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Operator Levy motion and multiscaling anomalous diffusion
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The long-term limit motions of individual heavy-tailégower-law particle jumps that characterize anoma-
lous diffusion may have different scaling rates in different directions. Operator stable mptigst=0} are
limits of d-dimensional random jumps that are scale-invariant accordingf'¥(t)=Y(ct), whereH is a
dxd matrix. The eigenvalues of the matrix have real partg LAvith each positiver;<2. In each of thg
principle directions, the random motion has a different Fickian or super-Fickian diffidispersion rate
proportional tot**. These motions have a governing equation with a spatial dispersion operator that is a
mixture of fractional derivatives of different order in different directions. Subsets of the generalized fractional
operator includg(i) a fractional Laplacian with a single order and a general directional mixing measure
m(#); and(ii) a fractional Laplacian with uniform mixing measuithe Riesz potential The motivation for
the generalized dispersion is the observation that tracers in natural aquifers scale at dstgrentickian
rates in the directions parallel and perpendicular to mean flow.

DOI: 10.1103/PhysRevE.63.021112 PACS nunier05.40.Fb, 05.606-k, 47.55.Mh, 02.50.Cw

[. INTRODUCTION indicating a multidimensional anomalous diffusion/
dispersion(see Sec. ¥ The plume is elongated in the direc-
Anomalous diffusion is an important process in hydroge-tion of flow, indicating anisotropy. Existing models handle
ology because of the way that dissolved and often toxicanisotropy in the form of a prefactqusually an effective
chemical tracers move through aquifer material. Groundwadispersion tensoor mixing measur¢16—18. In these mod-
ter velocities span many orders of magnitude and give rise t@|s, tracer concentrations may be higher in some directions
diffusionlike diSperSior(a term that combines molecular dif- than others’ but the Sca”ng expone-hts the same in every
fusion and hydrodynamic dispersjoriThe measured vari-  gjrection. There is no physical reason for this restriction, it is
ance growth in the direction of flow of tracer plumes is typi- merely a mathematical artifact of the modeling approach. In
cally at a super-Fickian rate, i.é(X—X)?)~t?", where the  real aquifer tracer tests, the scaling export¢nisually varies
Hurst indexH > 3 [1-7]. A number of theories that are based with direction. The rate of spreading is fastest in the direc-
on the spatial and temporal autocorrelation of the velocitytion of flow, and slower(but still possibly super-Fickignn
field (or the surrogate hydraulic conductivi§) explain con-  the horizontal direction transverse to the mean flow. Model-
vergence to non-Fickian flux expressidiis-5]. Several of ing this behavior requires a new anisotropic model for
these are based on, or equivalent to, the continuous-timenomalous diffusion, where the scaling exponent varies with
random-walk mod€l8] and may lead to governing equations direction. In this study, we extend the spatially fractional
with fractional derivatives in time and/or spaf&3,9-11. ADE to accommodate different scaling exponents in each
These theories are formulated in an isotropic way, so that theoordinate. The new governing equation describes an opera-
scaling behavior and the order of the spatial derivative optor Levy motion, which is a generalization of iz¢ motion.
erator do not vary with direction. This generalized ADE allows a faithful representation of
A spatially fractional advection-dispersion equation multidimensional tracer plumes, with a faster spreading rate
(ADE) governs ana-stable Lery motion [12—15, a super- in the direction of the mean flow. Since the physics of
Fickian stochastic process with scaling expondrtl/a for  diffusion/dispersion is universal, our equation can also be
some G<a<2. This equation has been successfully appliedused to model any anomalous diffusion in which the rate of
to transport in the direction of flow in an aquifer with heavy- spreading varies with direction.
tailed K distribution[6]. The order of the space operator and  The term “anomalous diffusion” has been defined in sev-
the dispersion(diffusion) coefficient can be discerned from eral ways. One standard description requires that a particle in
the heavy-tailedK distribution[6] based on an assumption of a spreading tracer cloud has a standard deviation that grows
relatively constant hydraulic gradients and a characteristitike t™ for some O<H<1, excluding the Fickian casH
correlation time. In many aquifers, the plume also spreads at 1. This definition is restricted to processes with finite vari-
a super-Fickian rate transverse to the mean flow directiorance, which excludes g motions. Therefore, we choose a
definition in terms of P(x,t), the Green function of a
diffusive-type equation or the probability density of a par-
*Electronic address: mcubed@unr.edu ticle starting from the origirithe propagator Super-Fickian
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anomalous diffusion has the space-time scaling property The advection-dispersion equatioh) describes a tracer
P(x,t)=t~Yep(t~Yex 1) so that the measured standard de<cloud whose normalized particle concentratid®(x,t)
viation grows liket*® for some G6<a<2. Fickian diffusion  achieves its maximum at the center of massvt. For any

