation is advanced by one timestep. After n timesteps, one may write �ni = �ni �

0
i . We refer to � as

the ampli5cation factor (or magni5cation factor). In order for the explicit Euler method to be stable,
it is necessary that |�i|6 1, for all h su4ciently small. But for �¿ 1 , this inequality requires that
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h¿ (di=vi)1=(�−1). Hence, although it is true that the errors may not grow for larger values of h, the
method is not stable as h is re5ned, and therefore the numerical solution does not converge to the
exact solution of the di$erential equation.

Remark 2.2. The 5nite di$erence method de5ned above has a local truncation error of O(Lt) +
O(Lr), since each 5nite di$erence formula is locally 5rst order accurate. Refer to [32] for a proof
of 5rst order accuracy of the GrJunwald estimate for the fractional term (Also see [24, Section 7.4]
for a di$erent proof for polynomial functions).

Proposition 2.3. The implicit Euler method solution to Eq. (1), based on the Gr7unwald approxi-
mation (3) to the fractional derivative, is unstable.

Proof. In the implicit Euler method, Eq. (1) is discretized so that the right hand side of the equation
is evaluated at tn+1. Then we obtain

cn+1
i − cni

Lt
= −vi

cn+1
i − cn+1

i−1

h
+
di
h�

i∑
k=0

gk cn+1
i−k + fn+1

i : (7)

Although this is an implicit Euler method, the problem can be solved ‘explicitly’ by a left-to-right
sweep across the r domain, due to the Dirichlet boundary condition at the left boundary. That is,
we can compute(

1 +
viLt
h

− diLt
h�

)
cn+1
i = cni +

[
vicn+1

i−1

h
+
di
h�

i∑
k=1

gkcn+1
i−k + fn+1

i

]
Lt: (8)

To assess the stability of this implicit Euler method, consider the propagation of an error only in c0
i

: that is c0
i is replaced by c0

i = c0
i + �0i . Then re-write the above equation in the form

cn+1
i = �̃icni + �̃i

[
vicn+1

i−1

h
+
di
h�

i∑
k=1

gkcn+1
i−k + fn+1

i

]
Lt;

where

�̃i =
1

1 + (viLt=h) − (diLt=h�)
: (9)

Due to the linearity of this 5nite di$erence equation, after some simple manipulations we obtain

c1
i = c1

i + �1i = �̃ic0
i + · · · = �̃i(c1

i + �0i ) + · · · = �̃ic1
i + · · · + �̃i�0i = c1

i + �̃i�0i :

Here �̃i is the ampli5cation factor (at the grid point ri). The propagated e$ect of the error �0i at time
step t1 is then equal to �1i = �̃i�0i , and at time step tn this error propagates to become �ni = (�̃i)n�0i .
Therefore, in order for the above formulation of the implicit Euler method to be stable, it is necessary
that |�̃i|6 1. However, for any h su4ciently small we will always have |�̃i|¿ 1, so the implicit
Euler method is unstable in this case, and hence its numerical solution does not converge to the
exact solution of the di$erential equation.

The implicit (Euler) methods are the preferred approach to discretize the classical PDEs due to
their unconditional stability (which does not constrain the size of the time step). Unconditional
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stability is a hallmark of the implicit Euler method in the classical PDEs. However, the above result
shows that stability falls apart in the fractional case when the standard GrJunwald formulas are used
to approximate the derivatives. A similar conclusion, using similar analysis, is also reached for the
Crank–Nicholson discretization of (1) with the form (3) of the GrJunwald estimates. To remedy this
situation, a variant of the GrJunwald formula can be used, in which the function evaluations are
shifted to the right. We begin by showing that the shifted GrJunwald formula is consistent. We also
provide the order of consistency/convergence, since this is important for numerical work.

Theorem 2.4. Suppose that f∈L1(R) and f∈C�+1(R), and let

Ahf(x) =
1

�(−�)
1
h�

∞∑
k=0

�(k − �)
�(k + 1)

f(x − (k − p)h); (10)

where p is a nonnegative integer. Let Af(x) = d�f(x)=dx� be the Liouville fractional derivative as
given by (2) with L= −∞. Then Ahf(x) = Af(x) + O(h) uniformly in x∈R1 as h → 0.

