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Abstract. The innovations algorithm can be used to obtain parameter estimates for
periodically stationary time series models. In this paper, we compute the asymptotic
distribution for these estimates in the case, where the innovations have a finite fourth
moment. These asymptotic results are useful to determine which model parameters are
significant. In the process, we also develop asymptotics for the Yule-Walker estimates.
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1. INTRODUCTION

A stochastic process X, is called periodically stationary (in the wide sense) if
u, = EX, and y,(h) = EX,X,,,, for h =0, £1, £2, ... are all periodic functions
of time ¢ with the same period v > 1. If v = 1, then the process is stationary.
Periodically stationary processes manifest themselves in such fields as
economics, hydrology and geophysics, where the observed time series are
characterized by seasonal variations in both the mean and covariance
structure. An important class of stochastic models for describing periodically
stationary time series are the periodic ARMA models, in which the model
parameters are allowed to vary with the season. Periodic ARMA models are
developed in Adams and Goodwin (1995), Anderson and Vecchia (1993),
Anderson and Meerschaert (1997, 1998), Anderson et al. (1999), Jones and
Brelsford (1967), Lund and Basawa (2000), Pagano (1978), Salas et al. (1985),
Tjostheim and Paulsen (1982), Troutman (1979), Vecchia and Ballerini (1991)
and Ula (1993).

Anderson et al. (1999) develop the innovations algorithm for periodic ARMA
model parameters. In this paper, we provide the asymptotic estimates necessary to
determine which of these estimates are statistically different from zero, under the
classical assumption that the innovations have finite fourth moment. Brockwell
and Davis (1988), discuss asymptotics of the innovations algorithm for stationary
time series, using results of Berk (1974) and Bhansali (1978). Our results reduce to
theirs, when the period v = 1. Since our technical approach extends that of
Brockwell and Davis (1988), we also need to develop periodically stationary
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analogues of results in Berk (1974) and Bhansali (1978). In particular, we obtain
asymptotics for the Yule-Walker estimates of a periodically stationary process.
Although the innovations estimates are more useful in practice, the asymptotics of
the Yule—Walker estimates are also of some independent interest.

2. THE INNOVATIONS ALGORITHM FOR PARMA PROCESSES

The periodic ARMA process {X;} with period v [denoted by PARMA (p, ¢)] has
representation

P

X =Y DXy =& = > 0ii)ery, ()
=

Jj=1

where X, = X, — u, and {¢,} is a sequence of random variables with mean zero
and SD ¢, such that {6, !¢} is i.i.d. The autoregressive (AR) parameters ¢ (j),
the moving average parameters 6,(j), and the residual SDs ¢, are all periodic
functions of ¢ with the same period v > 1. In this paper, we will make the
classical assumption Ee} < oo, which leads to normal asymptotics for the
parameter estimates. We also assume that the model admits a causal
representation

00

Xo=) e, )

J=0

where ,(0) = 1 and 3777, [¥,(j)| < oo for all 7, and satisfies an invertibility
condition

b= m()X . 3)
=0

where n,(AOQ = land 327 [m(j)| < oo for all «.

Let lerk = Py, X;y; denote the one-step predictors, where H;;=
SP{Xi, .. s Xigx1}, k> 1, and Py, is the orthogonal projection onto this
space, which minimizes the mean squared error (MSE)

v = Xk — X0, I1P = EKii — X))

1

Then
X(‘) — d)(‘)X NI ¢(’) X k> 1 (4)
i+ k1 Vitk—1 ke =5
where the vector of coefficients qb,(:) = (¢1<ci)1»-~~a¢1(3c)/ solves the prediction
equation '
Fk.,id)/(j) = "//ii) (5)

© Blackwell Publishing Ltd 2005



PARAMETER ESTIMATION 491

with 7 = (i1 (1), 714 2(2), -, 7,(k))" and

it = [saole = m)| ©)
Lm=1,...k
is the covariance matrix of (X;;z_1,...,X;) foreachi=0,...,v — 1. Let
N-1
%) = N~! ZvaqLineriM (7)
=0

denote the (uncentered) sample autocovariance, where X, = X; — y,. If we replace
the autocovariances in the prediction equation QS) w1th their corresponding
sample autocovariances, we obtain the estimator (l)k jof (;’)k J

Because the process is nonstationary, the Durbin-Watson algorithm for
computing qSk does not apply. However, the innovations algorithm still applies to
a nonstatlonary process. Writing

0 (Xiky — X0 ) (8)

