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Abstract

Continuous-time random walks incorporate a random waiting time between random
jumps. They are used in physics to model particle motion. A physically realistic rescaling
uses two different time scales for the mean waiting time and the deviation from the
mean. This paper derives the scaling limits for such processes. These limit processes
are governed by fractional partial differential equations that may be useful in physics. A
transfer theorem for weak convergence of finite-dimensional distributions of stochastic
processes is also obtained.
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1. Introduction

The classical diffusion equation governs a Brownian motion. For particles undergoing
classical diffusion, the location X(t) of a randomly selected particle at time t ≥ 0 possesses a
Gaussian probability distribution that scales according to

X(ct) ∼ cHX(t),

where H = 1
2 and ∼ means identically distributed. The relative concentration C(x, t) for a

cloud of particles undergoing classical diffusion will approximate the probability distribution
of X(t). Anomalous diffusion occurs when the concentration profile is non-Gaussian or the
scaling rate H is not equal to 1

2 . Fractional Brownian motion and (fractional) Lévy motion are
the simplest stochastic models for anomalous diffusion. Governing equations for Lévy motion
employ fractional derivatives in space instead of the usual second derivative. These equations
model superdiffusion, where the scaling rate H is greater than 1

2 . Fractional derivatives in
time are useful to model subdiffusion, where 0 < H < 1

2 . Many applications in contaminant
transport seem to require a governing equation with a time derivative greater than 1. However, a
correct mathematical formulation of such models has proven elusive. In this paper, we employ
continuous-time random walks as a stochastic model of anomalous diffusion. A judicious
rescaling leads to a long-time limit process consistent with a time derivative greater than 1. In
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fact, the form of the limit density leads directly to a governing equation with a time derivative
of order γ ∈ (1, 2].

Continuous-time random walks generalize a simple random walk by implementing a random
waiting time between jumps. For finite-mean waiting times and finite-variance jumps with mean
zero, the classical rescaling (shrink the time scale by c > 0 and the space scale by c1/2) leads
to Brownian motion in the scaling limit as c → ∞. Probability densities p(x, t) of this limit
process solve the classical diffusion equation

∂p

∂t
= D

∂2p

∂x2

for some D > 0. Infinite-variance jumps in the strict domain of attraction of a stable law lead
to Lévy motion. Probability densities of this limit process solve a fractional diffusion equation

∂p

∂t
= D

∂αp

∂xα

with α ∈ (0, 2) [9]. Vector jumps in the strict domain of attraction of an operator stable law
lead to operator Lévy motion, whose densities solve a generalized diffusion equation [10].
Infinite-mean waiting times introduce a fractional time derivative of order γ ∈ (0, 1) [12].

Self-similar limit processes with X(ct) ∼ cHX(t) are associated with a rescaling c > 0 in
time and cH in space (H = 1/α for a Lévy motion). When H �= 1, these processes cannot
contain a constant drift term since this term scales linearly. A physically meaningful stochastic
model for particle diffusion with drift assumes a particle jump size with a nonzero mean. In
order to get convergence to a limit process, we typically use two spatial scales: the mean jump is
rescaled by c > 0 (just like the time scale) and the deviation from the mean is rescaled by c1/2,
leading to Brownian motion with drift (see e.g. [14, Exercise 10.8]). The resulting diffusion
equation with drift,

∂p

∂t
= −v ∂p

∂x
+D

∂2p

∂x2 ,

contains two spatial derivatives, resulting from the two spatial scales. The same limit results
from a simple random walk, or a continuous-time random walk with finite-mean jumps. This
includes the case where the waiting times are positive random variables in the domain of
attraction of a stable law with index γ ∈ (1, 2]. But in this case, we can also employ two time
scales, rescaling the mean waiting time by c > 0 and the deviation from the mean by c1/γ .
This rescaling leads to a different limit process, whose probability densities p(x, t) govern a
fractional partial differential equation that provides a new model for anomalous diffusion. This
paper develops the limit theory for these continuous-time random walks.