Proof. We adapt the argument that the standard GrJunwald formula (3) is O(h) from Tuan and
Goren&o [32]. Let F[f](k) = f̂(k) =

∫
eikxf(x) dx be the Fourier transform of f(x) so that eikhf̂(k)

is the Fourier transform of f(x − h). It is well known that

(1 + z)� =
∞∑
k=0

(
�

k

)
zk (11)

for any complex |z|6 1 and any �¿ 0, where(
�

k

)
=

(−1)k�(k − �)
�(−�)�(k + 1)

:

Note that(
�

0

)
= 1;

(
�

1

)
= �;

and (
�

k

)
(−1)k =

(−�)(−�+ 1) · · · (−�+ k − 1)
k!

for all k¿ 2:

Take Fourier transforms in (10) and use (11) to see that

F[Ahf](k) = h−�
∞∑
m=0

(−1)m
(
�

m

)
eik(m−p)hf̂(k)

= h−�e−ikhp(1 − eikh)�f̂(k)

= h−�(−ikh)�
(

1 − eikh

−ikh

)�
e−ikhpf̂(k)

= (−ik)�w(−ikh)f̂(k); (12)



70 M.M. Meerschaert, C. Tadjeran / Journal of Computational and Applied Mathematics 172 (2004) 65–77

where (iu)� = sign(u)|u|�exp(i#�=2) for real u and

w(z) =
(

1 − e−z

z

)�
ezp = 1 −

(
p− �

2

)
z + O(|z|2): (13)

Note that |w(−ix) − 1|6C|x| for all x∈R for some C¿ 0. Then

F[Ahf](k) = (−ik)�f̂(k) + (−ik)�(w(−ikh) − 1)f̂(k)

=F[Af](k) + ’̂(h; k); (14)

where ’̂(h; k) = (−ik)�(w(−ikh) − 1)f̂(k) and

’(h; x) =
1

2#i

∫ ∞

−∞
e−ikx’̂(h; k) dk:

Since f∈L1(R) and f∈C�+1(R) we have

I =
∫ ∞

−∞
(1 + |k|)�+1|f̂(k)| dk ¡∞:

Then since

|’̂(h; k)|6 |k|�C|hk| |f̂(k)|

we also have |’(h; x)|6 ICh for all x∈R.

Remark 2.5. The universal constant C in the above proof depends on the linear term in the Taylor
series (13). Although any shift (even the unshifted form p= 0) gives an O(h) consistency, the best
performance comes from minimizing |p − �=2|. For the fractional advection–dispersion Eq. (1) we
have 1¡�6 2 so the optimal choice is p= 1. If �= 2 then this coincides with the centered second
di$erence estimator of the second derivative.

Remark 2.6. The GrJunwald formula can be viewed as a Riemann sum approximation to the integral
de5nition of the fractional derivative. Under certain conditions (see [24, p. 219]) the fractional
derivative (2) may be written in the form

d�f(r)
dr�

=
1

�(−�)

∫ r

L
f(r − �)�−�−1 d�: (15)

Use Stirling’s formula �(x + 1) ∼ √
2#x xxe−x as x → ∞, to see that

�(k − �)
�(k + 1)

∼
√

2#(k − 1 − �)(k − 1 − �)(k−1−�)e−(k−1−�)

√
2#kkke−k

= e�+1

√
k − 1 − �

k
(k − 1 − �)(k−1−�)

kk
;
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where
√

(k − 1 − �)=k → 1 and

k�+1 (k − 1 − �)(k−1−�)

kk
=
(

1 − �+ 1
k

)k ( k
k − 1 − �

)�+1

→ e−�−1

as k → ∞, and therefore
�(k − �)
�(k + 1)

∼ k−�−1 (16)

as k → ∞. Then

1
�(−�)

1
h�

M∑
k=0

�(k − �)
�(k + 1)

f(r − kh) ≈ 1
�(−�)

M∑
k=0

f(r − kh)(kh)−�−1h

which is a Riemann sum approximation to (15). Then the shift in (10) corresponds to replacing
f(r − kh) by f(r − (k − p)h) which does not a$ect the limit as h → 0.

Boundary conditions are usually not treated in the stability analysis of the 5nite di$erence scheme,
since it is the behavior in the interior region that is of most interest. Below we prove the numerical
stability for Eq. (1) with Dirichlet boundary conditions on the right boundary, that is c(r=R; t)=bR(t).
In the fractional advection–dispersion Eq. (1) the order of the fractional derivative is 1¡�6 2,
so the optimal GrJunwald formula is shifted by one grid point to the right. It turns out that this
modi5cation also makes the implicit Euler method consistent and unconditionally stable. Then the
Lax equivalence theorem in [27, p. 45] implies that the 5nite di$erence solution converges to the
true solution as Lt → 0 and h= Lr → 0.