M»

l+k

j=1
yields the one-step predictors in terms of the innovations X,+k_J )A(l(;)k -
Proposmon 4.1 of Lund and Basawa (2000), shows that if a >0 for i=
0,...,v — 1, then for a causal PARMA (p, ¢) process the covariance matrix I'; ;is
nonsingular for every kK > 1 and each i. Anderson et al. (1999) shows that if
EX, = 0 and I'y; is nonsingular for each k > 1, then the one-step predictors )?i+k,

k > 0, and their mean-square errors (MSEs)v, ;, kK > 1, are given by

Uo,i = Vi(o)v
(i ! S0l
0, = (v0s) [w(k 0 ee’,g,‘ek’,k,-u,;,} 7
= 9)
k—1 @ )
vei = 7i4(0) — Z(Okl,k—j) Ujiis
=0
where (9) is solved in the order v 5 01, v1 1, 035, 05, vo.5 034, 015, 04}, vs s, ... The
results in Anderson et al. (1999) show that '
>> - l//i(j)a
Uk (i—k) — 0,2, (10)

i—k .
¢1Et<,j R —m;(j)
as k — oo for all i, j, where

: —v[j/v] ifj=0,1,...,
U = {f)—i—]—\)[}/\)—i—l] ifj':—l,—z,...

and [] is the greatest integer function.
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If we replace the autocovariances in (9) with the corresponding sample
autocovariances (7), we obtain the innovations estimates él)[ and ¥ ;. Similarly,
replacing the autocovariances in (5) with the correspondmg sample
autocovariances yields the Yule—Walker estimators q’)H The consistency of
these estimators was also established in Anderson et al. (1999). Suppose that {X,}
is the mean zero PARMA process with period v given by (1) and that E(&}) < oo.
Assume that the spectral density matrix f{(41) of the equivalent vector ARMA
process is such that mz'z < Z/f(A)z < MZ'z, —n < A < =, for some m and M such
that 0 < m < M < oo and for all z in R". If k is chosen as a function of the
sample size N, so that k*/N — 0 as N — oo and k — oo, then the results in
Anderson et al. (1999) also show that

. 12’ (11)
¢>k, 5 —m()

for all 4, j. This yields a practical method for estimating the model parameters, in
the classical case of finite fourth moments. The results of Section 3, can then be
used to determine which of these model parameters are statistically significantly
different from zero.

l“v l"o 1
Q

3. ASYMPTOTIC RESULTS

We compute the asymptotic distribution for the innovations estimates of the
parameters in a periodically stationary time series (2) with period v > 1. In the
process, we also obtain the asymptotic distribution of the Yule-Walker estimates.
For any periodically stationary time series, we can construct an equivalent
(stationary) vector moving average process in the following way: Let Z, =
(8”,, ey 8(t+1)v71)/ and Y, = (X,V, ey X(t+1)v71)/a so that

Z Y7 (12)

Jj=—00

where W; is the v x v matrix with il entry y(tv 4+ i — £), and we number the rows
and columns 0, 1,...,v — 1 for ease of notation. Also, let N(m, C) denote a
Gaussian random Vector with mean m and covariance matrix C, and let =
indicate convergence in distribution. Our first result gives the asymptotics of the
Yule—Walker estimates. A similar result was obtained by Lewis and Reinsel (1985)
for vector AR models, however the prediction problem here is different. For
example, suppose that (2) represents monthly data with v = 12. For a periodically
stationary model, the prediction equations (4) use observations for earlier months
in the same year. For the equivalent vector moving average model, the prediction
equations use only observations from past years.
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TraeorREM 1. Suppose that the periodically stationary moving average (2) is
causal, invertible, Esj1 < oo, and that for some 0 < g < G < oo we have
g7z < Zf(A)z < GZz for all —m < A< m, and all z in R", where f(1) is the
spectral density matrix of the equivalent vector moving average process (12). If k =
k(N) — o0 as N — oo with k*/N — 0 and

o0

N2 fmilk+ )l =0 for €=0,1,...,v—1 (13)

Jj=1

then for any fixed positive integer D

N (mw) + 30 1 <u<Di=0,v—1) = NOA),  (14)
where
A = diag(a2A?, 2AM . 62 AVD) (15)
with
m—1
(N = 3 ool o= (16)

and m = min(u, v), 1 < u, v < D.

In Theorem 1, note that A® is a D x D matrix and the Dv-dimensional vector
given in (14) is ordered

N (mo(1) + (D) + Y o (DT (D) + L5 )

Next we present our main result, giving asymptotics for innovations estimates of a
periodically stationary time series.