Using two scales may seem unnatural, but it is actually quite physical. Take the simple
random walk where the particle jump variables have nonzero mean. Scaling limits of this
process can be understood in terms of examining the particle diffusion at an ever finer time
scale. As the time scale shrinks by a factor of c > 0, the mean particle displacement shrinks
at the same rate, but the displacement from that mean shrinks at a slower rate, c1/2, for finite
variance jumps. Using two spatial scales is necessary to preserve the detail at both scales. The
same applies to our model with two time scales. Using two time scales preserves detail in the
limit process that would otherwise be lost and leads to a richer set of stochastic models for
anomalous diffusion. It is these physical applications that motivate the present study.
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2. Continuous-time random walks

Let J1, J2, . . . be nonnegative independent and identically distributed (i.i.d.) random vari-
ables that model the waiting times between jumps of a particle. We set T (0) = 0 and
T (n) = ∑n

j=1 Jj , the time of thenth jump. The particle jumps are given by i.i.d. random vectors

Y1,Y2, . . . in R
d which are assumed independent of (Ji). Let S(0) = 0 and S(n) = ∑n

i=1 Yi ,
the position of the particle after the nth jump. For t ≥ 0, let

Nt = max{n ≥ 0 : T (n) ≤ t},
the number of jumps up to time t , and define

S(Nt ) =
Nt∑
i=1

Yi ,

the position of a particle at time t . The stochastic process {S(Nt )}t≥0 is called a continuous-time
random walk (CTRW).

Assume that J1 ≥ 0 belongs to the domain of attraction of some stable law with index
γ ∈ (1, 2]. Then there exist bn > 0 such that

bn(T (n)− nµ) = bn

n∑
i=1

(Ji − µ) ⇒ D, (2.1)

where µ = E J1 is the mean and D is stable with index γ . Here, ⇒ denotes convergence in
distribution. Since J1 ≥ 0, the Lévy measure of D is supported on the positive reals (see e.g.
[8, Corollary 8.2.19]) and, hence, the limit D has characteristic function E(eikD) = e(−ik)γ

for some choice of bn (see e.g. [8, Lemma 7.3.8]). For t ≥ 0, let T (t) = ∑
t�
j=1 Jj and let

b(t) = b
t�, where 
t� denotes the integer part of t . Then b(t) = t−1/γ L(t) for some slowly
varying function L(t) (so that L(λt)/L(t) → 1 as t → ∞ for any λ > 0; see for example [5]).
Then it follows from Example 11.2.18 of [8] and (2.1) that

{b(c)(T (
ct�)− µ
ct�)}t≥0
FD�⇒ {D(t)}t≥0, (2.2)

where
FD�⇒ denotes convergence in distribution of all finite-dimensional marginal distributions.

The process {D(t)}t≥0 has stationary independent increments and, since the distribution ρ of
D = D(1) is stable and D(0) = 0, {D(t)}t≥0 is called a stable Lévy process. Moreover,

{D(ct)}t≥0
FD= {c1/γD(t)}t≥0

for all c > 0, where
FD= denotes equality of all finite-dimensional marginal distributions. Hence,

by Definition 13.4 of [15], the process {D(t)}t≥0 is self-similar with exponent 1/γ . See [15]
for more details of stable Lévy processes and self-similarity.

Assume that (Yi ) are i.i.d. R
d -valued random variables independent of (Ji) and assume that

Y1 belongs to the strict generalized domain of attraction of some full operator stable law ν, where
‘full’ means that ν is not supported on any proper hyperplane of R

d . We will say that a function
B is in RV(−E) if B(c) is invertible for all c > 0 and B(λc)B(c)−1 → λ−E = exp(−E log λ)
as c → ∞ for any λ > 0, E being a d × d matrix with real entries. By Theorem 8.1.5 of [8],
there exists a B ∈ RV(−E) such that

B(n)S(n) = B(n)

n∑
i=1

Yi ⇒ A as n → ∞,
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where A has distribution ν. Then νt = tEν for all t > 0, where T ν{ dx} = ν{T −1 dx} is the
probability distribution of TA for any Borel measurable function T : R

d → R
m. Note that,

by Theorem 7.2.1 of [8], the real parts of the eigenvalues of E are greater than or equal to 1
2 .

