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Abstract. A solute transport equation with a fractional–order dispersion term is a model
of solute movement in aquifers with very wide distributions of velocity. The equation is
typically formulated in Cartesian coordinates with constant coefficients. In situations where
wells may act as either sources or sinks in these models, a radial coordinate system pro-
vides a more natural framework for deriving the resulting differential equations and the
associated initial and boundary conditions. We provide the fractional radial flow advection–
dispersion equation with non–constant coefficients and develop a stable numerical solu-
tion using finite differences. The hallmark of a spatially fractional–order dispersion term
is the rapid transport of the leading edge of a plume compared to the classical Fickian
model. The numerical solution of the fractional radial transport equation is able to re-
produce the early breakthrough of bromide observed in a radial tracer test conducted
in a fractured granite aquifer. The early breakthrough of bromide is under–predicted by
the classical radial transport model. Another conservative, yet non–naturally occurring
solute (pentaflourobenzoate), also shows early breakthrough but does not conclusively
support the bromide model due to poor detection at very low concentrations. The so-
lution method includes, through a procedure called subordination, the effects of solute
partitioning to immobile water.

1. Introduction

Due to time constraints, tracer tests are often conducted
under forced gradients. In particular, the radial flow regime
induced by a pumping well is often used to estimate the pa-
rameters needed for prediction of long–term transport un-
der natural gradients. The effective porosity (for velocity)
and dispersivity (for the dispersion tensor) are two param-
eters that are used in a Fickian, second–order advection–
dispersion governing equation of motion. The effect of the
radial geometry, aquifer heterogeneity, and test size on the
applicability and/or scale–dependency of the estimates has
been demonstrated by Chao at al. [2000] and Reimus [2003].
An alternative to a scale–dependent dispersion coefficient
in a Fickian model is a fractional–order dispersion term,
which accounts for a non–Fickian plume scaling rate and a
heavy (power law) leading edge of the plume moving un-
der natural gradient conditions [Benson et al., 2001]. The
fractional–order dispersion derivative is a consequence of a
highly heterogeneous, power–law distribution of water ve-
locities and long–range correlation or preferential flow [Her-
rick et al., 2003; Benson et al., 2000a; Cushman and Ginn,
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2002]. In this study, a power–law (fractal) distribution refers
to the asymptotic relation P (X > x) ∼ x−b for positive b
[Mandelbrot, 1982]. A power–law distribution, with b < 2,
of solute particle travel distance over some period of time
induces a fractional dispersion derivative, in tandem with
linear drift (mean advection), in the governing equation of
motion [Saichev and Zaslavsky, 1997; Chaves, 1997; Benson,
1998].

While this study will focus on early arrivals to an extrac-
tion well, no analysis of breakthrough curves (BTC) can
ignore the effects of solute retention and late–time tailing.
Here we provide a brief review. Two primary models exist
that represent end members of possible behavior. The mo-
bile/immobile (MIM) model assumes that solute particles
spend random amounts of time in an immobile phase. Solute
that spends power–law–distributed random amounts of time
(with b < 2) in an immobile phase induces a fractional–order
time derivative in the governing equation [Schumer, 2002;
Dentz and Berkowitz, 2003; Schumer et al., 2003; Baeumer
et al., 2004]. In the fractal MIM model, the two vastly dif-
ferent extreme behaviors that generate fractional space and
time derivatives (rapid transport and long–term immobiliza-
tion, respectively) are considered independent, or uncoupled
[Haggerty et al., 2000]. The uncoupling of immobilization
time and the subsequent velocity allows simple computation
of the breakthrough curves through a process called subor-
dination [Feller, 1971; Schumer et al., 2003]. This process is
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also equivalent to uncoupled continuous time random walk
(CTRW) models [Montroll and Weiss, 1965; Shlesinger et
al., 1982; Grubert, 2001; Berkowitz et al., 2002; Dentz and
Berkowitz, 2003; Bromly et al., 2004; Cortis et al., 2004].
For solute transport, subordination replaces the determin-
istic clock time that a particle spends undergoing a motion
process with a random “operational time.”