THEOREM 2. Suppose that the periodically stationary moving average (2) is
causal, invertible, Esj1 < oo, and that for some 0 < g < G < oo we have
g7z < Zf(N)z < GZz for all —w < A< m, and all z in R", where f(L) is the
spectral density matrix of the equivalent vector moving average process (12). If k =
k(N) — o0 as N — oo with k*/N — 0 and

NS gk + ) = 0 for £=0,1,...,v—1 (17)
j=1
then
NG — gy cu=1,...,D,i=0,...,v— 1) =N(0,¥),  (18)
where

V = 4 diag(aiD", ... o> AV (19)
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D-1
A= ZE,,H[D"7”(D+]>], (20)
n=0
n D—n n
E *dlag( 0 l//0( ) '7l//O(n)707'-~305 (21>
‘/jl( )a"w‘/jl( )?"'a 7---a07lpv—l(n)7"'alpv—l(n))a
—_——— N——
D—n n D—n
dlag( l 17 i 227 R 0;2[)) (22)
and T1 an orthogonal Dv x Dv cyclic permutation matrix,
0 1 00 0
00 1 0 0
=1 : : (23)
0 0 00 1
1 0 0 O 0

Note that IT° is the Dv x Dv identity matrix and IT ‘= (IT)". Matrix
multiplication yields Corollary 1.

CoroLLARY 1. Regarding Theorem 2, in particular, we have that
N0 = ) = N(0, 07 uZol Wi (). (24)

Remark. Corollary 1 also holds the asymptotic result for the second-order
stationary process, where the period is just v = 1. In this case 7 = 6> so (24)
becomes

u—1

W= ) = 40,5 )

n=0

which agrees with Theorem 2.1 in Brockwell and Davis (1988).

4. PROOFS

The proof of Theorem 1 requires some preliminaries. First we show that (A("))u,‘, is
the limit of the u, v entry in the inverse covariance matrix (6).

Lemma 1. Suppose that the periodically stationary moving average (2) is causal,

invertible, and that Eg} < oo. If T'y; is given by (6) and (A),, denotes the u, v entry
of the matrix A, then for any i =0, 1, ..., v — 1 we have
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m—1

(F/;,gi—k))u,v - (A@)u,u = Z ni7m+s(s)ni7m+x(s + |U - u|)a;—2m+.9 (25)
s=0

as k — oo, where m = min(u, v).

Proor. The prediction equation (5) yield

Piselk =€) = @k =1 =) = = i (—0) =0 (26)
for 0 < ¢ < k—1 and since vy; = (Xipk, Xitk —)A(l(fgk) we also have
Oki = 751k (0) = G174 (= 1) = -+ — i (). (27)
Define
0l bl o
0 1 =gl o e
F = . . :
—¢!)
0 0 0 1

and use the fact that y,(s) = y,,(—s), so that (I'x;);¢ = Visx—e({—j), to compute
that for 1 <j < £and 2 < £ < k the (j, ¢) element of the matrix Frk,, is

Veskot(€ = 1) = B gl = = 1) = = B ia ol = ).
Substitute ”’ = k — jand ¢ = k — £ to obtain
(Frk,i)j,é = Yite (n' =) — ﬁbg),ﬂiw (W= —=1)—- = ¢Ezl;>,n’yi+(’(_£/) =0

in view of (26), so that FT; is lower triangular. Also (27) yields (FT,);; = vk—;;
for 1 <j < k. Since the transpose F is also lower triangular, the matrix FI' ;F' is
still lower triangular, with (j, /) element v;_;,;. But FT'; ;F’ is a symmetric matrix,
so it is diagonal. In fact, FT',;F' = H', where H = diag(v;!,;, vy, - -, v0,))-
Then l“,:l‘ = F'HF, and a computation shows that

min(u,p) )
(T 1?,1 uw = Z ¢1(cllz.u4¢/(:lz,v4”1:—lc,iv (28)
=1
where the number of summands is fixed and finite for all k, and we set qﬁ,% =-1

to simplify the notation. Substitute (i — k) for i in (28) and apply (10) using
(i — k) = {((i — &)—(k — ©)) to obtain
Uk—t,(i—k) — U,-z_g,
i—k
I<c<7€,u>f>€ - _ni*f(u - £>7 (29)

S, — —mi(v—0)
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as k — oo, so that

min(u,v)

(Telimi e = Z i o(u — O (v — £)o;, 7
=

as k — oo. Substitute m = min(u, v) and commute the first two terms if m = v to
finish the proof of Lemma 1. ]

In order to prove Theorem 1, it w111 be convenient to use a slightly different
estimator f,C for the coefﬁments ¢k of the one-step predictor (4), obtained by
minimizing

N—k—1

B Z Kjvtitk — f,ff])X,\,+i+k_1 - —fk(,lZX/'eri)z (30)

