
SHIFTED HILL’S ESTIMATOR

FOR HEAVY TAILS

Inmaculada B. Aban* and Mark M. Meerschaerty

Department of Mathematics, University of Nevada,
1664 N. Virginia St., Reno, NV 89557-0045, USA

ABSTRACT

Hill’s estimator is a popular method for estimating the thick-
ness of heavy tails. In this paper we modify Hill’s estimator to
make it shift-invariant as well as scale-invariant. The resulting
shifted Hill’s estimator is a more robust method of estimating
tail thickness.
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1. INTRODUCTION

We say that a random variable X has heavy tails if PðjX j > xÞ ! 0 at
a polynomial rate. In this case, some of the moments of X will be undefined.
Heavy tail random variables are important in applications to finance, elec-
trical engineering, physics and hydrology, see for example (1, 2, 3, 4, 5, 6).
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Hill (7) developed an estimator that is commonly used to determine the rate
at which the tails diminish, and this is very useful in practice, see for example
(8, 9, 10). Hill’s estimator is the conditional maximum likelihood estimator
(MLE) for the Pareto distribution PðX > xÞ ¼ Cx�� conditional on X � d
for some fixed d > 0. This estimator can be applied to a wide variety of
distributions, such as the stable and type II extreme value distributions,
whose tails are approximately Pareto (11, 12, 13, 14). Hill’s estimator is
more robust than an MLE based on one of these distributions because it
only assumes that the distributional tail has a given form, not the entire
distribution. Other tail estimators have also been proposed, for example (15,
16, 17, 18, 19, 20), but Hill’s estimator continues to be the most popular in
practice.

In this paper we propose a practical modification to Hill’s estimator
that extends its utility. Hill’s estimator is scale-invariant, so that a multi-
plicative factor in the data will not affect the estimate. But it is not shift-
invariant, so that an additive factor will distort the estimates. In this paper
we extend Hill’s estimator to include information about the shift. Using the
same methods as Hill, we compute the conditional MLE for a shifted Pareto
PðX > xÞ ¼ Cðx� sÞ�� which gives estimates of � > 0, C > 0, and s 2 R

1.
The resulting estimator is both scale-invariant and shift-invariant. Then we
investigate robustness by applying the new estimator to simulated stable
data. As observed by McCulloch (21), Resnick (22) and Fofack and
Nolan (23), Hill’s estimator performs poorly for stable data with
1:5 < � < 2. The shifted Hill’s estimator performs much better, indicating
that the problem with Hill’s estimator in this case is resolved by accounting
for a shift.

2. SHIFTED HILL’S ESTIMATOR

Hill’s estimator provides a robust method for measuring the thickness
of heavy tails by approximating the distributional tail with a power func-
tion. In practice it is often true that PðX > xÞ 
 Cx�� for x > 0 sufficiently
large. Then the idea is to estimate the parameters C > 0 and � > 0 by a
conditional maximum likelihood estimate based on the rþ 1 (0 � r < n)
largest order statistics, which represent only the portion of the tail for
which the power law approximation holds. For the shifted Hill’s estimator
which is the subject of this paper, we rely on a slightly more general approx-
imation scheme PðX > xÞ 
 Cðx� sÞ�� where s is an arbitrary shift. In
practical applications of the theorem of this section, one should choose r
as large as possible, but small enough so that the largest rþ 1 order statistics
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lie within the portion of the distributional tail where this approximation is
valid.

Our shifted Hill’s estimator is the conditional maximum likelihood
estimator for the parameters of a shifted Pareto distribution

FðxÞ ¼ 1� Cðx� sÞ�� x > sþ C1=�
ð1Þ

based on the rþ 1 largest order statistics. Our result extends the usual Hill’s
estimator, and in fact if ŝs ¼ 0 we obtain an identical formula. Given a data
set X1, . . . ,Xn, we define the order statistics Xð1Þ � 
 
 
 � XðnÞ where ties are
broken arbitrarily.