On the other hand, Becker and Shapiro [2003] describe
numerous BTC using a model in which tracer mass in any
streamtube is fixed and proportional to the water flux in
the streamtube. The retention is not due to random trap-
ping in immobile zones. Instead, it is due to the presence
of streamtubes with arbitrarily slow advection, so the reten-
tion is directly coupled to velocity. Certain types of cou-
pled processes, along with the uncoupled process, generate
unique fractional–order governing equations with some sim-
ilar properties [Meerschaert et al., 2003]. For example, cou-
pled and uncoupled models may have the same slope on a
log-log plot of the BCT tail while the growth rates, hence
peak arrival times, of the two plumes are completely differ-
ent. Shlesinger et al. [1982] discuss the effect of coupling
on growth rate. Furthermore, in the idealized fractal MIM
model, all retention is within zero-velocity zones; therefore,
solutes with different molecular diffusivity will have differ-
ent retention and overall transport [Haggerty et al., 2000;
Reimus, 2003]. In Becker and Shapiro’s [2003] model, all so-
lutes experience the same non-zero velocity distribution and
travel identically. It is highly likely that both the coupled
and uncoupled mechanisms contribute to the overall reten-
tion in any single fractured system. The relative degree
of either mechanism is best discerned using the extremely
late breakthrough, since these solute particles have expe-
rienced either diffusive-limited transport or very slow co-
advection. Different tests, using using multiple tracers with
significantly different diffusion coefficients, have been ana-
lyzed assuming one or the other model with good results
[Becker and Shapiro, 2003; Haggerty et al., 2000; Reimus et
al., 2003].

To distinguish between the space and time operations, we
call these effects fractional dispersion and fractal retention,
respectively. In subsurface hydrology at the field scale, the
fractional dispersion approach has only been used to model
natural gradient tests in saturated, granular, aquifer mate-
rial [Benson et al., 2000b, 2001]. A recent forced–gradient
test conducted in a fractured granite aquifer [Reimus et al.,
2003] shows some of the characteristics of anomalous trans-
port. The conservative bromide tracer arrives at the ex-
traction well far in advance of the classical (Fickian) model.
We theorize that flow in the fractures or fracture network
is highly heterogeneous [see, e.g., Tsang and Tsang, 1987;
Moreno et al., 1985, 1988, 1990; Haldeman et al., 1991;
Thompson, 1991; Johns and Roberts, 1991; Brown, 1989;
Mourzenko et al., 1995; Keller et al., 1999] and can be mod-
eled with the fractional dispersion approach. Furthermore,
the test shows the fingerprint of long-term solute reten-
tion, with incomplete mass recovery and anomalous late–
time breakthrough. Reimus et al. [2003] use a classical
advection–dispersion model of transport in the fractures,
coupled to an immobile phase in identically–sized matrix
blocks, to fit the data. We formulate and solve the ra-
dial solute transport problem for a fractional–order disper-
sion derivative in order to better fit the early–time BTC,
and include the effects of communication with an immobile
phase with long–term waiting times in a manner similar to
Haggerty et al. [2000], Reimus et al. [2003], Dentz and
Berkowitz [2003] and Schumer et al. [2003]. An analysis of
Becker and Shapiro’s [2003] coupled retention is beyond the
scope of this study, and as we will show, not possible with
the incomplete BTC tail data.

If the time that a solute particle spends in a volume of
immobile water (whether in–fracture or extra–fracture “ma-
trix” water) is independent of the speed at which the parti-
cle travels when released back in the mobile fracture water,
then the breakthrough curve can be solved using two inde-
pendent models. The first is the transport in the mobile

phase alone. This solution is then subordinated according

to the distribution of random waiting times in an immobile

phase [Schumer et al., 2003; Scalas et al., 2004]. We assume

this independence (as do all MIM models) so that we can

solve the spatially fractional problem in radial coordinates

and simply transform the solution to include solute reten-

tion.
Before deriving the fractional–order, radially convergent,

mobile–phase transport equation, we begin with conserva-

tion of mass of a purely mobile solute in cylindrical coordi-

nates [Hoopes and Harleman, 1967]:

∂c

∂t
= − 1

r

∂

∂r
[r q(r, t)] + f(r, t) (1)

where c = c(r, t) is the concentration of the solute (with ra-

dial symmetry), and f(r, t) is a forcing function that may
be used to model the injection or extraction of solute as

a function of space and time. The total flux q(r, t) =

q1(r, t)+q2(r, t), where q1(r, t) is the common drift (mean ad-

vective) flux, and q2(r, t) is the dispersive flux (representing

deviations from the common drift velocity). The classical

Fickian model uses mean advective flux defined by

q1(r, t) = v(r) c,

and Fick’s Law for dispersive flux based on empirical obser-

vations, defined by

q2(r, t) = −d(r)
∂c

∂r
,

where v(r) is the common drift velocity, and d(r) is the dis-

persion coefficient, both of which are functions of the radius.

