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Operator Lévy motion and multiscaling anomalous diffusion
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The long-term limit motions of individual heavy-tailed~power-law! particle jumps that characterize anoma-
lous diffusion may have different scaling rates in different directions. Operator stable motions$Y(t):t>0% are
limits of d-dimensional random jumps that are scale-invariant according tocHY(t)5Y(ct), whereH is a
d3d matrix. The eigenvalues of the matrix have real parts 1/a j , with each positivea j<2. In each of thej
principle directions, the random motion has a different Fickian or super-Fickian diffusion~dispersion! rate
proportional tot1/a j . These motions have a governing equation with a spatial dispersion operator that is a
mixture of fractional derivatives of different order in different directions. Subsets of the generalized fractional
operator include~i! a fractional Laplacian with a single ordera and a general directional mixing measure
m(u); and ~ii ! a fractional Laplacian with uniform mixing measure~the Riesz potential!. The motivation for
the generalized dispersion is the observation that tracers in natural aquifers scale at different~super-Fickian!
rates in the directions parallel and perpendicular to mean flow.

DOI: 10.1103/PhysRevE.63.021112 PACS number~s!: 05.40.Fb, 05.60.2k, 47.55.Mh, 02.50.Cw
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I. INTRODUCTION

Anomalous diffusion is an important process in hydrog
ology because of the way that dissolved and often to
chemical tracers move through aquifer material. Ground
ter velocities span many orders of magnitude and give ris
diffusionlike dispersion~a term that combines molecular di
fusion and hydrodynamic dispersion!. The measured vari
ance growth in the direction of flow of tracer plumes is typ
cally at a super-Fickian rate, i.e.,^(X2X̄)2&;t2H, where the
Hurst indexH. 1

2 @1–7#. A number of theories that are base
on the spatial and temporal autocorrelation of the veloc
field ~or the surrogate hydraulic conductivityK! explain con-
vergence to non-Fickian flux expressions@1–5#. Several of
these are based on, or equivalent to, the continuous-
random-walk model@8# and may lead to governing equation
with fractional derivatives in time and/or space@2,3,9–11#.
These theories are formulated in an isotropic way, so that
scaling behavior and the order of the spatial derivative
erator do not vary with direction.

A spatially fractional advection-dispersion equati
~ADE! governs ana-stable Lévy motion @12–15#, a super-
Fickian stochastic process with scaling exponentH51/a for
some 0,a,2. This equation has been successfully appl
to transport in the direction of flow in an aquifer with heav
tailedK distribution@6#. The order of the space operator a
the dispersion~diffusion! coefficient can be discerned from
the heavy-tailedK distribution@6# based on an assumption o
relatively constant hydraulic gradients and a characteri
correlation time. In many aquifers, the plume also spread
a super-Fickian rate transverse to the mean flow direct
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indicating a multidimensional anomalous diffusio
dispersion~see Sec. V!. The plume is elongated in the direc
tion of flow, indicating anisotropy. Existing models hand
anisotropy in the form of a prefactor~usually an effective
dispersion tensor! or mixing measure@16–18#. In these mod-
els, tracer concentrations may be higher in some directi
than others, but the scaling exponentH is the same in every
direction. There is no physical reason for this restriction, i
merely a mathematical artifact of the modeling approach
real aquifer tracer tests, the scaling exponentH usually varies
with direction. The rate of spreading is fastest in the dire
tion of flow, and slower~but still possibly super-Fickian! in
the horizontal direction transverse to the mean flow. Mod
ing this behavior requires a new anisotropic model
anomalous diffusion, where the scaling exponent varies w
direction. In this study, we extend the spatially fraction
ADE to accommodate different scaling exponents in ea
coordinate. The new governing equation describes an op
tor Lévy motion, which is a generalization of Le´vy motion.
This generalized ADE allows a faithful representation
multidimensional tracer plumes, with a faster spreading r
in the direction of the mean flow. Since the physics
diffusion/dispersion is universal, our equation can also
used to model any anomalous diffusion in which the rate
spreading varies with direction.