Theorem 1.When XðrÞ > Xðrþ1Þ the conditional maximum likelihood estimator
for the parameters in (1) based on the rþ 1 largest order statistics is given by

�̂� ¼ r�1
Xr
i¼1

flnðXðiÞ � ŝs Þ � lnðXðrþ1Þ � ŝs Þg

" #�1

ð2Þ

ĈC ¼ ðr=nÞðXðrþ1Þ � ŝs Þ�̂� ð3Þ

where the optimal shift ŝs satisfies the equation

�̂�ðXðrþ1Þ � ŝs Þ�1
¼ ð�̂�þ 1Þ r�1

Xr
i¼1

ðXðiÞ � ŝs Þ�1
ð4Þ

for some ŝs < Xðrþ1Þ.

Proof.We adapt the proof of Hill (7). It is convenient to transform the data,
taking Zði Þ ¼ ðXðn�iþ1Þ � sÞ�1 so that GðzÞ ¼ PðZ � zÞ ¼ Cz� and Zð1Þ � 
 
 


� ZðnÞ. Since UðiÞ ¼ GðZði ÞÞ are (decreasing) order statistics from a uniform
distribution, EðiÞ ¼ � lnUði Þ are (increasing) order statistics from a unit
exponential. Following [24] pp. 20–21, we let Yi ¼ ðn� i þ 1ÞðEði Þ � Eði�1ÞÞ,
and hence, one can easily check fYi, i ¼ 1, . . . , ng are independent and iden-
tically distributed unit exponential. Define Y�

¼ nEðn�rþ1Þ ¼ nðY1=nþ 
 
 
 þ

Yn�rþ1=rÞ so that Yn, . . . ,Yn�rþ2,Y
� are mutually independent with joint

density expð�yðnÞ � 
 
 
 � yðn�rþ2ÞÞpðy
�
Þ, where pðy�Þ is the density ofY�. Since

Uðn�rþ1Þ has density K1u
r�1

ð1� uÞn�r it follows that Y�
¼ �n lnUðn�rþ1Þ

has density pð yÞ ¼ K2 expð�y=nÞrð1� expð y=nÞÞn�r where fKj, j ¼1, 2g
are positive constants: Use the fact that YðiÞ ¼ ðn� i þ 1Þ ½� lnGðZðiÞÞ þ

lnGðZði�1ÞÞ� ¼ �ðn� i þ 1ÞðlnZði�1Þ � lnZði ÞÞ, for i ¼ 1, . . . , r� 1, and
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expð�Y�=nÞ ¼ CZ�
ðn�rþ1Þ to obtain the likelihood

K

�Yr
i¼1

�

zðn�iþ1Þ

�
exp

�
��

Xr�1

i¼1

i ln zðn�i Þ � ln zðn�iþ1Þ

� ��

�

�
Cz�ðn�rþ1Þ

�r�
1� Cz�ðn�rþ1Þ

�n�r

,

conditional on the values of the rþ 1 smallest order statistics, ZðnÞ ¼

zðnÞ, . . . ,Zðn�rþ1Þ ¼ zðn�rþ1Þ, where K > 0 does not depend on the data or
the parameters. Next, condition on Zðn�rþ1Þ � d < Zðn�rÞ, which multiplies
the conditional likelihood by a factor of ð1� Cd�

Þ
n�r=ð1� Cz�ðn�rþ1ÞÞ

n�r.
Then simplify the sum in the exponential to obtain

K

�Yr
i¼1

�

zðn�iþ1Þ

�
exp

�
�ðr� 1Þ� ln zðn�rþ1Þ þ �

Xr�1

i¼1

ln zðn�iþ1Þ

�

�

�
Cz�ðn�rþ1Þ

�r�
1� Cd�

�n�r

and collect terms to get

K�r exp

�
ð�� 1Þ

Xr
i¼1

ln zðn�iþ1Þ

�
Cr

�
1� Cd�

�n�r

:

Substitute � ¼ Cd� to obtain the conditional likelihood function

K�r�r
ð1� �Þn�r exp

�
�� r ln d þ ð�� 1Þ

Xr
i¼1

ln zðn�iþ1Þ

�

which is similar to (2.7) in (7). In terms of the original data, this conditional
likelihood becomes