In a uniform porous medium of thickness b with porosity

θ, with a radial flow toward the extraction well pumping at

rate Q, the advective velocity is given by

v(r) =
Q

2πbθr
=

κv

r

for some constant κv = Q/2πbθ. Moreover, a working as-

sumption typically is made [Bear, 1972] or measured [e.g.,

Hoopes and Harleman, 1967] that the hydrodynamic disper-
sion coefficient at any point is proportional to the velocity.

Therefore, we may write:

d(r) =
aκv

r

for some constant dispersivity a. If these expressions for

v(r) and d(r) are substituted in (1), then after some simple

manipulations we obtain

∂c

∂t
=

−κv

r

∂c

∂r
+

aκv

r

∂2c

∂r2
+ f(r, t), (2)

subject to the appropriate initial and boundary conditions.

2. Radial Fractional Advection–Dispersion
Equation

Early arrivals of solute at an extraction well may not be

predicted by the classical Fickian model. In natural gradi-

ent tests, a fractional–order Fick’s Law is a model of anoma-

lously rapid transport [Benson et al., 2001; Paradisi et al.,
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2001; Molz et al., 2002]. In this case, the gradient of the so-
lute concentration in the empirical flux equation is replaced
by a nonlocal fractional derivative:

q2(r, t) = −d(r)
∂α−1c(r, t)

∂rα−1
,

where the fractional derivative on the right–hand side is de-
fined by the domain of the problem (Appendix). Since our
radial flow problem exists within a finite domain, we use the
Riemann–Liouville (with the corresponding Grünwald for-
mulation) fractional derivative [Oldham and Spanier, 1974;
Miller and Ross, 1993].

The fractional term directly models anomalous dispersion
due to extreme velocity contrasts. In the case of flow within
fractures, the dominant mechanism is thought to be channel-
ing of the flow into distinct preferential pathways [Moreno
et al., 1985; Tsang and Tsang, 1987; Brown, 1989]. Under
this model, the velocity contrasts also lead to growth rate of
a plume under natural gradient conditions faster than the
Fickian rate of t1/2 [Benson et al., 2000b]. When this form
of the dispersive flux is substituted into (1), we get:

∂c

∂t
= − κv

r

∂c

∂r
+

aκv

r

∂αc

∂rα
+ f(r, t). (3)

The forcing function can model the injection of the solute
at the injection well. The units of a are Lα−1 so that
d(r) = aκv/r has dimension Lα/T. A mass–conservative
and nonnegative solution requires that 0 < α ≤ 2. For con-
venience we assume v(r) ≥ 0 and d(r) ≥ 0 so that the flow
is from left to right in the finite domain between left and
right (outer and inner) boundaries RO < r < RI . This in-
duces a somewhat unorthodox coordinate system with r ≤ 0
that works naturally with the directional fractional deriva-
tive (Appendix). In general we may assume an initial condi-
tion c(r, t = 0) = F (r) for RO < r < RI and a natural set of
boundary conditions for this problem: c(r = RO, t) = 0
for all t ≥ 0 and ∂c(r = RI , t)/∂r = 0 for all t ≥ 0
(Fig. 1). Physically, the boundary conditions mean that
no tracer leaks past the outer boundary, and that the tracer
moves by advection through the inner boundary (and into
the extraction well). No solute may diffuse or disperse
out of the extraction well into the formation. Since our
problem models the effluent from an extraction well, c(r, t)
represents the flux–averaged concentration; however, since
∂c(r = RI , t)/∂r = 0, the resident and flux concentrations
are equivalent at the extraction well [Moench, 1989].

The fractional derivative formulation is a generalization
of the standard model, and provides a fractional–order pa-
rameter that can be estimated to properly model the ar-
rival of the solute at the extraction well. See Benson et al.
[2001] and Herrick et al. [2003] for some practical methods
of estimating the order α of the fractional derivative from

Q = 12.4 m3/d

b = 35 m

rL =

−30.127 m

RO= −60.127 m

c(RO,t) = 0

RI = −0.127 mMδ(r-rL)δ(t)

2πrLbθ ∂c/∂r = 0

Figure 1. Schematic of tracer test and numerical bound-
ary conditions.

hydraulic conductivity data. Analytic solutions to the frac-
tional PDE (3) are elusive, but do exist for some analytic
expressions of v, d, and f . In general, the resulting spatially
fractional advection dispersion equation is solved by numer-
ical methods and can be validated against the few analytic
solutions [Meerschaert and Tadjeran, 2003].