Moreover, if we define the stochastic process {S(t)}t≥0 by S(t) = ∑
t�
i=1 Yi , it follows from

Example 11.2.18 of [8] that

{B(c)S(ct)}t≥0
FD�⇒ {A(t)}t≥0 as c → ∞, (2.3)

where {A(t)}t≥0 has stationary independent increments with A(0) = 0 almost surely and
PA(t) = νt = tEν for all t > 0, PX denoting the distribution of X. Then {A(t)}t≥0 is
continuous in law and it follows that

{A(ct)}t≥0
FD= {cEA(t)}t≥0 for all c > 0,

so, by Definition 11.1.2 of [8], the stochastic process {A(t)}t≥0 is operator self-similar with the
exponent E. We call {A(t)}t≥0 an operator Lévy motion. If the exponent E = aI is a constant
multiple of the identity, then ν is a stable law with index α = 1/a and {A(t)}t≥0 is a classical
d-dimensional Lévy motion. In the special case a = 1

2 , the process {A(t)}t≥0 is a d-dimensional
Brownian motion.

The following example illustrates the connection between CTRW scaling limits and their
governing equations. Assume that d = 1, bn = n−1/γ for some γ ∈ (0, 1), Yi is symmetric,
and B(n) = n−1/α for some α ∈ (0, 2]. Consider a rescaled CTRW, where time t ≥ 0 is
replaced by ct , waiting times Ji are replaced by c−1/γ Ji , and jumps Yi are replaced by c−1/αYi .
For large c > 0, the particle location is c−1/αS(cn) ≈ A(n) at time c−1/γ T (cn) ≈ D(n).
Inverting the time process shows that c−γ N(ct) ≈ E(t) = inf{u : D(u) > t}. Composing the
two processes c−γ /αS(Nct ) ≈ (cγ )−1/αS(cγ E(t)) ≈ A(E(t)) suggests that the CTRW scaling
limit is a Lévy motion A(t) subordinated to an independent inverse Lévy motion E(t). This
argument can be made rigorous by proving process convergence in the SkorokhodM1 topology
and using continuous mapping arguments [11]. The processA(t) represents the limiting case of
particle jumps in a simple random walk and the subordinator E(t) compensates for the waiting
times.

The symmetric stable random variable A(t) has characteristic function

p̂(k, t) = E(eikA(t)) = e−ct |k|α

for some c > 0, which is evidently the solution to a simple ordinary differential equation

dp̂(k, t)

dt
= −c|k|αp̂(k, t) (2.4)

with initial condition p̂(k, 0) ≡ 1 corresponding to A(0) = 0 almost surely. Since

∂αp(x, t)

∂|x|α

has Fourier transform −|k|αp̂(k, t), (2.4) is equivalent to

∂p(x, t)

∂t
= c

∂αp(x, t)

∂|x|α ,
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so that p(x, t) is the point source solution to this fractional partial differential equation. Since
D(x)

D= x1/γD and {E(t) ≤ x} = {D(x) ≥ t}, we have P{E(t) ≤ x} = P{D(x) ≥ t} =
P{x1/γD ≥ t} = P{(D/t)−γ ≤ x} for any x > 0. Then a simple conditioning argument shows
that

h(x, t) = t

γ

∫ ∞

0
p(x, ξ)gγ (tξ

−1/γ )ξ−1/γ−1 dξ

is the density of the CTRW scaling limit A(E(t)), where gγ is the density ofD. Take Fourier–
Laplace transforms [12] to get

h̄(k, s) =
∫ ∞

−∞

∫ ∞

0
eikxe−sth(x, t) dt dx = sγ−1

sγ + c|k|α ,

so that (sγ +c|k|α)h̄(k, s) = sγ−1. Since sγ g(s)−sγ−1 is the Laplace transform of the Caputo
derivative (d/ dt)γ g(t) [4], [13], inverting yields a space–time fractional partial differential
equation (

d

dt

)γ
h(x, t) = c

∂αh(x, t)