L ¼ K�r�r
ð1� �Þn�r exp

�
� r lnðD� sÞ � ð�� 1Þ

Xr
i¼1

lnðXði Þ � sÞ

�

�
Yr
i¼1

ðXðiÞ � sÞ�2, ð5Þ

where d ¼ ðD� sÞ�1 and the product term comes from the change of
variable formula for a multivariable probability density. Consequently,
the conditional log-likelihood

lnL ¼ K0 þ r ln�þ r ln�þ ðn� rÞ lnð1� �Þ þ �r lnðD� sÞ � ð�þ 1Þ

�
Xr
i¼1

lnðXðiÞ � sÞ,
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and we seek the global maximum over the parameter space consisting
of all ð�,�, sÞ for which � > 0, 0 < � < 1, s < D and sþ C1=�

¼ sþ
�1=�

ðD� sÞ < XðrÞ. At an interior maximum

0 ¼
@ lnL

@ �
¼

r

�
þ r lnðD� sÞ �

Xr
i¼1

lnðXði Þ � sÞ

0 ¼
@ lnL

@�
¼

r

�
�

n� r

1� �

0 ¼
@ lnL

@s
¼

�� r

D� s
þ ð�þ 1Þ

Xr
i¼1

ðXði Þ � sÞ�1
ð6Þ

must hold. The solution to (6) depends on the value of D, which will be
unknown in practice. Since we assume XðrÞ � D > Xðrþ1Þ we could estimate
D by XðrÞ or Xðrþ1Þ or some point in between. We use the estimate D ¼ Xðrþ1Þ

to be consistent with standard usage for the original Hill estimator (8–11,
13, 22, 23). Now the theorem follows easily, using C ¼ �ðD� sÞ�.

Remarks. The conditional likelihood (5) can also be obtained using the joint
density of the order statistics (e.g., see equation (2.2.2) in (24). Note that the
formulas for �̂� and ĈC are the same as for the usual Hill’s estimator, once the
data is shifted by ŝs. Therefore any implementation of Hill’s estimator may be
used once an estimate of the true shift is computed and applied. Although the
proof of the original Hill’s estimator also requires XðrÞ > Xðrþ1Þ, this fact is
commonly ignored, and the resulting formulas are used even in the case of a
tie. Various refinements of Hill’s estimator have been proposed to smooth or
sharpen the estimate of �, see for example (11, 22, 25). These refinements can
also be applied to the shiftedHill’s estimator, and we believe that the resulting
improvements would make a worthwhile subject for future research.

3. NUMERICAL IMPLEMENTATION

The shifted Hill’s estimator is computed by solving a three dimen-
sional optimization problem. The estimator maximizes the conditional like-
lihood function (5) over the parameter space consisting of all ð�,�, sÞ for
which � > 0, 0 < � < 1, s < D and sþ C1=�

¼ sþ �1=�
ðD� sÞ < XðrÞ. At an

interior critical point, the equations (6) hold. Since s < D it follows that

sþ �1=�
ðD� sÞ ¼ sð1� �1=�

Þ þ �1=�D < Dð1� �1=�
Þ þ �1=�D

¼ D � XðrÞ

is automatically satisfied, so that it suffices to solve (6) over the space of all
ð�,�, sÞ for which � > 0, 0 < � < 1, and s < D.

SHIFTED HILL’S ESTIMATOR FOR HEAVY TAILS 953



Lemma. The conditional likelihood function L in (5) tends to zero as � ! 0þ,
� ! 1, � ! 0þ, � ! 1�, s ! D�, or s ! �1.