An implicit Euler method, based on a modified Grünwald
approximation to the fractional derivative, (or a similarly
defined Crank–Nicholson finite difference method) is a con-
sistent and unconditionally stable numerical solution [Meer-
schaert and Tadjeran, 2003]. We use this method to provide
convergent numerical solutions for the fractional radial flow
equation with variable velocity and dispersion coefficients
(Appendix).

3. Temporal Subordination

If the mobile solute equation is an appropriately defined
Cauchy problem ∂c/∂t = Ac + F (r)δ(t), where A(r) is a
time–homogeneous advection–dispersion operator (for ex-
ample, a boundary value problem with equation (3)), and
F (r) = c(r, t = 0) is the initial condition, then the addition
of infinite–mean, heavy–tailed random waiting times in an
immobile phase induces an equation for the mobile phase of
[Schumer et al., 2003; Dentz and Berkowitz, 2003]:

∂c

∂t
+ β

∂γc

∂tγ
= Ac − F (r)βt−γ

Γ(1 − γ)
, (4)
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Figure 2. Log–log and linear plots of normalized con-
centration (c(RI , t)Q/M) at a central well for several
values of the fractional dispersion parameter α. Solute
undergoing Fickian dispersion and no partitioning to an
immobile phase is shown by the curve α = 2.
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where β[Tγ−1] is a fractal capacity coefficient, 0 < γ ≤ 1,

and the Caputo fractional time derivative is defined by its

Laplace transform sγ−1(sĉ(r, s) − c(r, t = 0)). The solu-

tion may be gained by first solving the mobile–only solution

∂m/∂t = Am + F (r)δ(t) and subordinating the result via

the integration:

c(r, t) =

∫ t

0

m(r, u)gγ

(
t − u

(βu)1/γ

)
(βu)−1/γdu,

where the function gγ(t) with Laplace transform ĝ(s) =

exp(−sγ) is the probability density function of the limit of

an appropriately scaled sum of heavy–tailed waiting times

[Schumer et al., 2003]. A subordination integral [Feller,

1971] accounts for the fact that a particle participates in

the equation of motion (1) for only a portion of the “clock”

time. The long–time tail of gγ(t) decays like t−1−γ , so this

formulation includes the diffusion of solutes into infinite ma-

trix blocks with a return time density with γ = 1/2 [e.g.,

Tsang, 1995; Haggerty et al., 2000]. Long–term tests in frac-

tured [Haggerty et al., 2000] and granular [Schumer et al.,

2003] aquifers indicate different values of γ between zero and

unity.
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Figure 3. Log–log and linear plots of normalized con-
centration (c(RI , t)Q/M) at a central well for several
values of the immobile parameter γ. Purely mobile so-
lute undergoing Fickian dispersion is shown by the curve
γ = 1.0.

4. Model Properties

The novel elements of the model (4), when a radial frac-
tional dispersion model is used for the purely mobile phase,
are the orders of the dispersion derivative (α) and the time
derivative (γ). Using the same boundary value problem de-
fined by the Shoal tracer test (Fig. 1, described in Sec. 5)
and holding all other parameters constant (κv = a = 1), we
investigate the effect of varying both of these derivatives.
When γ = 1, the term (1 + β) is identical to the classi-
cal retardation coefficient, so we first set β = 0 and vary
α over the set [2.0,1.8, 1.6, 1.4]. The most notable effect of
decreased α is the early arrival of the leading edge of the
plume (Fig. 2). This is accompanied by an overall increase
in the width of the breakthrough curve.

To illustrate the effect of the fractional time derivative,
we hold α = 2 and β = 0.005 and vary γ over the set
[0.3, 0.4, 0.5, 0.6, 0.7, 1.0]. When 0 < γ < 1 the late–time
breakthrough curve (Fig. 3a) decays like c(r, t) ∼ t−1−γ

[Haggerty et al., 2000; Schumer et al., 2003; Dentz and
Berkowitz, 2003]. Lower values of γ, with the same capacity
coefficient β, have a clearly reduced peak concentration and
somewhat delayed peak arrival time, both due to the in-
creased proportion of long times in an immobile phase (Fig.
3b). The effects of the fractional space and time derivatives
are, for the most part, independent. Each non-integer order
derivative adds a “wing” to the Fickian BTC.