∂|x|α (2.5)

used by Zaslavsky [18] to model Hamiltonian chaos. Particle jumps with heavy tails P(|Yi | > x)

≈ x−α for α ∈ (0, 2) introduce a fractional space derivative into the governing equation, whose
order coincides with the power law exponent. Waiting times with heavy tails P(Ji > t) ≈ t−γ
for γ ∈ (0, 1) introduce a fractional time derivative. In the next section, we develop governing
equations with fractional time derivatives of order γ ∈ (1, 2).

3. Two time scales

Some applications [7] of the fractional diffusion equation (2.5) seem to require a fractional
time derivative of order γ ∈ (1, 2], while (2.5) is restricted to γ ∈ (0, 1). The CTRW model
provides a simple solution to this problem, along with a physical interpretation of the underlying
stochastic process of particle jumps. Suppose that the waiting times Ji ≥ 0 belong to the domain
of attraction of a stable random variable D with index γ ∈ (1, 2]. Then µ = E Ji > 0 exists
and (2.1) holds. Using the simple approach outlined in Section 2 does not work in this case
since the sum in (2.1) does not converge without centering. Instead we use two time scales,
replacing the mean waiting time by c−1µ and the deviation from the mean by b(c)(Ji − µ).
The sum

T (c)(n) =
n∑
i=1

(c−1µ+ b(c)(Ji − µ))

cannot represent the time of the nth particle jump since it is possible that T (c)(n+1) < T (c)(n).
A simple correction is to let

τ (c)n = max{T (c)(j) : 0 ≤ j ≤ n}

be the time of the nth jump. ThenN(c)
t = inf{n ≥ 0 : τ (c)n ≥ t} is the number of particle jumps

by time t at scale c.
In this section we will compute the scaling limit of these stochastic processes. Define D̄(t) =

D(t) + µt , a Lévy motion with drift, where {D(t)}t≥0 is the stable Lévy process generated
by D = D(1). Note that D̄(t) → ∞ almost surely as t → ∞ by the strong law of large
numbers for Lévy processes (see e.g. Theorem 36.5 of [15, p. 246]). However, since γ > 1,
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the process D̄(t) is not monotone increasing. Define M̄(t) = sup{D̄(u) : 0 ≤ u ≤ t}, the
maximum process, and Ē(t) = inf{x ≥ 0 : M̄(x) ≥ t}, its (left) inverse process. It follows
from Lemma 13.6.3 of [17] that now

{Ē(t) ≤ x} = {M̄(x) ≥ t} and {N(c)
t ≤ x} = {τ (c)
x� ≥ t}.

Note that Ē(t) andN(c)
t are continuous from the left with right-hand limits. The right-continuous

processes Ñ (c)
t = max{n ≥ 0 : τ (c)n ≤ t} and Ẽ(t) = inf{x ≥ 0 : M̄(x) > t} are not useful in

this application since we require N(c)
0 = 0 and Ē(0) = 0 almost surely.

Lemma 3.1. The process {M̄(t)} at any time t > 0 has a density with respect to Lebesgue
measure.

Proof. Assume that µ = 1, which entails no loss of generality. Theorem 1 of [3] shows that

u

∫ ∞

0

∫ ∞

0
e−us−λT dT P{M̄(s) < T } ds

= exp

{
1

2π

∫ ∞

u

∫ ∞

−∞
λ

ξ(ξ − iλ)

iξ + (−iξ)γ

x(x − (iξ + (−iξ)γ ))
dξ dx

}

for all λ, u > 0. The integrand on the right-hand side has two poles in the upper complex half
plane, at ξ = iλ and whenever x = iξ + (−iξ)γ . For γ ∈ (1, 2], let α ∈ (0, π/γ ] and define


(α) :=
{
reiθ : −α < θ < α and

sin(θ)

sin(γ θ)
< rγ−1 <

sin(α)

sin(γ α)