Proof.Note thatM ¼ D� s > 0 and Ci ¼ XðiÞ �D > 0 for i ¼ 1, . . . , r. Then

lnL¼ K1 þ r ln�þ �
Xr
i¼1

ln
D� s

Xði Þ � s

� �
¼ K1 þ r ln�þ �

Xr
i¼1

ln
M

MþCi

� �

where K1 does not depend on �. Then it follows easily that lnL ! �1 as
� ! 0þ or as � ! 1. Next write lnL ¼ K2 þ r ln�þ ðn� rÞ lnð1� �Þ
where K2 does not depend on �. Then it follows that lnL ! �1 as
� ! 0þ or � ! 1�. Finally write

lnL ¼ K3 þ �
Xr
i¼1

ln
M

M þ Ci

� �
�
Xr
i¼1

lnðM þ CiÞ

where K3 does not depend on s. Then lnL ! �1 as s ! D� (so that
M ! 0þ) or s ! �1 (so that M ! 1). This completes the proof.

Substituting D ¼ Xðrþ1Þ into (6) leads to the formulas (2) and (3) along
with the constraint equation (4) that identifies the optimal shift. Equation
(2) gives the optimal �̂� as a function of ŝs. Substituting into (4) yields one
equation

Gðŝs, �̂�ðŝsÞÞ ¼ �r�̂�ðŝsÞðXðrþ1Þ � ŝsÞ�1
þ ð�̂�ðŝsÞ þ 1Þ

Xr
i¼1

ðXðiÞ � ŝsÞ�1
¼ 0 ð7Þ

in one variable ŝs. After solving equation (7) for the optimal shift, we can
substitute back into (2) and (3) to obtain �̂� and ĈC. In most cases, equation
(7) has a unique solution on the interval �1 < ŝs < Xðrþ1Þ. Figure 1 displays
typical graphs of the constraint function in (7) as a function of ŝs for varying
values of r based on a sample of size n ¼ 20, 000 from a symmetric stable
distribution with tail parameter � ¼ 1:8: When r is very small, (7) may have
no solution (see for instance Figure 1 when r ¼ 5.) In practical applications,
we consider the parameter estimates as functions of the number of order
statistics used, so this is not a problem. However, it can be annoying when
running repeated simulations. Therefore we have developed a simple test to
ensure that the equation (7) has a solution.

Given an ordered sample Xð1Þ � 
 
 
 � XðnÞ let Ci ¼ Xði Þ � Xðrþ1Þ denote
the exceedences past the ðrþ 1Þst order statistic for i ¼ 1, . . . , r. The mean
and variance of these data are given by

�r ¼ r�1
Xr
i¼1

Ci and 	2
r ¼ r�1

Xr
i¼1

ðCi � �rÞ
2: ð8Þ

For heavy tailed data it is commonly observed that 	r > �r.
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Theorem 2. Suppose that (8) holds with Ci ¼ XðiÞ � Xðrþ1Þ and that 	r > �r.
Then (7) holds for some �1 < ŝs < Xðrþ1Þ.

Proof.Write M ¼ Xðrþ1Þ � ŝs so that Xði Þ � ŝs ¼ Ci þM for i ¼ 1, . . . , r. Now
we develop a property of our constraint function. Recall that Theorem 1
requires the condition XðrÞ > Xðrþ1Þ, just like the original Hill’s estimator.

Lemma. If XðrÞ > Xðrþ1Þ then Gðŝs, �̂�ðŝsÞÞ ! �1 as ŝs " Xðrþ1Þ.

Proof. As ŝs " Xðrþ1Þ we have M ! 0. Then

�ðMÞ ¼ �̂�ðŝsÞ ¼ � lnM þ r�1
Xr
i¼1

lnðCi þMÞ

 !�1

where lnðCi þMÞ � lnðCrÞ for all 1 � i � r and all M > 0. Then �ðM Þ
�1

�

lnðCr=MÞ ! 1, so �ðMÞ ! 0 as M ! 0. Now write Gðŝs, �̂�ðŝsÞÞ ¼ I1 þ I2

Figure 1. Constraint function G as a function of the shift estimate for varying

values of r based on a sample of size n ¼ 20, 000 from a symmetric stable distribution
with tail parameter � ¼ 1:8.
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where