The term ‘‘anomalous diffusion’’ has been defined in se
eral ways. One standard description requires that a partic
a spreading tracer cloud has a standard deviation that gr
like tH for some 0,H,1, excluding the Fickian caseH
5 1

2 . This definition is restricted to processes with finite va
ance, which excludes Le´vy motions. Therefore, we choose
definition in terms of P(x,t), the Green function of a
diffusive-type equation or the probability density of a pa
ticle starting from the origin~the propagator!. Super-Fickian
©2001 The American Physical Society12-1
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anomalous diffusion has the space-time scaling prop
P(x,t)5t21/aP(t21/ax,1) so that the measured standard d
viation grows liket1/a for some 0,a,2. Fickian diffusion
is the casea52, where the variance grows linearly wit
time. Super-Fickian anomalous diffusion is indicated wh
the classical Fickian diffusion model underestimates the
of spreading. In this paper, we introduce a generalized di
sion model which includes both super-Fickian and Fick
diffusion as special cases. The novelty of our approach
that we allow the spreading rate to depend on the coordin
The resulting diffusion can be Fickian in some coordina
and super-Fickian in others, and super-Fickian coordina
can have different scaling. We begin with a review
Brownian motion, Le´vy motion, and their governing equa
tions from a statistical mechanical point of view.

II. CLASSICAL ADVECTION AND DIFFUSION

The classical advection-dispersion equation models tra
port in homogeneous porous media@19#. The same equation
also called the diffusion equation, can be used to describ
wide variety of physical processes@20#. We derive this de-
terministic governing equation from the scaling limit of
random walk. At a given scale in time and space, we rep
sent the sequence of particle jumps by independent, ide
cally distributed random vectorsJ1 ,J2 ,J3 ,... . Therandom
walk W(t)5J11¯1J@ t# represents the location of a pa
ticle at time t.0 at this scale. In a rescaled random wa
c21/2W(ct), a particle takes the random jumpc21/2Ji at time
i /c for each integeri. The central limit theorem@21# implies
that the probability distributions of this rescaled rando
walk converge asc→` to those of a Brownian motionY(t)
with mean zero and covariance matrixtA, assuming that
EJi50 andEJiJi

T5A. Add a drift with constant mean ad
vective velocityv to obtainX(t) normal with meantv and
covariance matrixtA. If a very large ensemble of indepen
dent particles evolves according to this model, the proba
ity densityP(x,t) of X(t) represents the relative concentr
tion of particles at locationxPRd at time t.0.

According to the random-walk model, after sufficient tim
has elapsed the relative concentration of diffusing partic
will approximate the normal densityP(x,t), whose Fourier
transformP̂(k,t)5exp@2itv•k2(t/2)k•Ak). This equation is
evidently the solution to an initial value problem

dP̂~k,t !

dt
5„2v•~ ik !1 1

2 ~ ik !•A~ ik !…P̂~k,t !

with initial condition P̂(k,0)[1. Invert the Fourier trans
forms to get the advection-dispersion equation

]P~x,t !

]t
5~2v•“1 1

2“•A“ !P~x,t ! ~1!

whose solutionP(x,t) has already been shown to be t
family of normal densities with meanvt and covariance ma
trix tA. The initial condition corresponds to the assumpti
that X(0)50.
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The advection-dispersion equation~1! describes a trace
cloud whose normalized particle concentrationP(x,t)
achieves its maximum at the center of massx5vt. For any
unit vectoru, the cross section of the plume on a line in th
direction through the center of mass follows a normal den
with variances t

2(u)5tu•Au. In the isotropic case where
A5aI, the standard deviation is the same in all directions,
the tracer cloud has rotational symmetry about its mean.
generalA, the standard deviation depends onu, indicating
preferential spreading. In any case,s t

2(u)5ts1
2(u) for all u,

so that the rate of spreading is at the Fickian rate oft1/2 in
every radial direction.