5. Application

In a recent field study conducted in a fractured granite
aquifer [Reimus et al., 2003], a predominantly radial flow
regime was induced by pumping an extraction well at a
rate of Q = 16.3 m3/day and reinjecting approximately 10%
of the water into the eventual tracer injection well. Upon
reaching a relatively steady–state, a mixture of two conser-
vative solutes and one sorbing solute were introduced at the
injection well for a period of 3.54 days. Within the mix-
ture, 20.81 kg of bromide, at an average concentration of
3.77 kg/m3, and 2.19 kg of pentaflourobenzoate (PFBA)
at an average concentration of 0.397 kg/m3 were included.
Samples from the extraction well were separately analyzed
for both of these relatively conservative solutes using ion
chromatography for bromide and high–pressure liquid chro-
matography for PFBA. Over the course of the test, the ex-
traction rate declined steadily, giving an average extraction
rate of approximately Q = 12.4 m3/day. The distance from
the injection well to the extraction well is 30 m, and the
radius of the extraction well is 0.127 m. The extraction well
screened interval is 35 m, so v(r) = Q/2πrbθ = 0.0564/(rθ)
m2/day, and d(r) = av(r). This gives two parameters that
describe the velocity and dispersion: the mobile, or effective,
porosity θ and the dispersivity a. The remaining fitting pa-
rameters are the fractional dispersion order α, describing
anomalously early arrivals, and the order and capacity co-
efficient of the heavy–tailed waiting times γ and β. For
diffusion from a single smooth fracture of constant aperture
b into infinite immobile slabs, γ = 1/2 and β = φ

√
Dm/b,

where φ is the matrix porosity, and Dm is the diffusion co-
efficient in the matrix [Haggerty et al., 2000; Reimus et al.,
2003].

In the numerical solution (Figure 1), we use outer and
inner boundaries to the radial domain of RO = −60.127 m
and RI = −0.127 m. The injection well is at rL = −30.127
m, the extraction well is centered at r = 0, with its wall
at r = RI = −0.127 m. Both are assumed to have negligi-
ble well–bore mixing. The outer boundary is set to be up-
stream and sufficiently far from the injection well so that no
measurable bromide concentration reaches the outer bound-
ary during the time of interest. Therefore, we may as-
sume c(r = RO, t) = 0, and ∂c(r = RI , t)/∂r = 0. The
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injection of solutes occurred over a short enough time pe-
riod, followed by flushing, that the forcing function is ap-
proximated by a Dirac delta function in space and time
f(r, t) = Mδ(r − rL)δ(t)/2πrLbθ, where M is the injected
mass (Figure 1).

A graph of bromide concentration at the extraction well
as a function of time, along with the results of numerical
estimates using the subordinated implicit Euler method are
shown in Figure 4. All concentrations are normalized by the
factor Q/M so that complete recovery of the solute would
integrate to unity. We find that the hydraulic parameters
θ = 0.015, a = 2 m0.95, α = 1.95 and temporal subordi-
nation parameters γ = 1/2 and β = 0.116 day−1/2 provide
a fit to most of the data. In agreement with Reimus et
al.’s [2003] analysis of the data, we find that the problem
is highly non-unique: since the dispersivity and retention
within an immobile matrix both serve to spread the so-
lute arrival, a large set of parameters fit the data equally
well. Unfortunately, the test was stopped before sufficient
data could uniquely resolve the late–time tail parameters γ
and β (compare Fig. 3a and Fig. 4a). However we wish
to stress that a space–fractional derivative of order α < 2
seems necessary to capture the early–time arrivals, and a
time–fractional derivative of order γ < 1 was required to fit
the late arrivals. The classical radial flow model (Fig. 4a)
greatly under–estimates the early arrival of bromide. For
reference, the parameters in the classical α = 2 model shown
in Figure 4 are θ = 0.026, a = 5 m, γ = 1/2, and β = 0.065
day−1/2, although a range of parameters fit equally well.