Theorem 2.7. The implicit Euler method solution to Eq. (1) with 1¡�6 2 on the :nite domain
L6 r6R, with boundary conditions c(r = L; t) = 0 and c(r = R; t) = bR(t) for all t¿ 0, based on
the shifted Gr7unwald approximation

9�c(r; t)
9r� =

1
�(−�)

lim
M→∞

1
h�

M∑
k=0

�(k − �)
�(k + 1)

c(r − (k − 1)h; t); (17)

where h= (r − L)=M , is consistent and unconditionally stable.

Proof. The left boundary condition c(L; t) = 0 implies that we can extend the function c(r; t) = 0 for
all r6L and t¿ 0. Then the fractional derivative (2) coincides with the Liouville form, the 5nite
sum approximation (17) equals the in5nite sum approximation in (10), and Theorem 2.4 implies
that the truncation error in the shifted GrJunwald approximation (17) is O(h). It follows easily that
the method is consistent. Now the approximating formula for the fractional term in (1) is

9�c(ri; tn)
9r� ≈ 1

h�

i+1∑
k=0

gkcni−k+1: (18)

When this shifted GrJunwald estimate (18) is substituted in the implicit Euler method, the resulting
di$erence equations are

cn+1
i − cni

Lt
= −vi

cn+1
i − cn+1

i−1

h
+
di
h�

i+1∑
k=0

gkcn+1
i−k+1 + fn+1

i : (19)
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These equations, together with the Dirichlet boundary conditions, result in a linear system of
equations whose coe4cient matrix is the sum of a lower triangular and a super-diagonal matrices.
De5ning Ei = viLt=h, and Bi = diLt=h�, then the system de5ned by (19) can be re-written as

cn+1
i − cni = −Ei(cn+1

i − cn+1
i−1 ) + Bi

i+1∑
k=0

gkcn+1
i−k+1 + Ltfn+1

i :

The above equation can be re-arranged for the like terms to yield

−g0Bicn+1
i+1 + (1 + Ei − g1Bi)cn+1

i − (Ei + g2Bi)cn+1
i−1 − Bi

i+1∑
k=3

gkcn+1
i−k+1 = cni + Ltfn+1

i :

This di$erence equation de5nes a linear system of equations ACn+1 = Cn + LtFn+1, where

Cn+1 = [cn+1
0 ; cn+1

1 ; cn+1
2 ; : : : ; cn+1

K ]T

Cn + LtFn = [0; cn1 + Ltfn1 ; c
n
2 + Ltfn2 ; : : : ; c

n
K−1 + LtfnK−1; bR(tn+1)]T

and A= [Ai;j] is the matrix of coe4cients. These coe4cients, for i= 1; : : : ; K−1 and j= 1; : : : ; K−1
are de5ned as follows (note that g0 = 1; g1 = −�):

Ai;j =




0 when j¿ i + 2;

−g0Bi when j = i + 1;

1 + Ei − g1Bi when j = i;

−Ei − g2Bi when j = i − 1;

−gi−j+1Bi when j6 i − 1:

while A0;0 = 1; A0; j = 0 for j = 1; : : : ; K; AK;K = 1, and AK;j = 0 for j = 0; : : : ; K − 1.
Let , be an eigenvalue of the matrix A, so that AX = ,X for some nonzero vector X . Choose i

so that |xi| = max{|xj| : j = 0; : : : ; K}. Then
∑K

j=0 Ai;jxj = ,xi, and therefore

,= Ai; i +
K∑

j=0; j �=i
Ai; j

xj
xi
: (20)

If i = 0 or i = K , then we get ,= 1. Otherwise, substituting the values of Ai;j into (20) we get

,= 1 + Ei − g1Bi − g0Bi
xi+1

xi
− (Ei + g2Bi)

xi−1

xi
− Bi

i−2∑
j=0

gi−j+1
xj
xi

= 1 + Ei(1 − xi−1=xi) − Bi


g1 +

i+1∑
j=0; j �=i

gi−j+1
xj
xi


 :