III. ANOMALOUS DISPERSION

In real world tracer tests@7,22,23# one typically observes
super-Fickian anomalous dispersion, where the plu
spreads faster than the classical model predicts. One sta
cal mechanical derivation of superdiffusion involves a ra
dom walk with dependent particle jumpsJi , which can lead
to fractional Brownian motion@24#. A mathematically sim-
pler alternative is to retain the assumption of independ
jumps, and relax the assumption that the covariance ma
EJiJi

T5A exists. An extended central limit theorem
@21,25,26# implies that the probability distributions of a re
scaled random walkc2HW(ct) converge asc→` to those
of an a-stable Lévy motion Y(t), where the Hurst indexH
51/a for some 0,a<2. The relative concentration of a
ensemble of diffusing particles approximates the stable d
sity P(x,t) of the Lévy motion when t is large. Since
P(x,t)5t21/aP(t21/ax,1), the tracer cloud spreads out lik
tH, faster than the classical model. Sample paths ofY(t) are
random fractals@27# of dimensiona, so the stable index also
has physical meaning, which may relate to the geome
properties of the medium@28#. The particle locationY(t) is a
stable random vector@29# with indexa. If a52, we recover
the classical Brownian motion model.

The extended central limit theorem applies when the p
ticle jumpsJi have heavy tails. If the random vectorsJi are
rotationally symmetric withP(iJi i.r );Cr2a, then the
limiting process isa-stable with the same kind of symmetry
This leads to the isotropic model of anomalous diffusion,
which a tracer cloud spreads out evenly in all directions fr
its center of mass atx5vt at the super-Fickian ratet1/a.
Anisotropic anomalous diffusion results from asymmet
particle jump distributions. WriteJi5RiQ i and suppose tha
P(Ri.r ,Q i5du);Cr2am(u)du as r→`, wherem(u) is
a probability density on the unit sphere. This means that
probability of a very large jump falls off liker 2a, and the
likelihood of jumping in the directionu varies proportional
to m(u). Now the tracer cloud is described by a stable de
sity P(x,t) that is more spread out in some directions th
others. This density cannot be expressed in closed form,
whenaÞ1 its Fourier transform@18#

P̂~k,t !5expF2 ik•vt1ctE ~ ik•u!am~u!du G ~2!

solves the initial-value problem
2-2
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dP̂~k,t !

dt
5F2 ik•v1cE ~ ik•u!am~u!du G P̂~k,t ! ~3!

with P̂(k,0)[1. This inverts to the multivariable fractiona
advection-dispersion equation

]P~x,t !

]t
5~2v•“1c“m

a !P~x,t !, ~4!

where the operator“m
a is a mixture of fractional directiona

derivatives@18#, so that“m
a f (x) is the inverse Fourier trans

form of

S E ~ ik•u!am~u!du D f̂ ~k!. ~5!

Whenm(u) is constant,“m
a 5“

a the Riesz fractional deriva
tive @30#, p. 483, recovering isotropic anomalous diffusion.
a52, then“m

a 5“•A“, where the matrixA5(ai j ) with
ai j 5*u iu jm(u)du, recovering classical diffusion
dispersion. The components ofX(t) are all scalar Le´vy mo-
tions with the same indexa. If particle jumps are restricted
to the coordinate axes, these components are indepen
otherwise the dependence is captured by the mixing mea
m(u)du.

IV. GENERALIZED DISPERSION

In both classical and anomalous diffusion/dispersi
normalized particle concentration follows P(x,t)
5t2HP(t2Hx,1), where the Hurst indexH51/a, so that a
cloud of passive tracer particles spreads out from its cente
mass liketH in every radial direction. In real world trace
tests it is commonly observed that the rate of spreading
pends on direction@22,23#, which requires a generalize
model. Since the termtH scales the vectorx, one can also
consider matrix scaling. By definition the scalartH

5exp(H ln t). If H is a d3d matrix, we can also definetH

5exp(H ln t), where exp(A)5I1A1A2 /2!1A3/3!1¯ is the
usual exponential of a matrix. IfH5(1/a)I , thentH5t1/a is
a scalar multiple as before, but ifH5diag(h1,. . . .,hd), then
tH5diag(th1,. . . ,thd) so that each coordinate scales at a d
ferent rate. The matrixH need not be diagonal. Eigenvalue
a1 ib induce a rotation at rateb ln t and degenerate eigen
values produce terms liketa(ln t) in the matrix powertH.