The lack of complete tail data also does not allow us to
differentiate between tailing models based on diffusion into
immobile water versus slow advection. For these reasons we
choose γ = 1/2, which is the standard solution for diffu-
sion into infinite immobile slabs. The γ = 1/2 solution is
the genesis for the “−3/2 law” describing the slope of the
late–time BTC on a log–log plot [see e.g., Tsang, 1995; Hag-
gerty et al., 2000]. The fractional radial flow model captures
the early breakthrough of bromide at the extraction well, as
well as the late-time tailing. The (normalized) PFBA break-
through is very similar to the that of bromide, suggesting
either that the slow pathways are not primarily due to diffu-
sion into stagnant zones [e.g., Becker and Shapiro, 2003] or
that a significant portion of the injected mass is not within
the capture zone of the extraction well [Reimus et al., 2003].

PFBA samples collected prior to 37 days were reported
as containing less than the detection limit. To investigate
whether early breakthrough of bromide is indeed anomalous,
we inspected the chromatograms provided by the Harry Reid
Center (Las Vegas, NV) for the PFBA analysis. The chro-
matograms for early samples collected from 20 to 37 days
show peaks at retention times similar to PFBA, though the
peaks are not always statistically significantly greater than
background noise. We used the PFBA peak areas listed on
the chromatograms and show the mean over multiple sam-
ple injections plus or minus one standard deviation (Fig.
4a). While the PFBA data show wide scatter and hover
close to the statistically significant detection limit, they do
tend to show anomalously early arrival relative to the Fick-
ian model (Fig. 4a). However, due to the poor reliability
of the PFBA data, we do not consider this a confirmation
or a repudiation of the fractional transport model at this
site. An artificial tracer with extremely low detection limits
(e.g., DNA strands, Sabir et al. [1999]) could be useful in
the accurate determination of fast pathways modelled by a
fractional dispersion term.

The fractal MIM model with γ = 1/2 reproduces the re-
covery of roughly 20% of the bromide mass by the end of the
test, and predicts that only about 80% of the mass would be
recovered if the test were run forever, due to the irreversible
loss of mass to an immobile phase. Furthermore, our values
of β = φ

√
Dm/b = 0.065 d−1/2 and 0.116 d−1/2 for the clas-

sical and fractional dispersion models are approximately two
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Figure 4. Log–log and linear plots of normalized bro-
mide and PFBA concentration at the extraction well.
A fractional radial flow model with α = 1.95 captures
the early breakthrough. Early PFBA data are shown
plus/minus one standard deviation.

to four times larger than reported by Reimus et al. [2003].
Our values are larger because we assume that all of the in-
jected mass is within the extraction well capture zone. Since
φ = 0.01 to 0.02 and Dm = 1.0×10−6 to 1.7×10−6 m2/day
are measured and fixed values, our estimate of the fracture
aperture is approximately two to four times smaller than
Reimus et al.’s [2003] reported range of 0.6 to 13 mm.

6. Discussion

This paper develops a fractional radial flow equation, and
applies the equation to model breakthrough curves from a
forced–gradient tracer test in fractured granite [Reimus et
al., 2003]. The model uses a fractional partial differential
equation with spatially variable coefficients. Numerical so-
lutions are obtained using a novel implicit Euler method to
handle the fractional space derivative, and a standard subor-
dination to take care of the fractional time derivative. The
space-fractional derivative models anomalous superdisper-
sion, which causes tracer to arrive earlier than the classical
Fickian model predicts. Bromide arrival at the pumping
well is modeled by a spatially fractional derivative of or-
der α = 1.95, indicating weak superdispersion that can be
attributed to mild heterogeneity of velocities in the frac-
ture(s) [Schumer et al., 2001]. While close to the classical
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α = 2 space derivative, this fractional derivative term is still
important for capturing the very early arrivals (Fig. 4a).
A model of the entire BTC required a model of retention,
which we chose to be diffusion into large (effectively infi-
nite) matrix blocks. This type of retention can be modeled
by a fractional time derivative of order γ = 1/2, and would
not only retard, but counteract the super-diffusive growth
rate of a plume travelling under natural gradient conditions
[Schumer et al., 2003; Dentz and Berkowitz, 2003].

Bromide is a naturally-occurring element that imparts
noise and poor detection limits to early, low concentration
data. In an attempt to verify that anomalous superdis-
persion is really taking place, we also examined the break-
through curve for another nonreactive tracer. This non-
naturally occurring tracer (PFBA) also shows evidence of
non-Fickian early arrivals, but poor detection at low con-
centrations makes this evidence inconclusive. In the study
of toxic solutes, it is most important to have reliable models
of the leading edge of the breakthrough curve. The scatter in
the bromide and PFBA data suggests that better tracers are
needed: ones that are not found in nature, do not interact
significantly with the aquifer solids, and are detectable at
extremely low concentrations. For example, the detection
of minute amounts of designer–DNA tracer in the Morep-
pen test [Sabir et al., 1999] show that the extreme edges of
a plume grow much faster than those outlined by mg/l or
µg/l levels of traditional tracers like bromide, and indicates
that new tracers are needed to test new models.