I1 ¼
�r�ðM Þ

Xðrþ1Þ � ŝs
¼

�r

M�ðMÞ
�1

�
�r

M lnðCr=MÞ
! �1

as M ! 0 and

I2 ¼ ð�ðM Þ þ 1Þ
Xr
i¼1

1

Ci þM
� ð�ðMÞ þ 1Þ

r

Cr

so that I1 þ I2 ! �1 as M ! 0. This completes the proof of the Lemma.
Now in order to show that Gðŝs, �̂�ðŝsÞÞ ¼ 0 for some �1 < ŝs < Xðrþ1Þ

it will suffice to show that this function is positive for some ŝs. Recall
that �r ¼ r�1Pr

i¼1 Ci and let �ð2Þ
r ¼ r�1Pr

i¼1 C
2
i . Since lnð1þ Ci=MÞ ¼

Ci=M� 1=2ðCi=MÞ
2
þOðM�3

Þ we have

1

r

Xr
i¼1

lnð1þ Ci=MÞ ¼
1

rM

Xr
i¼1

Ci �
1

2rM2

Xr
i¼1

C2
i þOðM�3

Þ

and so for � ¼ �ðMÞ we have

�Ci

M

� ��1

¼
M

Ci

1

rM

Xr
i¼1

Ci �
1

2rM2

Xr
i¼1

C2
i þOðM�3

Þ

 !

¼
�r

Ci

�
�ð2Þ
r

2CiM
þOðM�2

Þ

¼
�r

Ci

1�
�ð2Þ
r

2M�r

þOðM�2
Þ

 !
:

Since ð1þ K0=M Þ
�1

� ð1þ K0=M Þ as M ! 1 for any real constant K0 it
follows that

�Ci

M

� �
¼

Ci

�r

1þ
�ð2Þ
r

2M�r

þO M�2
� 
 !

so that

1�
�Ci

M

� �
¼ 1�

Ci

�r

�
Ci�

ð2Þ
r

2M�2
r

þOðM�2
Þ
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as M ! 1. Now write

Gðŝs, �̂�ðŝsÞÞ ¼
Xr
i¼1

M � �Ci

MðCi þMÞ

� �

¼
Xr
i¼1

1

Ci þM

� �
1�

�Ci

M

� �

¼
Xr
i¼1

1

Ci þM

� �
�r � Ci

�r

�
Ci�

ð2Þ
r

2M�2
r

þOðM�2
Þ

 !

¼ KðMÞ
Xr
i¼1

�r � Ci �
Ci�

ð2Þ
r

2M�r

þOðM�2
Þ

 !Y
j 6¼i

ðM þ CjÞ

where

KðM Þ
�1

¼ �r

Yr
j¼1

ðM þ CjÞ

and the remaining product is taken over all 1 � j � r such that j 6¼ i.
Expanding this product term shows that the last expression above equals

KðM Þ
Xr
i¼1

ð�r � CiÞM
r�1

þ
Xr
i¼1

ð�r � CiÞM
r�2

X
j 6¼i

Cj �
�ð2Þ
r

2�r

 

�
Xr
i¼1

CiM
r�2

þOðMr�3
Þ

!
:

Since
Pr

i¼1ð�r � CiÞ ¼ 0 it follows that Gðŝs, �̂�ðŝsÞÞ > 0 for all M sufficiently
large (i.e., for all sufficiently large negative numbers ŝs) if and only if

Xr
i¼1

ð�r � CiÞ
X
j 6¼i

Cj >
�ð2Þ
r

2�r

Xr
i¼1

Ci ¼
r

2
�ð2Þ
r :