}
,

a region in the complex plane, where we take sin(α)/sin(γ α) = ∞ whenα = π/γ . Lemma 3.1
of [2] shows that there exists a unique holomorphic function q : C\(−∞,−(γ−1)γ γ/(1−γ )] →

(π/γ ) such that

q(z)γ − q(z) = z,

and that there exists an analytic function m(·) with
∫ ∞

0 e−ztm(t) dt = 1/q(z) for z > 0. A
computation [2] involving complex contour integration shows that

∫ ∞

0

∫ ∞

0
e−us−λT dT P{M̄(s) < T } ds = 1 − λ/q(u)

u+ λ− λγ

and then, since P{Ē(T ) ≤ s} = P{M̄(s) ≥ T }, we can integrate by parts to get

∫ ∞

0

∫ ∞

0
e−us−λT P{Ē(T ) ≤ s} ds dT = 1 − λγ−1 + u/q(u)

u(u+ λ− λγ )
. (3.1)

Let gγ be the γ -stable density whose characteristic function is ĝγ (k) = e(−ik)γ . Inverting (3.1)
shows that

P{Ē(t) ≤ s} =
∫ ∞

(t−s)/s1/γ
gγ (u) du+

∫ s

0

m(s − u)

u1/γ gγ

(
t − u

u1/γ

)
du. (3.2)

Since P{M̄(s) ≥ t} = P{Ē(t) ≤ s}, taking the derivative with respect to t shows that M̄(s) has
a density.
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Remark 3.1. As t → ∞, the first integral term in (3.2) dominates the second so that

P{Ē(t) ≤ s} ∼
∫ ∞

(t−s)/s1/γ
gγ (u) du = P{D̄(s) ≥ t} (3.3)

in view of the fact (still assuming thatµ = 1) that D̄(s) is identically distributed with s1/γD+s,
where D = D(1) is the stable random variable with density gγ . If D̄(s) were an increasing
process, the left- and right-hand expressions in (3.3) would be equal. Hence, the second term
in (3.2) compensates for the fact that D̄(s) is not monotone.

Theorem 3.1. Under the assumptions of Section 2,

{c−1N
(c)
t }t≥0

FD�⇒ {Ē(t)}t≥0 as c → ∞.

Proof. WritingT (c)(
ct�) = b(c)(T (
ct�)−µ
ct�)+c−1
ct�µ, use (2.2) and c−1
ct�µ →
µt together with Theorem 4.1 of [16] to see that

{T (c)(
ct�)}t≥0 ⇒ {D̄(t)}t≥0

in the Skorokhod J1 topology. Using Theorem 13.4.1 of [17], this implies that
{

sup
0≤s≤t

T (c)(
cs�)
}
t≥0

⇒
{

sup
0≤s≤t

D̄(s)

}
t≥0

in J1,

which is exactly equivalent to

{τ (c)
ct�}t≥0 ⇒ {M̄(t)}t≥0 in J1. (3.4)

Fix any t1, . . . , tm with 0 < t1 < · · · < tm and any x1, . . . , xm ≥ 0. Then, using (3.4),

P{c−1N
(c)
ti

≤ xi for i = 1, . . . , m} = P{N(c)
ti

≤ cxi for i = 1, . . . , m}
= P{τ (c)
cxi� ≥ ti for i = 1, . . . , m}
→ P{M̄(xi) ≥ ti for i = 1, . . . , m}
= P{Ē(ti) ≤ xi for i = 1, . . . , m}

as c → ∞, using (3.4) and Lemma 3.1.

Assume that µ = 1, which entails no loss of generality. The equation (3.1) shows that the
density m(s, t) of the hitting time Ē(t) has Laplace transform

m̄(u, λ) =
∫ ∞

0

∫ ∞

0
e−us−λtm(s, t) ds dt = 1 − λγ−1 + u/q(u)

u+ λ− λγ
.