Analyses of tests in fractured rock by Becker and Shapiro
[2003] and McKenna et al. [2001] do not indicate the anoma-
lously early breakthrough of extremely low concentrations.
Thus the early arrivals may not be a ubiquitous occurrence
in fractured rock, or simply may be difficult to detect using
standard techniques. The data in the present case show only
weak heterogeneity, suggesting that short–range transport
in fractured rock may be nearer to Fickian behavior than
in strongly heterogeneous granular material. On the other
hand, a heavy late–time tail on a breakthrough curve is very
commonly observed in tracer tests, so the applicability of the
more general mobile/immobile, CTRW, or time-fractional
models (4) is well-established. Fractally distributed travel
velocities and/or retention times imply using a flow equa-
tion that accommodates fractional derivatives in both space
and time, in order to allow for the possibility of superdis-
persion (modeled by a fractional space derivative) as well as
retardation, subdiffusion, and loss of mobile mass (modeled
by a fractional time derivative).

Appendix A: Numerical Methods

We discuss the basic theory for numerical solution of
the fractional advection–dispersion equation (3) on a fi-
nite domain RO < r < RI with the initial condition
c(r, t = 0) = F (r) for RO ≤ r ≤ RI , and the boundary
conditions c(r = RO, t) = 0 and ∂c(r = RI , t)/∂r = 0 for
all t ≥ 0. Numerical methods for the spatially fractional
advection–dispersion equation contain some surprises. The
implicit (Euler) methods are the preferred approach to dis-
cretize the classical PDEs due to their unconditional stabil-
ity which does not constrain the size of the time step. But,
for the fractional ADE with the standard Grünwald esti-
mates, the implicit Euler method (or the Crank–Nicholson
method) is unconditionally unstable, while the explicit Euler
method can be stable, albeit under a severe stepsize restric-
tion. The situation can be remedied by the use of a shifted
Grünwald formula which allows the implicit Euler method
(and also the Crank–Nicholson method) to be uncondition-
ally stable. For the shifted Grünwald formula the function
evaluations are shifted to the right. The shifted Grünwald

formula produces an unconditionally stable finite difference
method which is O(h) consistent. For proof of these remarks
refer to Meerschaert and Tadjeran [2003].

A Riemann-Liouville fractional derivative on the finite
interval RO ≤ r ≤ RI may be defined (in the sense of gener-
alized functions such as δ(r)) as a convolution with a power
law [Oldham and Spanier, 1974; Samko et al., 1993]:

∂αc(r, t)

∂rα
=

1

Γ(−α)

∫ r−RO

0

y−1−αc(r − y, t)dy.

This is equivalent to Grünwald’s infinite sum

∂αc(r, t)

∂rα
=

1

Γ(−α)
lim

M→∞
1

hα

M∑
k=0

Γ(k − α)

Γ(k + 1)
c(r − kh, t),

(A1)

where Γ(·) is the gamma function. This leads to an approxi-
mation of the Riemann-Liouville fractional derivative by us-
ing a finite number (M) of terms, so that h = (RO − r)/M
[Miller and Ross, 1993; Podlubny, 1999; Samko et al., 1993].
Note that the value of the fractional derivative at a point
r depends on the function values at that point and all the
points at larger radii out to the outer boundary RO. If we
define the “normalized” Grünwald weights by

gk =
Γ(k − α)

Γ(−α) Γ(k + 1)
. (A2)

Then the above Grünwald formula may be written:

∂αc(r, t)

∂rα
≈ 1

hα

M∑
k=0

gk c(r − kh, t). (A3)

Also note that these normalized weights only depend
on the order α and the index k. The first four terms
of this sequence are given by g0 = 1, g1 = −α, g2 =
α (α − 1)/2!, g3 = −α (α − 1) (α − 2)/3!.