Jj=0

fori=0,...,v — 1. For i fixed, take partials in (30) with respect to fk(}) for each
¢ =1,...,k to obtain '
N—k— 1

(i) (i) _
(Xvrivk = S 1 Xvrivk—1 — -+ = [riXjvi) Xjvpire—e = 0
Jj=0

and rearrange to get

fk(f /(c 1 k— /+--'+fszzz§f)'}f 12:&/(:,2—@ (31)

foreach ¢ =1,...,k, where
ng?n = (N - k)71 Z )(jv+i+m)(jv+i+n-
—0

Now define 7 = = (814 ps-- o 500) and £ = (A1, A7) and let

(W
IAQ,(;) = : :
(i) A
Sl(c—l 0 Sg)?o
so that (31) becomes
fk = (32)

analogous to the prediction equations (5).

Theorem 1 and Lemma 1 depend on modulo v arithmetic, which requires our
(i — k)-notation. Since Lemmas 2-8 do not have this dependence, we proceed
with the less cumbersome i-notation.

Lemma 2. Let n,(ci) = (n1+k(l), oo migx (k) and Xj.m(k) = (X(—k)ritk—1s -+ -5
Xk ‘+1) Then for alli =0, ...,v—1and k > 1 we have
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)+ f = R DX Ry (33)
where &, = X, + 1,(D)X,—1 + -+ + 7k) X,

Proor. Note that

Nl N—1
a1 @) oy y ) O 0
Ry = N =k X (k)X (k) and 77 = N — k;X/ ()X (-kpvik

and apply (32) to obtain

i i i )\ —14(i
)+ =m) + @’
(i) (i)

)\ — 1 i i i i

= B DX 00X ) 7+ X )X ik
)\ — 1 = i i i

= (RO >0 [ 07 + X i

which is equivalent to (33). Ll
Lemma 3. Foralli=0,...,v — 1 and k > 1 we have
Wii = Fi11(0) —J(k(i>/f’1<:)> (34)
where 7;(0) = (N — k)~ ZN IX(zl Ky

Proor. The right—hand side of (34) equals

rH—k ka j X(} k)v+itk
| Nl
“N_% [Xo Kvritk — fk 1X(] Bvrick—1 — " *fka(; kw:}X( —k)viths
=k
while  wy; = (N k)71||Y Y||2 where we let = (Xivts Xoitdo + »
Xv- k— 1)v+4$ (XS_M Iz X\+z+k e X(N—k Dyvithk— l) for t=1,...,k
and Y = fk + fkak Since (Y,Y — Y) = 0, we also have

(N=kwii =Y -Y,Y-Y)=(Y-Y+Y,Y-Y)=(Y,Y-Y)
N—

Z [X(, K)vitk —fk(fl)X(j—k)wri+k—1 — —fk(f,lX(j—k)m Xij—kyvritk
j=k
and (34) follows easily. O
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498 P. L. ANDERSON AND M. M. MEERSCHAERT
Lemma 4. Foralli=0,...,v— 1 and k > 1 we have
wii = 7y = (ie(0) = 74 (0) = (A + )2
a6 =) = 0+ =Y G - )

- Z TCerk(j)ViJrkfj(j)v (35)

J=k+1
where 3 = (et (1, 2 (2)y - 7:(K)) -

Proor. From (34) we have

NG
Wi — 1o = Pk (0) _fk() 1<c) — i
=mm—wm< +WM
(i) (i) A0 _ ()
+ Vk ) (fk ) (7 T Yk )

GY
\ (0 _ 2
+ 7i4(0) + ”k Vk Oitk

since the remaining terms cancel. Define Xt X, — ¢ sothat Xy = Xy — &0 =

~ Tk (1) Xipk—1 — Tk (2)Xipg—2 — - - - and ot = E(el,) = E[(Xitg — X;14)%). Since
E[)(i+k()(i+k —/\fi+k)] = O lt fOllOWS that 02 Tk E[)(l+k()(l+k —)(H,k)] - yi+k(0)+
ik (1)7ipk-1 (1) + 7 (2)7i44-2(2) + - - - and (35) follows easily. U

Lemma 5. Let c/¥), dl) for £ =0,1,2,... be arbitrary sequences of real
numbers, let

o0
utv+i:§ Ci(k)gtv-&-i—k and Uty+j = § d 3tv+j m
k=0

= Zc,—(k)2 and D? = Zdj(m)2
m=0

k=0

and set

for 0 <i,j < v. Then

2
M
E (Z utv+ivtv+j> S 4M2C2D2’7; (36)

~

where C* = max(C;}), D> = max(D7), n = max(y,), and n, = E(s}).