Since

Xr
i¼1

Xr
j¼1

ð�r � CiÞð�r � CjÞ ¼
Xr
i¼1

ð�r � CiÞ

 !2

¼ 0

it follows that

Xr
i¼1

ð�r �CiÞ
X
j 6¼i

Cj ¼�
Xr
i¼1

X
j 6¼i

ð�r �CiÞð�r �CjÞ ¼
Xr
i¼1

ð�r �CiÞ
2
¼ r	2

r

so the condition reduces to 2	2
r > �ð2Þ

r . Now use the well known formula
	2
r ¼ �ð2Þ

r � �2
r to reduce this to 	2

r > �2
r .
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4. ROBUSTNESS

The main argument for the use of Hill’s estimator is robustness. Since
it only depends on the shape of the probability tails, it can be applied in
situations where the form of the distribution is unknown. This is typically
the case in applications to finance, where heavy tails are common. Jansen
and de Vries (9) and Loretan and Phillips (10) analyze a large number of
financial data sets using Hill’s estimator. Typically they find values of �
around 3.0 on the basis of the largest r ¼ 50 order statistics from a
sample of size n ¼ 3, 000. McCulloch (21) criticizes these findings, arguing
that Hill’s estimator may significantly inflate estimates of � for data which
approximately follow a stable distribution. Another method of estimating �
for these data sets is to use the stable MLE recently developed by Nolan
(26). If probability plots show an adequate fit to a stable distribution, then
this method is preferred. If not, then Hill’s estimator may still apply because
it only assumes that the distributional tail has a given form, not the entire
distribution.

The use of stable distributions for financial data is motivated by the
extended central limit theorem. Sums of independent and identically dis-
tributed random variables can only converge to a stable distribution, see for
example Feller (2). Hence if price changes result from the additive effect of
many small independent random shocks, their distribution must be approxi-
mately stable. In the special case where the constituent shocks have a finite
variance, we obtain a normal limit, which is a special case of a stable limit. A
random variable X is said to have a nondegenerate stable distribution if its
characteristic function is given by

Efexp i
Xg ¼
expf�	�

j
j�ð1� i�ðsign 
Þ tanð��=2ÞÞ þ i�
g for � 6=1,

expf�	j
jð1þ i�ð2=�ÞÞðsign 
Þ ln 
þ i�
g for �=1,

(

where the tail index 0 < � � 2, the scale 	 > 0, center �1 < � < 1, and
skewness �1 � � � 1: When � ¼ 2, we obtain the special case of a normal
distribution. When � < 2 the stable distribution has heavy tails. In this case,
PðX > xÞ � Cx�� as x ! 1 where

C ¼
1þ �

2

� �
	�

ð1� �Þ

�ð2� �Þ cosð��=2Þ
, ð9Þ

see for example Samorodnitsky and Taqqu (14). Hence a stable distribution
is approximately Pareto for large x > 0. See Fofack and Nolan (23)
for a more detailed discussion on fitting a Pareto to the tail of a stable
distribution.
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We investigated the observed sampling distribution of the shifted
Hill’s estimator when applied to stable data. We generated m ¼ 1, 000
random samples of size n ¼ 20, 000 from a stable distribution with
� ¼ 1:8, 	 ¼ 1, � ¼ 0, and � ¼ 0, using the stable random variable genera-
tor from the IMSL Fortran subroutine library (27). Then we computed the
shifted Hill’s estimator from these data as a function of the tail sample size r.
For purposes of comparison we also computed the usual Hill’s estimator. In
view of formula (2) we chose to examine �̂��1 rather than �̂�. Figure 2 and
Table 1 summarize the results of our simulation. The observed sampling
distributions are approximately normal with a standard deviation roughly
proportional to r�1=2. The original Hill’s estimator for ��1 is significantly
below the true value of ��1

¼ 0:55�55, thus overestimating �, while the shifted
Hill’s estimator is centered near ��1

¼ 0:55�55. The spread of the simulated
sampling distribution for the shifted Hill’s estimator is quite a bit larger than
the original Hill’s estimator, but this is the price of robustness. We also note
that this stable distribution is symmetric, so that its mean, median and mode
are all equal to zero. Fofack and Nolan (23) suggest centering the data to its
sample median or mode before using Hill’s estimator. Our data are already
centered, and the shifted Hill’s estimator still performs better than the ori-
ginal. In this case, shifting to the median is far from optimal.