Given a numerical approximation scheme, we define tn =
n∆t to be the integration time 0 ≤ tn ≤ T , ∆r = h > 0 is
the grid size in space, K = (RI − RO)/h, ri = RO + ih for
i = 0, . . . , K so that RO ≤ ri ≤ RI , and cn

i is the numerical
approximation to c(ri, tn). Similarly di = d(ri), vi = v(ri),
fn

i = f(ri, tn).
It can be shown that the implicit Euler (or Crank–

Nicholson) approach using the standard Grünwald formula
results in an unconditionally unstable method [Meerschaert
and Tadjeran, 2003]. To obtain a stable (and a conver-
gent) finite difference method, we define and use a shifted
Grünwald formulation. The shifted Grünwald formula takes
the following form:

∂αc(r, t)

∂rα
= lim

M→∞
1

hα

M∑
k=0

gk c[r − (k − 1)h, t], (A4)

from which an approximating formula for the fractional term
can be defined by

∂αc(ri, tn)

∂rα
≈ 1

hα

i∑
k=0

gk cn
i−k+1. (A5)

Note that for α = 2, which corresponds to the classical
second derivative case, (A5) is just the standard centered
difference formula for approximating the second derivative
(g0 = 1, g1 = −2, g2 = 1, g3 = g4 = · · · = 0),

∂2c(ri, tn)

∂r2
≈ cn

i+1 − 2 cn
i + cn

i−1

h2
. (A6)
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When the shifted Grünwald estimate (A5) is substituted
in the implicit Euler method, the resulting difference equa-
tions are

cn+1
i − cn

i

∆t
= −vi

cn+1
i − cn+1

i−1

h
+

di

hα

i∑
k=0

gk cn+1
i−k+1 + fn+1

i

(A7)

These equations, together with the boundary conditions
(cn+1

0 = 0, cn+1
M = cn+1

M−1), result in a linear system of equa-
tions whose coefficient matrix is the sum of a lower triangu-
lar and a super–diagonal matrices. Defining Ei = vi ∆t/h,
and Bi = di ∆t/hα, then the system defined by (A7) can be
re–written:

cn+1
i − cn

i = −Ei(c
n+1
i − cn+1

i−1 )+Bi

i∑
k=0

gk cn+1
i−k+1 +∆t fn+1

i

The above equation can be re–arranged for the like terms to
yield

−g0Bic
n+1
i+1 + (1 + Ei − g1Bi)c

n+1
i − (Ei + g2Bi)c

n+1
i−1

−Bi

i∑
k=3

gk cn+1
i−k+1 = cn

i + ∆t fn+1
i .

This difference equation defines a linear system of equa-
tions A Cn+1 = Cn + ∆t F n+1 where

Cn+1 = [cn+1
0 , cn+1

1 , cn+1
2 , ..., cn+1

K ]T ,

Cn + ∆tFn =

[0, cn
1 + ∆tfn

1 , cn
2 + ∆tfn

2 , ..., cn
K−1 + ∆tfn

K−1, 0]
T ,

and A = [Ai,j ] is the matrix of coefficients. These coeffi-
cients, for i = 1, ...,K − 1 and j = 1, ...,K − 1 are defined
as follows (note that g0 = 1, g1 = −α):

Ai,j =




0 , when j ≥ i + 2
−g0Bi , when j = i + 1
1 + Ei − g1Bi , when j = i
−Ei − g2Bi , when j = i − 1
−gi−j+1Bi , when j ≤ i − 1

while A0,0 = 1, A0,j = 0 for j = 1, . . . , K , AK,K = 1,
AK,K−1 = −1, and AK,j = 0 for j = 0, . . . , K − 2.

The system of equations A Cn+1 = Cn + ∆t F n+1 is
solved at time tn to advance the solution to time tn+1.

Note that in the present case, the coefficients are inde-
pendent of time t, so the linear system needs to be solved
only once, and the matrix multipliers saved to efficiently
solve the resulting system of equations as the solution is
marched forward in time. A similar approach applies to a
more general boundary condition of the third kind of the
form c(RI , t) + η∂c(RI , t)/∂r = s(t).

The Crank–Nicholson discretization, using the shifted
Grünwald estimates for the fractional derivative, can also
be shown to be unconditionally stable. The general prefer-
ence for the Crank–Nicholson for the classical PDEs is that
it provides a stable finite difference method that is second
order accurate O((∆t)2) + O(h2)). However, the Grünwald
estimates (standard or shifted) are only O(h) accurate, and
therefore in the fractional advection–dispersion differential
equations the second order accuracy in time and space is not
achieved by the use of the corresponding finite differences.
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