Proor. Since o, 's, are iid., 5= max(y;: —oo < 1 < 0o0) = max(n; 0 <
i <v) < oo. The left-hand side of (36) consists of M terms of the form

E(l/lil)jl/t[‘uril](wrj) = Z Z Z Z C; (k)dj(m)c, (V)dj (S)E(Ei,kc‘ij,m S[VJH‘,VSZVJU;S) . (37)

k=0 m=0 r=0 s=0

The terms in (37) withi —k=j—m=4¥0v+i—r=4~v+j— ssumto
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ié‘l(k)d](k —|—] — Z)C,(k + fV)dJ(k + A +] — Z)E(Pfik)

< nC2D2

using the fact that for a,b, >0 we always have (Y aub,)’ <
max(a,)> b2 < S1a2S b2, The terms in (37) with i —k = j—m# v+
i—r=4v+j— ssum to

k=0 r=0
<0303 leRdyk + ) — i)+ — i)
k=0 r=0
<03 1@ E S ()
k=0 r=0

since E( & ké’ﬁbﬂ r) = E(é’tz—k)E(‘ﬁzz—r) S \/ E(b?—k)E(&’?fr) = Mi—kMi—r S n by the
Schwarz inequality. Similarly, the terms in (37) with i —k=0v+i—r#
j—m=4{v+j— ssumto

Z Z m)c;(bv + k)d;(bv + m)E(?lsz?jme) < nC?D?

k=0 m=0

and the terms in (37) withi —k=¥0v+j—s#j— m=4{v+i— rsumto
ZZC, ci(tv+m+i—j)d(v+k+j—i)E (lzkgjz ) <nC*D*,
k=0 m=0

while the remaining terms are zero. Then E(uyvus,. Vo)) < 4nC?D?* and (36)
follows immediately. ]
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Lemma 6. For ¢ as in Lemma 2 and u,,; as in Lemma 5 we have

2
N—-1 00
<Z UG- tyvri (E—kyvr bk — 3(1k)v+1{)> <4n(N —k)’C’B max Z ok + ),
=k S

(38)
where C, i are as in Lemma 5 and B = (Z Sooco W2 )\)

Proor. Write

St — Ervilk = E T (m) Xy t-m

= Z ng(m) Z lpé—m(r)gt\ur[fmfr
r=0

m=k+1

= Z dri(k + j)enso—i—j

J=1

where
J
dps(k+ ) = mo(k + )Wy 10 — 5)-
s=1

Since {X,} is causal and invertible,

J
Zdlk k+j)= Zﬂ/ (k+ )W 190 —5)

s=1

m(k +s) ZW( (k) —5)

EMS

I
Mg

o
Il

m(k +s) i Vi (k) (7)

I
Mz

1

\
i
o

o
Il

is finite, and hence we also have > dyx(k + j)* < co. Now apply Lemma 5 with
Vivit = Enpek — Envge 1O see that

N—k—1 2 N-1 2
( Z Uy vi(Envioh — 8w+z)> =E (Z U(—kyti(E—t)vr ok — 8(t—k)v+€)>

=0 t=k
< 4(N — k)’ C*D}
<4(N —k)*C*Djn,

where D} = max(D}, : 0 < ¢ <v) and D}, = 3% dyi(k + j)*. Next compute
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D%,k = i <Z ok + )W e U — ’”)) <Z Tk + )Wy s U — S)>

s=1

-1
Tk + 7 = Pkt j—p) (P)) <Z m(k+j— q)lh(kﬂq)(CI))
q=0
S Ve OV @k + = p)me(k 4 — q)
q=0 j=max(p.q)+1
Z W(P i+q p( )l Z |‘I'E((k+]—p)ﬂ?g<k+j—q)|,

i=0 p=0 ¢g=0 Jj=max(p,q)+1

<

where (without loss of generality we suppose p > ¢)

o Imlk+j—p)milk+j—q) =D |lmlk+j)mek+j+p—q)
Jj=max(p,q)+1 J=1
< \JZW k+ j) Z k+j+p—q)
J=1 J=1
Z ok +]
Jj=1
and
v—=1 oo o0 v—=1 oo 2
ZZ W;’(P)‘pzurq—p@” < ( Z Wz(g)) =
i=0 p=0 ¢=0 i=0 (=0
Then D}, < BY 72, m(k + j)* and (38) follows easily. O

Lemma 7. For & and XJ-([) (k) as in Lemma 2 we have for some real constant
A > 0 that

2

H N — k ZX<) F(} kyvtithk = €(j— k)v+1+k)