Writing (u+ λ− λγ )m̄(u, λ) = 1 − λγ−1 + u/q(u) and inverting shows that m(s, t) solves a
fractional partial differential equation,

(
d

dt

)γ
m(s, t)− d

dt
m(s, t) = d

ds
m(s, t)− f (s)δ(t) (3.5)

with conditions m(s, 0) = δ(s),m(0, t) = mt(s, 0) = 0 for all s, t > 0, the map s �→ m(s, t)

is a probability density for all t > 0, and f (s) has Laplace transform u/q(u); see [2] for
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more details. The Caputo derivative (d/ dt)γ for γ ∈ (1, 2] can be defined by requiring that
(d/ dt)γ F (t) has Laplace transform λγ F̃ (λ) − λγ−1F(0) − λγ−2F ′(0), where F̃ (·) is the
Laplace transform of F(·); see for example [4], [13]. For γ ∈ (0, 1), the density m(s, t) of the
hitting time E(t) for the inverse stable subordinator solves

−
(

d

dt

)γ
m(s, t) = d

ds
m(s, t). (3.6)

This follows from Equation (5.4) of [11] with L = −d/ds corresponding to the trivial shift
process A(t) = t , noting that the Caputo derivative (d/dt)γ F (t) for γ ∈ (0, 1] has Laplace
transform λγ F̃ (λ)−λγ−1F(0), and that the last term, t−γ /(1−γ ), in Equation (5.4) of [11]
is absorbed into the Caputo derivative as the inverse Laplace transform of λγ−1. Using two
time scales allows us to extend (3.6) to the case γ ∈ (1, 2] in (3.5).

4. CTRW limit theorem with two time scales

Generalizing the classical CTRW model in Section 2, we now prove a limit theorem for
the rescaled CTRW process {S(N(c)

t )}t≥0 with two time scales. The limiting process is a
subordination of the operator stable Lévy process {A(t)}t≥0 in (2.3) by the process {Ē(t)}t≥0
introduced in Section 3. We first derive a technical result which is of independent interest. It
generalizes Gnedenko’s transfer theorem to

FD�⇒ convergence of stochastic processes. Fix any
m, k ≥ 1. For any x ∈ R

m and c > 0, let µc(x), ν(x) be probability measures on R
k . We say

that

µc(x) ⇒ ν(x) as c → ∞
uniformly on compact subsets of R

m if

µc(x
(c)) ⇒ ν(x) as c → ∞

whenever x(c) → x as c → ∞.

Proposition 4.1. Assume that, for any x ∈ R
m and c > 0, probability measures µc(x) and

ν(x) on R
k are given such that µc(x) ⇒ ν(x) as c → ∞ uniformly on compact subsets of R

m

and that x �→ ν(x) is weakly continuous and x �→ µc(x) is weakly measurable for any c > 0.
Assume further that ρc and ρ are probability measures on R

m for any c > 0 such that ρc ⇒ ρ

as c → ∞. Then ∫
µc(x) dρc(x) ⇒

∫
ν(x) dρ(x) as c → ∞.

Proof. For a Borel probability measure ψ on R
k and any bounded continuous function

f : R
k → R

1, let 〈ψ, f 〉 = ∫
f (y) dψ(y). Let ψc = ∫

µc(x) dρc(x) and ψ = ∫
ν(x) dρ(x).

Then we have to show that

〈ψc, f 〉 → 〈ψ, f 〉 as c → ∞ (4.1)

for all bounded continuous functions f : R
k → R

1. Fix any such function f and let K =
supx∈Rk |f (x)|. Since ρc ⇒ ρ as c → ∞, it follows from Prohorov’s theorem that {ρc}c>0 is
uniformly tight and, hence, given ε > 0, there exists anR > 0 such that ρc{‖x‖ > R} < ε/4K
for all c > 0 and ρ{‖x‖ = R} = 0. By assumption, 〈µc(x(c)), f 〉 → 〈ν(x), f 〉 as c → ∞
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whenever x(c) → x. Hence, 〈µc(x), f 〉 → 〈ν(x), f 〉 uniformly on compact subsets of R
m.