Summary statistics for the shift and dispersion are given in Table 2. The
observed sampling distributions are significantly skewed with numerous out-
liers. Both the optimal shift and dispersion vary significantly depending on
the number r of upper order statistics used. This is because the best fitting
shifted Pareto density depends on how much of the stable density tail we are
trying to fit. It is also interesting to note that the optimal shift s cannot be
estimated independent of the optimal dispersion C. Simulation results for the

Figure 2. Observed sampling distribution of �̂��1 based on m ¼ 1, 000 simulated
data sets of size n ¼ 20, 000 from a stable distribution with 	 ¼ 1, � ¼ 0, � ¼ 0
and � ¼ 1:8 (��1

¼ 0:55�55 denoted by the broken horizontal line).
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stable distribution considered with r ¼ 500 (the upper 2.5% of the data)
suggest an optimal shift of around s ¼ 1:5 and an optimal dispersion of
around C ¼ 0:05.

We also studied the behavior of the shifted Hill’s estimator for stable
data with other values of 0 < � � 2 and �1 � � � 1. For smaller values of
�, the original Hill’s estimator performs better than the shifted Hill’s
estimator, while for 1:5 < � < 2 the shifted Hill’s estimator performs
better. We lose resolution in both estimators as � decreases, since our esti-
mates are based on the right tail, but if we apply both estimators to absolute
values of the observations, then both estimators are insensitive to the skew-
ness parameter �. The other two parameters of a stable distribution are the
scale 	 and center �. The shifted Hill’s estimator is both scale-invariant
and shift-invariant, so it is unaffected by changes in these parameters.

Table 1. Summary Statistics for �̂��1 Based on m¼ 1,000 Data Sets of Size n¼
20,000 from a Stable Distribution with �¼ 1, � ¼ 0,� ¼ 0 and � ¼ 1:8 ð��1 ¼ 0:55�55Þ

r¼ 250 r¼ 500 r¼ 750

Statistic Hill’s

Shifted

Hill’s Hill’s

Shifted

Hill’s Hill’s

Shifted

Hill’s

Minimum 0.317 0.332 0.313 0.320 0.316 0.321
Lower quartile 0.407 0.550 0.361 0.549 0.349 0.498

Median 0.427 0.618 0.374 0.595 0.358 0.533
Upper quartile 0.445 0.686 0.388 0.636 0.368 0.568
Maximum 0.530 1.013 0.439 0.776 0.400 0.712

Mean 0.426 0.619 0.375 0.592 0.358 0.532
Std dev 0.030 0.100 0.019 0.068 0.015 0.055

Table 2. Summary Statistics for ŝs and ĈC Based on m¼ 1,000 Simulated Data Sets
of Size n¼ 20,000 from a Stable Distribution with �¼ 1.8, �¼ 1, �¼ 0 and �¼ 0

ŝs ĈC

Statistic r¼ 250 r¼ 500 r¼ 750 r¼ 250 r¼ 500 r¼ 750

Minimum �1.152 �0.078 �0.078 0.012 0.024 0.037
Lower quartile 1.310 1.402 1.057 0.032 0.044 0.069
Median 1.728 1.576 1.193 0.046 0.054 0.085

Upper quartile 2.052 1.734 1.359 0.073 0.069 0.109
Maximum 2.912 2.154 1.776 1.430 0.990 0.976
Median abs dev 0.362 0.164 0.148 0.017 0.012 0.018
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The original Hill’s estimator is scale-invariant, but of course the shift will
affect this estimator, which is the entire point of this paper.

5. CONCLUSIONS

In this paper we compute a shifted Hill’s estimator as the conditional
maximum likelihood estimator based on the upper order statistics of a shifted
Pareto distribution. Accounting for the shift is important because Hill’s esti-
mator is not shift-invariant. The resulting shifted Hill’s estimator has a wider
sampling distribution than the original Hill’s estimator, but it is more robust.
McCulloch (21) reports that the usual Hill’s estimator greatly overestimates
the tail parameter � for simulated stable data with 1:5 < � < 2. The shifted
Hill’s estimator does a much better job of estimating �, showing that the
problem with Hill’s estimator in this case is nothing more than a failure to
account for a shift. Stable or nearly stable random variables are commonly
observed in applications to finance. Hill’s estimator is often used to provide a
robust estimator of the tail parameter � for these data sets. We recommend
computing the optimal shift for Hill’s estimator in all such applications.
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