00
< Akmeax ; me(k + j)*.
(39)
Proor. Rewrite the left-hand side of (39) in the form
N-1 2
(N —k) ZZEKZX(’ kpvtits (E(—k)vithk — (t—k)v+i+k)> }

t=k

and apply Lemma 6, k times with u,_),+; = X(— fveives foreachs =0,...,k — 1
to obtain the upper bound of (39) with 4 = 4nC*B. ]
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Lemma 8. Suppose that the periodically stationary moving average (2) is causal,
invertible, Eej1 < oo, and that for some 0 < g< G < oo we have gz'z <
ZA(N)z < GZz for all —m < A< m, and all z in R’, where f(1) is the spectral
density matrix of the equivalent vector moving average process (12). If k =
k(N) — o0 as N — oo with k*/N — 0 and (13) holds then

(N =) b () (" + 1) = (N = k)~ b (k) ZX Jeipsick— 0 (40)

for any b(k?_ = (b1s . . . bii) such that ||b(k)||* remains bounded, where fk(i) is from
(32) andel)(k) is from Lemma 4.2.

Proor. Using (33) the left-hand side of (40) can be written as

N-1 N-1
(N—k)~ 1/217 [ IZX, )EG—kyvithk — 1:,,-1 Z)(j(l)(k)g(jfk)eriJrk =h+Dh,
j=k Jj=k
where
12 ()1 = 6
L= (N—k) bk ((R,ﬂ”)* frkj}) )(j?”(k)e(j_k)w,-%,k],
j=k
=(N-k)" l/zb l . ZX 8(/ kyvtithk — €(j— k)wwk)]
so that
1/2 IS
n| < NV =&) " lbm)] - IR - T Z K)e(ikyvrivhk| =12 Js,
=k

where J; = ||b(k)|| is bounded by assumption,

(N — k)'/?

Sy = k172

- kZX JEG—k)v-+ithk

and J, = k2| (R — [,/ =0 in probability by an argument similar to
Theorem 1 in Anderson et al. (1999). In fact, if we let

M_max{‘r/—3‘<z Z Wi ()| m2)|> <00, 0<i,j< v}, (41)
m;=0 my=

where n = E(&}) and if we let Qy; = ||1A?kl —Ty,|| then (N — k)Var(S“E,’,?n) <M in
general and hence E(k'/202,) <k’M /(N — k) — 0 as k — oo since K°/N — 0 as
N — o0, and the remainder of the argument is exactly the same as Theorem 3.1 in
Anderson et al. (1999). Using the inequality Var(X + Y) < 2(Var(X) + Var(Y))
we obtain
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2

N k
E(J;) = (T HN kZX JeG-tprivkk| | < 2(0 + 1),
where
Nk | ?
h = < k )E HN kZX JEG—kyvrith
N—k ?
= < k )E H kZX 8(/ k)v+itkhk — E(j— k)\+l+k)

Lemma 7 implies that

Ty < A(N — )?
» <A(N k)m?X;ne(kﬂ)

2
k—1 N—-1

ni=k'(N—-k"" ZE <ZX(i—k)v+i+t8(j—k)v+i+k>
Py =

k-1 No N-1
=k'W-k"' Y E X(i—k)»'+i+t5(j—k)v+i+k> <ZX(r_k)v+i+t8(r—k)v+i+k>1
=0 i -
NS
=K' (N=B) > ZE X bpvtit e X (ki 18—k v+ i+ kE(r—K) vk )
t=0 j=k r=
ey
- - > 2
=k (N —k) E(X(/—k)v+i+t)E(8(1'—k)v+i+k)
t=0 r=k
Kl R
=k Z%‘H(O) “(N—k) Z O'iz+k
t=0 r=k

so that 7} < D = max;(y,(0)) - max;(a?). Hence

E(J?) < 2D+ 24(N — k) m?xan(k +))%
J=1
where (N — k) max, 3%, mo(k + j)* = 0 in view of (13), so that J5 is bounded in
probability. Since J, — 0 in probability, it follows that I; — 0 in probability.
Apply Lemma 6 with £ = i + k and u(_4),; = b(k)'T X( >(k) to see that

E(I3) < 4n(N — k)C*B max > milk + ),

J=1
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where C? = max; S Oc,(k)2 comes from the representation uq_g)4; =
> okedk)eq— ,B)Vﬂ K so that C? is finite if and only if Var(u(, ) hL,) < oo. Since
i = EX" (k)X (k)] we have  Var(u( ;) = b(k) T EX" (k)X (k)
Fkllb(k) b(k) Fk}b( ) and Theorem A.l in Anderson ef al. (1999) shows that
ITH < (2mg)~ !, when the assumed spectral bounds hold, so C*> < oo. Then it
follows from (13) that I, — 0 in probability, completing the proof of Lemma 8.[]