Substitute z = −1 into (11) to see that
∑∞

k=0 gk = 0. Since 1¡�6 2, the only negative term in
the sequence of GrJunwald weights is g1 = −�. Therefore, −g1¿

∑j
k=0; k �=1 gk for any j = 0; 1; 2; : : :.
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Since |xj=xi|6 1 and gj¿ 0 for j = 0; 2; 3; 4; : : :, we get

i+1∑
j=0; j �=i

gi−j+1|xj=xi|6
i+1∑

j=0; j �=i
gi−j+16− g1:

Therefore, we have

g1 +
i+1∑

j=0; j �=i
gi−j+1

∣∣∣∣xjxi
∣∣∣∣6 0:

Since, E1; Bi are both non-negative reals, we conclude that every eigenvalue of A satis5es |,|¿ 1.
Then A is invertible, and every . eigenvalue of A−1 satis5es |.|6 1. Therefore the spectral radius of
the inverse matrix /(A−1)6 1, and an error �0 in C0 will result in an error in C1 given by �1=A−1�0.
Thus the error is bounded ‖�1‖6 ‖�0‖ and therefore the method is unconditionally stable.

Remark 2.8. The result of Theorem 2.7 also applies to the fractional advection-di$usion Eq. (1) with
more general space and time dependent advection and dispersion coe4cients, that is, v= v(r; t)¿ 0,
and d= d(r; t)¿ 0. The proof is essentially unmodi5ed in this case.

Remark 2.9. Note that for � = 2, which corresponds to the classical second derivative case, the
shifted GrJuwald estimate (18) is just the standard centered di$erence formula for approximating the
second derivative (g0 = 1; g1 = −2; g2 = 1; g3 = g4 = · · · = 0),

92c(ri; tn)
9r2 ≈ cni+1 − 2cni + cni−1

h2 : (21)

Remark 2.10. The system of equations ACn+1 = Cn + LtFn+1 is solved at time tn to advance the
solution to time tn+1. Note that if the timestep Lt is kept constant, since the matrix coe4cients are
independent of time t (this assumes that v=v(r) and d=d(r)), the linear system needs to be solved
only once, and the matrix multipliers saved to e4ciently solve the resulting system of equations as
the solution is marched forward in time.

Remark 2.11. The same approach as in Theorem 2.7 can also be applied with a more general
boundary condition of the third kind of the form c(R; t) + 09c(R; t)=9r = s(t) with 0¿ 0, as this
boundary condition preserves the diagonal dominance of the resulting coe4cient matrix.

Remark 2.12. The Crank–Nicholson discretization, using the shifted GrJunwald estimates for the
fractional derivative, can also be shown to be unconditionally stable. The proof is exactly as in
the above case, the only change will be that for the coe4cient matrix, Ei; Bi will be replaced by
Ei=2; Bi=2 respectively. However, the Crank–Nicholson method with the standard GrJunwald formula
(i.e., with no shift) will be unconditionally unstable. The general preference for the Crank–Nicholson
for the classical PDE’s is that it provides a stable 5nite di$erence method that is second order accurate
O((Lt)2) + O(h2). However the GrJunwald estimates are only O(h) accurate, and therefore in the
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fractional advection–dispersion di$erential equations the second order accuracy is not achieved by
the use of the corresponding GrJunwald 5nite di$erences.

3. Radial $ow application

A tracer solute is introduced into an aquifer at an injection well, and then pumped out at a second
extraction well. We adopt a radial coordinate system centered at the extraction well, and assume that
the medium is radially homogeneous. Tracer concentration c(r; t) in the aquifer is related to tracer
&ux q(r; t) and injection rate f(r; t) according to the conservation equation

9c(r; t)
9t = −1

r
9
9r (rq(r; t)) + f(r; t) (22)

where the &ux is described by

q(r; t) =
v0

r
c(r; t) − d0

r
9c(r; t)
9r : (23)

The 5rst term is the advective &ux, inversely proportional to r because of the radial geometry. The
second term is the dispersive &ux, and this empirical formula derives from the fact that dispersion
is the e$ect of di$erential advection in a porous media, so that advection and dispersion coe4cients
are roughly proportional.

In a recent 5eld study [9,26,35] at a Nevada test aquifer, 20:81 kg of bromide used as a tracer
solute, at an average concentration of 3600 mg=l, was introduced at the injection well for a period
of 85 h at the rate of 67:8 l=h. The distance from injection well to the extraction well was 30 m, and
the radius of extraction well was 0:127 m. The velocity coe4cient and the dispersion constant were
estimated to be of the same order of magnitude. Measured concentrations over time at the extraction
well show early breakthrough that cannot be explained by the classical radial &ow model.