Generalized diffusion/dispersion is the result of a sim
random-walk model with matrix scaling. Since the partic
jumpsJi are random vectors, it makes sense to consider
rescaled random walkc2HW(ct), whereH is a matrix. Ma-
trix scaling of the random particle jumpsc2HJi accommo-
dates a general pattern of heavy tailed jumps. For examp
the first coordinate ofJi has a finite variance and the seco
coordinate has a heavy tail which falls off liker 2a, then we
take H5diag(1/2,1/a). A generalized central limit theorem
@31–33# implies that the probability distributions of the re
scaled random walk converge asc→` to those of an opera
tor Lévy motion Y(t) @34–36#. If H5diag(h1,. . . ,hd) with
hj51/a j , this requires 0,a j<2. In general, the real part
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Physically, the scaling limit means that an ensemble
diffusing particles will realize the operator stable dens
P(x,t) when t is large. This density cannot be written i
closed form, but whenEX(t)5vt its Fourier transform is
given by the Le´vy representation

P̂~k,t !5expS 2 i tv•k2tk•Ak

1tE ~e2 ik•x211 ik•x!f~dx! D , ~6!

wheref is the Lévy measure@34,37,38#. The first two terms
in Eq. ~6! describe a normal distribution, and the last te
reduces to the integral in Eq.~2! if f$ixi.r %5Cr2a. Be-
cause of the sum in the exponential,P̂(k,t) is the product of
the normal and heavy-tailed parts, so that these compon
are independent. For example, if the first coordinate ofJi has
a finite variance and the second coordinate has a heavy
which falls off like r 2a, the scaling limit has two indepen
dent components, one normal and onea-stable. The Le´vy
measure governs the probability of large jumps, according
P(Ji5dx);f(dx) asixi→` @33#. Since the Le´vy measure
satisfiescf(dx)5f(cH dx) at every scalec.0, the prob-
ability of a large jump falls off like a power law dependin
on direction. IfH5(1/a)I , thenP(iJi i.r );Cr2a and we
recover anomalous diffusion. IfH5diag(1/a1 ,...,1/ad), the
probability of a large jump in thej th coordinate direction
falls off like r 2a j , and thej th component of the limit proces
is ana j -stable Lévy motion. If particle jumps are restricte
to the coordinate axes, these Le´vy motions are independen
otherwise the dependence between the coordinate Le´vy mo-
tions is described by the Le´vy measure.

Invert Eq. ~6! to see thatP(x,t) solves a point source
generalized advection-dispersion equation

]P~x,t !

]t
5~2v•“1 1

2“•A“1F !P~x,t !, ~7!

where the generalized fractional derivativeFf (x) is the in-
verse Fourier transform of

F f̂ ~k!5S E ~e2 ix•k211 ik•x!f~dx! D f̂ ~k!. ~8!

In real space this means that

Ff ~x!5E @ f ~x2y!2 f ~x!1y•“ f ~x!#f~dy!, ~9!

which is almost a convolution with the Le´vy measure.
The generalized advection-dispersion equation~7! in-

cludes both classical and anomalous advection dispersio
special cases. If 1,a,2, the fractional derivative@30#

da

dxa f ~x!5
1

G~22a!
E

0

`

f 9~x2y!y12a dy ~10!
2-3
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FIG. 1. Measured longitudinal~circles! and lateral~squares! variance of the bromide plumes vs mean travel distance in the~a! Cape Cod
@22# and~b! MADE site @23# aquifers. Lines indicate power laws of order 2/a. Transverse values are artificially high at early time due to
wide ~;5 m! arrays of injection wells.
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and if f(dy)5Cay2a21 dy on y.0 integration by parts in
Eq. ~9! yields

Ff ~x!5CaE
0

`

@ f ~x2y!2 f ~x!1y f8~x!#y2a21 dy

5CE
0

`

@2 f 8~x2y!1 f 8~x!#y2a dy

5
C

~12a!
E

0

`

f 9~x2y!y12a dy

so thatF5da/dxa if C5(12a)/G(22a). In this case Eq.
~7! simplifies to the one-variable fractional diffusion equ
tion

]P~x,t !

]t
52v

]P~x,t !

]x
1c

]aP~x,t !

]xa

which governs a maximally skewed Le´vy motion with drift
@12,13#. If f(dy)5pCay2a21 dy on y.0 and f(dy)
5qCa(2y)2a21 dy on y,0, then F5pda/dxa1qda/
d(2x)a and we recover every scalar Le´vy motion with drift
as the solution to the general one-variable fractional dif
sion equation

]P~x,t !

]t
52v

]P~x,t !

]x
1cp

]aP~x,t !