Proor oF THeorREM 1. Let X, = Z;":o V,(j)e—; and define e, (k) to be the k
dimensional vector with 1 in the uth place and zero entries elsewhere. Let

i—k m — i—k
t](\fm,k»( ) (N k) 1/2 (k)/(rli,(z‘fkﬂ IZXj(m >)(k)5(j—k)v+<i—k)+k
=%
so that
( s
tNmk ( ) N k / Zwu]k ’ (42)
=
where
k m — i—k
Wi = ek (T ) " X0 () -yt (43)
i—k
X}m D) = (Xt it bt - - Xkt ity m) and
m —k i—k
0y = EXG ™ (0x) ) (k). (44)

For each 0<r <k, Xy iwii—ky4r,m 15 a linear combination of
(&G—tyv+(i—ky+r—s - 0 < s < m). Hence we write

£,<,lk ) = L(6( vt by - - » 80 k) k1 JEG 4 () (45)
where ngl, ..., &) denotes a linear combination of ¢, ..., &, Note that for i, u, k
fixed, WL ji;k>) are identically distributed for all j since the first two terms in (43) are
nonrandom and do not depend on j, while the last two terms are identically
distributed for all j by definition, using the fact that X, is peI'IOdlCdHy strictly

((i=k)) (k). (k)
stationary. Also, w,;,~"' are uncorrelated since Efw,;, Wi k ] =0 unless
G—kyw+{i—k) +k= (/’—k)er(l — k) + k, which re ulres i =17 mod v.
Since 0 < i < v, this implies that i = /. Then E[w f;k >)w£§,k |=0ifj #/ and
otherwise
i—k)) ((i—k -1
Epwl w0 = aleu (k) (T ) eulk)

from (44). It follows immediately from (42) that the covariance matrix of the
vector

INmk = ([l(\§;nk>)(u) 1<u<DO0<L(i—k)y<v—1)

s, = diag(aél"f,?), o%l"ﬁﬂ, cey 03711"("")), where

m
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(TD)0e = ea(R) (T ) eu k)

and 1 < u, v < D. Note that
0—k 0—k —1—k 1-k
INmk = (t](\gmk (.. tl(\gmk (D), .. 'atz<\§r‘n,k Yy, .. tz(\;;zk D)y

We also have for any 2 € R”” that Var(A'ty,,4) = AT,/ Apply Lemma 1 to the
periodically stationary process X, to see that

eulk) (L)) " enlk) — (AD),,,

m
as N — oo, where

mm(u v)—1
A i) Ti—min(u,v)+s, m($) 70 min(u,v)+s, m(s+ v —ul)o 0; 2mm(u ) +s
s=0
and ¢ = Zjoio T (/) Xi—jm (With 7,,,,(0) = 1). Since I',,, — A,, as k — oo, then

lim Var(Atyui) = 2 A,
N—oo

where

An = diag(a2A0, G2AD a2 ALY,

Next, we want to use the Lindeberg—Lyapounov central limit theorem to show
that

Viymr = N0, X' Ap).

Towards this end, define the vector

"(w <1<0k k)) ((0—k)) ((v=1-k)) ((1’*1*k>>)/

Wik = A(w e Wpik e Wi oo Wpik

for any 2 € R so that

N=1
lltNm’k = (N — k)71/2 Z Wik
=k
Then, Var(w; ) = Var(Xty,.) = AT A Also, {w;r 1 j=k,...,N — 1} are mean
zero, identically distributed and uncorrelated. Now, let K = [(k 4+ m)/v] + 2,
where again [] is the greatest integer function and let N be an integer such that
Ni/(N — K) — 0 and K/N, — 0 (the largest integer less than (N — K)K)'?
suffices). Let M, be the greatest integer less than or equal to (N — K)/Ny, so that
M N{/N — 1 and M,K/N — 0. Define the random variables
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1/2
zZivg = Wi+ -+ Wk+N1—K—1,k)/N1/ ;
2
Nk = (Wk+N1,k +- Wk+2N171<fl,k)/N11/

' 1/2
2Nk = Wit —D)vk + - F Wiy, —k—14) /Ny
The ch01ce of K ensures that ziyx,...,zun,  are ii.d. with mean zero and
1/2
variance s3, = (N )/Nl)/l'l" 4. Hence, M| Z \Zjnk s also mean zero

with variance sﬁ/[ , where SM —s?as My — o0 and s° = NA,,A. The Lindeberg—

Lyapounov central limit theorem (see, e.g. Billingsley, 1968, Thm 7.3) implies
that