is the casea=2, where the variance grows linearly with unit vectoré, the cross section of the plume on a line in this
time. Super-Fickian anomalous diffusion is indicated whendirection through the center of mass follows a normal density
the classical Fickian diffusion model underestimates the rateiith varianceo?(6)=t6-A6. In the isotropic case where
of spreading. In this paper, we introduce a generalized diffuA=al, the standard deviation is the same in all directions, so
sion model which includes both super-Fickian and Fickianthe tracer cloud has rotational symmetry about its mean. For
diffusion as special cases. The novelty of our approach igeneralA, the standard deviation depends @nindicating
that we allow the spreading rate to depend on the coordinat@referential spreading. In any ca:ar%,( 0)=to§(9) for all 6,

The resulting diffusion can be Fickian in some coordinatessp that the rate of spreading is at the Fickian rate¢*Gfin

and super-Fickian in others, and super-Fickian coordinategyery radial direction.
can have different scaling. We begin with a review of
Brownian motion, Ley motion, and their governing equa- Il ANOMALOUS DISPERSION
tions from a statistical mechanical point of view.

In real world tracer testf7,22,23 one typically observes
Il. CLASSICAL ADVECTION AND DIFFUSION super-Fickian anomalous d_ispersion, whgre the plur.ne.
spreads faster than the classical model predicts. One statisti-
The classical advection-dispersion equation models trang:al mechanical derivation of superdiffusion involves a ran-
port in homogeneous porous megi®]. The same equation, dom walk with dependent particle jumgs, which can lead
also called the diffusion equation, can be used to describe @ fractional Brownian motio24]. A mathematically sim-
wide variety of physical process¢20]. We derive this de- pler alternative is to retain the assumption of independent
terministic governing equation from the scaling limit of a jumps, and relax the assumption that the covariance matrix
random walk. At a given scale in time and space, we repregJJ'=A exists. An extended central limit theorem
sent the sequence of particle jumps by independent, identj21 25 26 implies that the probability distributions of a re-
cally distributed random vector3; ,J,,J3,... . Therandom  scaled random walk~"W(ct) converge ax— = to those
walk W(t)=J;+---+J represents the location of a par- of an a-stable ey motion Y(t), where the Hurst indekd
ticle at timet>0 at this scale. In a rescaled random walk = 1/ for some G< @<2. The relative concentration of an
¢~ YAW(ct), a particle takes the random jurop*2J); at time  ensemble of diffusing particles approximates the stable den-
i/c for each integer. The central limit theorermi21] implies sity P(x,t) of the Levy motion whent is large. Since
that the probability distributions of this rescaled randomp(x t)=t~Y*p(t~Yx 1), the tracer cloud spreads out like
walk converge as— to those of a Brownian motio¥(t)  tH faster than the classical model. Sample path¥(®f are
with mean zero and covariance matri&, assuming that random fractal§27] of dimensione, so the stable index also
EJ;=0 andEJJ]=A. Add a drift with constant mean ad- has physical meaning, which may relate to the geometric
vective velocityv to obtainX(t) normal with meartv and  properties of the mediufi28]. The particle locatioY(t) is a
covariance matrixA. If a very large ensemble of indepen- stable random vectd29] with index «. If =2, we recover
dent particles evolves according to this model, the probabilthe classical Brownian motion model.
ity density P(x,t) of X(t) represents the relative concentra-  The extended central limit theorem applies when the par-
tion of particles at locatiox e RY at timet>0. ticle jumpsJ; have heavy tails. If the random vectalsare
According to the random-walk model, after sufficient time rotationally symmetric withP(||J;|>r)~Cr~¢, then the
has elapsed the relative concentration of diffusing particlesimiting process isa-stable with the same kind of symmetry.
will approximate the normal density(x,t), whose Fourier  This leads to the isotropic model of anomalous diffusion, in
transformP(k,t) = exd —itv-k—(t/2)k- Ak). This equationis Wwhich a tracer cloud spreads out evenly in all directions from