There then exists a c0 > 0 such that, for all c ≥ c0 and all x such that ‖x‖ ≤ R,

|〈µc(x), f 〉 − 〈ν(x), f 〉| < ε

4
.

Since {‖x‖ ≤ R} is a ρ-continuity set and x �→ 〈ν(x), f 〉 is a bounded continuous function,
there exists a c1 ≥ c0 such that, for all c ≥ c1,

∣∣∣∣
∫

‖x‖≤R
〈ν(x), f 〉 dρc(x)−

∫
‖x‖≤R

〈ν(x), f 〉 dρ(x)

∣∣∣∣ < ε

4
.

Then, for c ≥ c1,

|〈ψc, f 〉 − 〈ψ, f 〉| =
∣∣∣∣
∫

〈µc(x), f 〉 dρc(x)−
∫

〈ν(x), f 〉 dρ(x)

∣∣∣∣
≤

∣∣∣∣
∫

‖x‖≤R
〈µc(x), f 〉 dρc(x)−

∫
‖x‖≤R

〈ν(x), f 〉 dρ(x)

∣∣∣∣
+

∫
‖x‖>R

|〈µc(x), f 〉| dρc(x)+
∫

‖x‖>R
|〈ν(x), f 〉| dρ(x)

≤
∫

‖x‖≤R
|〈µc(x), f 〉 − 〈ν(x), f 〉| dρc(x)

+
∣∣∣∣
∫

‖x‖≤R
〈ν(x), f 〉 dρc(x)−

∫
‖x‖≤R

〈ν(x), f 〉 dρ(x)

∣∣∣∣ + ε

2

<
ε

4
ρc{‖x‖ ≤ R} + ε

4
+ ε

2
≤ ε.

Since ε > 0 is arbitrary, (4.1) follows and the proof is complete.

The following result is similar to Theorem 4.2 of [11]. However, since the subordinator
{Ē(t)} does not exist as a stochastic process in D([0,∞),R1), we use a completely different
method.

Theorem 4.1. Under the assumptions of Section 2,

{B(c)S(N(c)
t )}t≥0

FD�⇒ {A(Ē(t))}t≥0.

Proof. Fix any t1, . . . , tm such that 0 < t1 < · · · < tm. Then, in view of the independence
of (Ji) and (Yi ),

P
(B(c)S(N

(c)
ti
):1≤i≤m) =

∫
P(B(c)S(xi ):1≤i≤m) dP

(N
(c)
ti

:1≤i≤m)(x1, . . . , xm)

=
∫
P(B(c)S(xi ):1≤i≤m) dcP

(c−1N
(c)
ti

:1≤i≤m)(x1, . . . , xm)

=
∫
P(B(c)S(cxi ):1≤i≤m) dP

(c−1N
(c)
ti

:1≤i≤m)(x1, . . . , xm). (4.2)
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Now let ρc be the distribution of (c−1N
(c)
ti

: 1 ≤ i ≤ m) and let ρ be the distribution of
(Ē(ti) : 1 ≤ i ≤ m). Then ρc and ρ are probability measures on R

m and it follows from
Theorem 3.1 that ρc ⇒ ρ as c → ∞. Furthermore, for x = (x1, . . . , xm) ∈ R

m+, let

µc(x) = P(B(c)S(cxi ):1≤i≤m),
ν(x) = P(A(xi ):1≤i≤m).

Thenµc(x) and ν(x) are probability measures on (Rd)m and, since {A(t)}t≥0 as a Lévy process
is stochastically continuous, the mapping x �→ ν(x) is weakly continuous. Note that the right-
hand side of (4.2) is equal to

∫
µc(x) dρc(x). If we can show that

µc(x
(c)) ⇒ ν(x) as c → ∞ (4.3)

whenever x(c) → x ∈ R
m+, then Proposition 4.1 implies that, for the right-hand side of (4.2),

we get ∫
µc(x) dρc(x) ⇒

∫
ν(x) dρ(x)

=
∫
P(A(xi ):1≤i≤m) dP(Ē(ti ):1≤i≤m)(x1, . . . , xm)