]xa 1cq
]aP~x,t !

]~2x!a

considered in@14,15#. If f$ixi.r %5Cr2a, then F5“m
a

and Eq.~7! reduces to Eq.~4!, which governs multivariable
Lévy motion with drift.

The Lévy measuref governs the tails of the particl
jumpsJi as well as the fractional derivative operatorF in Eq.
~9!. Formal integration by parts in Eq.~10! yields

da

dxa f ~x!5
1

G~2a!
E

0

`

f ~x2y!y2a21 dy, ~11!
02111
-

a convolution of generalized functions@39#, so that in this
case the fractional derivative

Ff ~x!5E f ~x2y!f~dy! ~12!

is indeed convolution with the Le´vy measure f(dy)
5y2a21 dy/G(2a) on y.0 in the distributional sense
If f(dy)5pay2a21 dy/G(2a) on y.0 and f(dy)
5qa(2y)2a21 dy/G(2a) on y,0, then Eq.~12! holds
with F5pda/dxa1q da/d(2x)a. If f$ixi.r %5r 2a/G
(2a), then Eq.~12! holds withFf (x)5“m

a f (x). We have
not yet been able to computeFf (x) for matrix scaling, but
we conjecture that Eq.~12! still holds in this case.

V. DISCUSSION

Generalized dispersion is an attractive model because
based on a simple random-walk model. Heavy-tailed~power-
law! jumps in d dimensions will converge to the operato
stable laws governed by Eq.~6!. If independent thin-tailed
jumps are mixed with heavy-tailed ones, the index of t
heaviest jumps dominates. Granular aquifer material is o
deposited in sheetlike to tubelike structures of similar gr
size @40#. Fractures in crystalline rock will have preferre
directions and lengths@41# according to the external stres
field. Many of the transport properties~aperture, displace-
ment, length, connectivity! of natural fractures and fault
have power-law distributions and scaling@42–44#.

Several tracer tests have been conducted with suffic
sampling detail to resolve anomalous dispersion@22,23#.
Two tests show significant differences in the measured v
ance growth rate in the longitudinal and transverse directi
~Fig. 1!. In both of the tests, the vertical growth rate w
essentially zero, so that the plume growth is tw
dimensional. Longitudinal plume dispersion in the relative
homogeneous Cape Cod aquifer is anomalous witha'1.65
and Fickian lateral dispersion@Fig. 1~a!#. Here the general-
2-4



en

u
re

h
b-

a
a
1.

e
n

tion

ng
pe-

al
ing
ian

d-
nce
the

o.
nt

3-
S
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ized advection-dispersion model resolves into two indep
dent processes, a longitudinal Le´vy motion with indexa and
a lateral Brownian motion. At the highly heterogeneo
MADE site, both longitudinal and lateral dispersion a
anomalous, but with different scaling@Fig. 1~b!#. The longi-
tudinal a1'1.2 and the laterala2'1.5 so the generalized
advection-dispersion model involves a longitudinal Le´vy
motion with indexa1 and a lateral Le´vy motion with index
a2 . The heaviest tail of the MADE plume corresponds to t
smallest indexa1 , and this value is consistent with the o
served tail index (a'1.1) of the hydraulic conductivity~K!
random field@6#. An assumption that the hydraulic head gr
dient was fairly uniform in the longitudinal direction led to
scalar fractional advection-dispersion equation of order
It may also be possible to obtaina priori estimates of the
lateral indexa2 based on a model of theK field, which
recognizes the possibility of matrix scaling.

VI. CONCLUSIONS

A generalized advection-dispersion equation mod
transport in porous media, allowing for anomalous diffusio
ou

ou

-
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dispersion at different rates in each coordinate. This equa
governs an operator Le´vy motion, the scaling limit of a
simple random walk in many dimensions. If the scali
properties are the same in all directions, we obtain the s
cial case of ana-stable Lévy motion, which is governed by a
fractional advection-dispersion equation of ordera. If the
scaling is different in each dimension, we apply a fraction
derivative of different order in each coordinate. The result
operator stable motions may contain independent Brown
motion and Le´vy motion components. Detailed plume stu
ies at the Cape Cod and MADE site aquifers show evide
of generalized dispersion, with preferential spreading in
direction of mean flow.
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