evidently the solution to an initial value problem its center of mass at=ut at the super-Fickian rate",
Anisotropic anomalous diffusion results from asymmetric
dP(k,t) _ » L particle jump distributions. Writd;=R;®; and suppose that
T =(—v-(ik)+z(ik)-A(ik))P(k,t) P(R>r,0,=d6)~Cr “m(6)dé asr—o, wherem(6) is

a probability density on the unit sphere. This means that the

probability of a very large jump falls off like ~“, and the

likelihood of jumping in the directiory varies proportional

to m(#). Now the tracer cloud is described by a stable den-

sity P(x,t) that is more spread out in some directions than

IP(x.1) =(—v-V+iV.AV)P(x,t) (1) others. This density cannot be expressed in closed form, but
at ? ' whena# 1 its Fourier transfornj18]

with initial condition P(k,0)=1. Invert the Fourier trans-
forms to get the advection-dispersion equation

whose solutionP(x,t) has already been shown to be the
family of normal densities with meagt and covariance ma-

trix tA. The initial condition corresponds to the assumption
that X(0)=0. solves the initial-value problem

ﬁ(k,t):exp[—ik.vwctf (ik- 0)“m(6)d0} 2)
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dP(k,t) i of the eigenvalues dfl must exceed.
5 ’ ={—ik.v+cj (ik- @)*m( a)da}P(k,t) (3) Physically, the scaling limit means that an ensemble of
t diffusing particles will realize the operator stable density

A o o ) P(x,t) whent is large. This density cannot be written in
with P(k,0)=1. This inverts to the multivariable fractional qnsed form. but wherEX(t)=vt its Fourier transform is

advection-dispersion equation given by the Ley representation
dP(x,t) N .
o (TuVHeVRP(XD), (4) p(k,t)zexp(—itv-k—tk-Ak

where the operato¥V, is a mixture of fractional directional
derivativeq[ 18], so thatV ;,f(x) is the inverse Fourier trans-
form of

+tf (e X—1+ik-x)p(dx) |, (6)

where¢ is the Lery measurd34,37,3§. The first two terms
. N - in Eq. (6) describe a normal distribution, and the last term
f (ik-8)“m(8)do| f(k). ®) reduces to the integral in EQ) if ¢{|x|>r}=Cr~“. Be-
cause of the sum in the exponentiﬁ(,k,t) is the product of
Whenm(6) is constantV =V the Riesz fractional deriva- the normal and heavy-tailed parts, so that these components
tive [30], p. 483, recovering isotropic anomalous diffusion. If are independent. For example, if the first coordinata dfas
a=2, thenV =V-AV, where the matrixA=(a;;) with  a finite variance and the second coordinate has a heavy tail
a;j=J6;0;m(6)dé, recovering  classical  diffusion/ which falls off like r ~¢, the scaling limit has two indepen-
dispersion. The components Xft) are all scalar Ley mo-  dent components, one normal and amstable. The Ley
tions with the same index. If particle jumps are restricted measure governs the probability of large jumps, according to
to the coordinate axes, these components are independeRt(J;=dx)~ ¢(dx) as||x||— [33]. Since the Ley measure
otherwise the dependence is captured by the mixing measugatisfiesc(dx) = ¢(c™ dx) at every scale>0, the prob-
m(6)dé. ability of a large jump falls off like a power law depending
on direction. IfH=(1/a)!, thenP(||J;||>r)~Cr~ ¢ and we
IV. GENERALIZED DISPERSION recover anomalous diffusion. H =diag(lky,...,1lg), the
probability of a large jump in thgth coordinate direction
In both classical and anomalous diffusion/dispersionga|is off like r ~i, and thejth component of the limit process
normalized ~ particle ~ concentration  follows P(x,t) s anq;-stable Ley motion. If particle jumps are restricted
=t~"P(t""x,1), where the Hurst indel =1/a, so that a to the coordinate axes, theséwemotions are independent,
cloud of passive tracer particles spreads out from its center Qftherwise the dependence between the coordinatg tre-
mass liket" in every radial direction. In real world tracer tions is described by the \g measure.
tests it is commonly observed that the rate of spreading de- |nvert Eq. (6) to see thatP(x,t) solves a point source