To address this situation, we employ a model with a fractional dispersive &ux:

q(r; t) =
v0

r
c(r; t) − d0

r
90c(r; t)
9r0 (24)

for some 0¡06 1. The fractional term models anomalous dispersion due to velocity contrasts
resulting from the interaction with a porous medium. Note that v0 and d0 in Eq. (24) are not the
same as in the classical &ux Eq. (23) and the d0’s do not even have the same dimensions. The v0

and d0 are 5tted parameters. We have emphasized the numerical approximation method here. See
[35] for the details of the tested aquifer and associated parameters. Also, see [33] for a physical
derivation of the fractional &ux based on statistical mechanics. The classical model corresponds to
a value of 0 = 1. Values of 0¡ 1 lead to superdispersion, in which solute spreads faster than the
classical model predicts. See [6,15] for some practical methods of estimating the order 0 of the
fractional derivative from data. In the limiting case of 0 = 0, the dispersion process is replaced by
an advection process in the di$erential equation. Substituting (24) with � = 0 + 1 into the radial
conservation law (22) we get

9c(r; t)
9t = −v0

r
9c(r; t)
9r +

d0

r
9�c(r; t)
9r� + f(r; t): (25)

Note that Eq. (25) is the same as Eq. (1) with v(r) = v0=r and d(r) = d0=r. We consider this
equation and its numerical solution in the case 16 �6 2, for L¡r¡R, and 0¡t6T . We take
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Fig. 1. Concentration of bromide tracer (gm=m3) at extraction well. Fractional radial &ow model (25) with v0 =4:0; d0 =2:4
and � = 1:6 (thick line) captures early breakthrough better than classical radial &ow model with v0 = 3:5; d0 = 5:0 and
� = 2 (thin line).

L = −60:127 and R = −0:127. The injection well is at r = −30:127 meters, the extraction well is
centered at r=0, with its wall at r=R=−0:127 meters. The left boundary is set to be upstream and
su4ciently far from the injection well so that no measurable bromide concentration reaches the left
boundary during the time of interest. In doing so, we keep the numerical solution mass preserving.
So, we may assume c(r=L; t) = 0, and 9c(r=R; t)=9r= 0. The injection of bromide is modeled by a
forcing function f(r=−30:127; t)=5:93 g=m3=day for 06 t6 3.54 days, based on some additional
assumptions about aquifer thickness and porosity, and the volume over which the initial injection
spreads. A graph of bromide concentration at the extraction well as a function of time, along with
the results of numerical estimates using the shifted implicit Euler method are shown in Fig. 1. In
the numerical simulation, the r-interval [−60.127, −0.127] was divided into K = 60 subintervals, so
that h = Lr = 1:00 meter, and a value of Lt = 1:00 day was used. The shifted GrJunwald estimate
(18) at each gridpoint ri uses the terms at ri+1; ri; ri−1; : : : ; r0 with the associated GrJunwald weights
g0; g1; g2; : : : ; gi+1 to set up the coe4cient matrix A. The parameters v0 = 4:0, d0 = 2:4 and � = 1:6
were 5t empirically. The fractional radial &ow model captures the early breakthrough of tracer at
the extraction well. As shown, the best-5tting curve from the classical radial &ow model greatly
under-estimated early arrival. We also remark that this solute &ow model and its numerical solution
match the test data closely only up to the peak. Additional (mobile/immobile) solute &ow modeling
to address the late time arrival of the solute has been recently carried out. For details, see [35].

4. Conclusions

Fractional derivatives in space can be used to model anomalous dispersion/di$usion, where parti-
cles spread faster than the classical models predict. Fractional advection–dispersion equations with
variable coe4cients allows velocity to vary over the domain, which is important in applications.
An implicit Euler method, based on a modi5ed GrJunwald approximation to the fractional derivative,
is consistent and unconditionally stable. If the usual GrJunwald approximation is used, the implicit
Euler method is always unstable. This simple numerical method is useful for solving the fractional
radial &ow equation, where the &uid velocity increases as &ow converges on an extraction well. The
fractional derivative allows the model to more accurately describe early arrival, which is important
in modeling groundwater contamination.
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