= P(A(Ē(ti )):1≤i≤m)

as c → ∞.
It remains to show (4.3). Assume that x(c) = (x

(c)
1 , . . . , x

(c)
m ) → x = (x1, . . . , xm),

where, without loss of generality, 0 ≤ x1 ≤ · · · ≤ xm. If µ̂ is the characteristic function of
the distribution µ of Yi , then it follows from (2.3) along with Lévy’s continuity theorem that
B(c)µ̂
ct� → ν̂t as c → ∞ for any t > 0 and, hence, B(c)µ̂
ct+o(c)� = (B(c)µ̂
ct�)1+o(1) →
ν̂t as well, so B(c)S(ct + o(c)) ⇒ A(t). Then, for any fixed i ∈ {1, . . . , m},

B(c)(S(
cx(c)i �)− S(
cx(c)i−1�)) D= B(c)(S(
cx(c)i � − 
cx(c)i−1�))
⇒ A(xi − xi−1)

D= A(xi)− A(xi−1)

as c → ∞, and, since these random vectors are independent, we also have

(B(c)(S(
cx(c)i �)− S(
cx(c)i−1�)) : 1 ≤ i ≤ m) ⇒ (A(xi)− A(xi−1) : 1 ≤ i ≤ m
)

as c → ∞. Continuous mapping then implies that

µc(x
(c)) = P

(B(c)S(cx
(c)
i ):1≤i≤m) ⇒ P(A(xi ):1≤i≤m) = ν(x)

as c → ∞, proving (4.3).

Recall from [6, Theorem 4.10.2] that the distribution νt of A(t) in (2.3) has a C∞ density
p(x, t), so that dνt (x) = p(x, t) dx, and that m(s, t) is the density of the hitting time Ē(t).

Corollary 4.1. The limiting process {A(Ē(t))}t≥0 obtained in Theorem 4.1 has the density

h(x, t) =
∫ ∞

0
p(x, s)m(s, t) ds. (4.4)
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Proof. This is a simple conditioning argument, using the fact that {A(t)} and {Ē(t)} are
independent stochastic processes.

Assume that µ = 1, which entails no loss of generality. The density of the CTRW limit
process A(Ē(t)) solves a governing equation that provides a model for anomalous diffu-
sion. Since ν is infinitely divisible, it defines a strongly continuous semigroup G(t)f (x) =∫
f (x − y)νt (dy) for f ∈ L1(Rd) and t ≥ 0. Theorem 2.2 of [1] shows that the generator L

of this semigroup is a linear operator on L1(Rd) defined by setting the Fourier transform of Lf
equal toψ(k)f̂ (k), where

∫
ei〈k,x〉νt (dx) = etψ(k) and f̂ (k) = ∫

ei〈k,x〉f (x) dx is the Fourier
transform of f (x). Then the density h(x, t) of the CTRW limit process in Corollary 4.1 solves
the fractional partial differential equation

−
(

d

dt

)γ
h(x, t)+ d

dt
h(x, t) = Lh(x, t)+ δ(t)g(x), (4.5)

where g(x) has Fourier transform ĝ(k) = −ψ(k)/q(−ψ(k)) with q as in the proof of
Lemma 3.1. To see this, take Fourier–Laplace transforms in (4.5) to get

−λγ h̄(k, λ)+ λγ−1 + λh̄(k, λ)− 1 = ψ(k)h̄(k, λ)+ ĝ(k)

and then solve to obtain

h̄(k, λ) = 1 − λγ−1 + ĝ(k)

λ− λγ − ψ(k)
.

Now just check by an argument similar to (3.1) that the function h(x, t) given by (4.4) has this
Fourier–Laplace transform; see [2] for details. Zaslavsky [18] proposed a fractional kinetic
equation (

d

dt

)γ
h(x, t) = Lh(x, t)

for Hamiltonian chaos, where γ ∈ (0, 1). The equation (4.5) extends this equation to the case
γ ∈ (1, 2]. When γ = 1, these equations reduce to the classical Cauchy equation

d

dt
h(x, t) = Lh(x, t).
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