pends on directior22,23, which requires a generalized generalized advection-dispersion equation
model. Since the term" scales the vectox, one can also

consider matrix scaling. By definition the scalaf! IP(x,t)

=expHInt). If H is adxd matrix, we can also defing' g =(—v-V+3V-AV+F)P(x,1), (7)

=expH Int), where expf)=1+A+A2/2! + A%/31 +- - is the

usual exponential of a matrix. Hi=(1/a)1, thent"=t""is 00 the generalized fractional derivatifé(x) is the in-

a scalar multiple as before, butkf=diaghy,. . . .hg), then  \arse Fourier transform of

tH=diagt™,. . . 1) so that each coordinate scales at a dif-

ferent rate. The matri¥ need not be diagonal. Eigenvalues .

a+ib induce a rotation at ratbInt and degenerate eigen- Fi(k)=

values produce terms liké(Int) in the matrix powetH.
Generalized diffusion/dispersion is the result of a simple,

random-walk model with matrix scaling. Since the particle

jumpsJ; are random vectors, it makes sense to consider the

rescaled random walk HW(ct), whereH is a matrix. Ma- }‘f(x):J [f(x—y)—f(xX)+y-Vi(x)]o(dy), (9

trix scaling of the random particle jumps "J; accommo-

dates a general pattern of heavy tailed jumps. For example, if . . . . .

the first coordinate of; has a finite variance and the second which is almost'a convoluthn W't.h the _W‘ measure. -

coordinate has a heavy tail which falls off like *, then we The generalized advection-dispersion equati@h in-

take H = diag(1/2,1&). A generalized central limit theorem clude_s both classical and anomallous advgctl(_)n dispersion as

[31-33 implies that the probability distributions of the re- special cases. If £ a<2, the fractional derivativ30]

scaled random walk converge @s> to those of an opera- N .

tor Lé\/y motion Y(t) [34—36 If H=diag(nl,. . hd) with d_f(x): 1 J f//(X_y)yl—a dy (10)

h;=1/a;, this requires & a;=<2. In general, the real parts dx* I'(2—a) Jo

f(e‘ix"‘—1+ik~x)q§(dx) f(k). (8)

In real space this means that
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FIG. 1. Measured longitudindtircles and lateralsquaresvariance of the bromide plumes vs mean travel distance ifah@ape Cod
[22] and(b) MADE site [23] aquifers. Lines indicate power laws of order2Transverse values are artificially high at early time due to the

wide (~5 m) arrays of injection wells.

and if ¢(dy)=Cay * *dy ony>0 integration by parts in
Eq. (9) yields
Fi0=Ca [ TH0¢-y) =100 +y1'(0ly~**dy
0
=Cf0 [ (x=y)+f'(x)]y" “dy
C fwf//( ) 1— d
L — X— @
(1=a) Jo TV

so thatF=d*/dx“ if C=(1—a)/I'(2— «). In this case Eq.

a convolution of generalized functioi89], so that in this
case the fractional derivative

Fi(x)= f F(x—y) b(dy) 12

is indeed convolution with the vy measure ¢(dy)
=y * 1dy/T(—a) on y>0 in the distributional sense.
If ¢(dy)=pay *“ 1dy/lT(—a) on y>0 and ¢(dy)
=qa(—-y) ¢ tdy/I'(—a) on y<O0, then Eq.(12) holds
with F=pd*/dx*+qd*/d(—x)* If @{||x|>r}=r"4T
(— a), then Eq.(12) holds with Ff(x)=Vf(x). We have
not yet been able to computgf (x) for matrix scaling, but

(7) simplifies to the one-variable fractional diffusion equa-ye conjecture that E12) still holds in this case.

tion

JP(X,t) dP(x,t) d*P(x,t)
=-v +cC
ot X ax“

which governs a maximally skewed \ye motion with drift
[12,13. If ¢(dy)=pCay * 1dy on y>0 and ¢(dy)
=qCa(-y) “ tdy on y<O0, then F=pd¥dx*+qd®/
d(—x)“« and we recover every scalar\nemotion with drift

V. DISCUSSION

Generalized dispersion is an attractive model because it is
based on a simple random-walk model. Heavy-taffealver-
law) jumps ind dimensions will converge to the operator
stable laws governed by E¢6). If independent thin-tailed
jumps are mixed with heavy-tailed ones, the index of the
heaviest jumps dominates. Granular aquifer material is often

as the solution to the general one-variable fractional diffu-geposited in sheetlike to tubelike structures of similar grain

sion equation

IP(x,1) P
= U

ot oX

I“P(x,t)
Ix*

I“P(x,t)
A(—x)“

cp

considered in[14,15. If &{||x|>r}=Cr~¢, then F=Vj,
and Eq.(7) reduces to Eq(4), which governs multivariable
Lévy motion with drift.

The Levy measure¢ governs the tails of the particle
jumpsJ; as well as the fractional derivative operai®im Eqg.
(9). Formal integration by parts in EQL0) yields

d« 1

e 0=t | toeyy ey, @

size [40]. Fractures in crystalline rock will have preferred
directions and lengthf41] according to the external stress
field. Many of the transport propertigaperture, displace-
ment, length, connectivilyof natural fractures and faults
have power-law distributions and scalifgR—44.

Several tracer tests have been conducted with sufficient
sampling detail to resolve anomalous dispersj@z2,23.
Two tests show significant differences in the measured vari-
ance growth rate in the longitudinal and transverse directions
(Fig. 2). In both of the tests, the vertical growth rate was
essentially zero, so that the plume growth is two-
dimensional. Longitudinal plume dispersion in the relatively
homogeneous Cape Cod aquifer is anomalous withl .65
and Fickian lateral dispersidirig. 1(a)]. Here the general-
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ized advection-dispersion model resolves into two independispersion at different rates in each coordinate. This equation
dent processes, a longitudinaluyemotion with indexa and  governs an operator ‘Mg motion, the scaling limit of a

a lateral Brownian motion. At the highly heterogeneoussimple random walk in many dimensions. If the scaling
MADE site, both longitudinal and lateral dispersion are properties are the same in all directions, we obtain the spe-
anomalous, but with different scalid§ig. 1(b)]. The longi-  cial case of anv-stable Ler'y motion, which is governed by a
tudinal «;~1.2 and the laterakr,~1.5 so the generalized fractional advection-dispersion equation of orderIf the
advection-dispersion model involves a longitudinalvie scaling is different in each dimension, we apply a fractional
motion with indexa, and a lateral Ley motion with index  derivative of different order in each coordinate. The resulting
a,. The heaviest tail of the MADE plume corresponds to theoperator stable motions may contain independent Brownian
smallest indexx;, and this value is consistent with the ob- motion and L&y motion components. Detailed plume stud-
served tail index ¢~1.1) of the hydraulic conductivityK) ies at the Cape Cod and MADE site aquifers show evidence
random field 6]. An assumption that the hydraulic head gra- of generalized dispersion, with preferential spreading in the
dient was fairly uniform in the longitudinal direction led to a direction of mean flow.

scalar fractional advection-dispersion equation of order 1.1.

It may also be possible to obtam priori estimates of the
lateral index«, based on a model of thK field, which
recognizes the possibility of matrix scaling.

VI. CONCLUSIONS
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