M,
M2z = N(O, ) (46)
J=1

if we can show that
Sy ZE( ZJN”‘)4) -0
as N — oo. Letting N; = N; — K, we have

E(z;‘N,k>=Nr2(N1E< O+ (92— N)E(w kw%,»)

gzvl-z(mﬂw;tm(m — NE( ,k>)

< E(Wj,k)7
where E(w},) < co. Hence,

o oa
S, ZE Vi)t < sytMi'E (whe)

~ s’4M1’1E(w;k)

— 0

as N — oo (hence Ny — oo and M; — o0). Thus, (46) holds. Also,

M] N*l
M7 PN = (N =07
j=1 J=k
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has limiting variance 0, since its variance is no more than
(M) + I)K(Var(wt7k)) N (M) + 1)K(Val’(w,7k))
N—k N ’

which approaches 0 as N — oo. We can therefore conclude that

/Au/le,k = N(07S2)
recalling that s> = Z'A,,A. Now, an application of the Cramer-Wold device yields
tNm,k = N(O, Am)~ (47)

Next we want to show that A,, — A as m — oo. This is equivalent to showing
that AE,II) — A% as m — oo. Recall that Y4(0) = 1 and write

=3 biers
=0
= Z Zﬂt () Xi—e-;
0
=&+ i( ’ V(O m_e(r — €)>Xt,

=1

so that m,(r) = — > ,_, ¥, (O)m—e(r — £) for r > 1. Similarly

Xim = Z lﬁ,(f) Z T—t,m (j)/Yf—f—./'«,m
=0

=0
oo /min(r,m)
e+ > [ S UOm (= 0) | X
=1\ =1
so that m; ,(r) = ;nirll<r.,”'l) V() m(r — €) for r > 1. Apply these two formu-

lae recurswely to see that m,,,(r) = n(r) for 1 <r < m. Then we actually have
Af,’) =AY for all m sufficiently large.

n
Now we want to show that

lim hInsupP(VNk )( ) - t](\/mk ( )| > 5) =0 (48)
m—o0 N—o00
for any 6 > 0, where
N-1

ik _ _
e w) = (N = k) e, (k)T Z)(,<l K)& (kv (i—ky+k
J=k

Apply the Chebyshev inequality to see that the probability in (48) is bounded
above by

N—-1
57 Var(t ™ ) — i 17 () = 6 Var |(N = 02N Aok
j=k
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where 4; = eu(k)’raéi7k>)6§<i’k>>(k) —eu(k)’(l"wz. )_1X§ HC»(k). Since the sum-

mands are uncorrelated, we have

N—1
i—k i—k -
Var( ) = 4 @) = V=07 Y E[ed e
J=k
N-1
=a}(N—k)" Y E(4))
J=k

because each A; has the same distribution. Write £ (AZ.) = Var([; + 1), where

_ i—k k
I = e (k) Ty [ X7 00) = 2w

Jjm

I = el [Tty = TV )™ [ k),

so that Var(l}) = eu(k)/l"_g R (- Tk i—ryeu(k), where Ry ;) is the covariance
matrix of the random vector (X;i (i) + k—1=Xeviiimk) + k=1, m> - - » Xy (i—ic)—
Xivi(i—ky, m)'- Since ||le,(k)|| = 1, Theorem A.1 in Anderson et al. (1999) implies
that Var(1,) < (G/2)||Rr.(i—il|- In order to show that || Ry _)|[—0 as m — oo, we
consider the spectral density matrix f; (1) of the vector moving average W, =
Xoviva1=X vt s X=X ). If we let ¥, =37 ¥¢Z_y, where Y, =
(va+\'—la sy Xtv)/a VAR (Srv+\'—la B 8tv)/a and (\P/)l] = lPv—l—i(ﬁv —i+ ]) and
Yim = (le—o—v—l,ma cee aXtv,m)la then Wi=Y — Y Since X, — X =
> i>m ¥dj)e,—;, the moving average

Z ‘wzt 0

= mZ

where [x] is the smallest integer greater than or equal to x and
(We);; =V¥,_1_;(bv—i+j) except that we zero out the entries with
v — i + j < m. Then the spectral density matrix
!/
1 il il
fa(2) =5 Z Pt |z Z Pl |,

m+2 -1 = m+7 -1

where X is the covariance matrix of Z,. As in the proof of Theorem A.l
in Anderson et al. (1999), we now define T (h) = Cov(W,, W, ), W=
(Wn—la ey Wo)/ and

I'= COV(VV7 W) = [Fw(i —])] —0 — COV( nmw—1 — Xnv—l,m; . ,Xg —X()ym)/.

For fixed i and k, let n = [(k 4 (i — k))/v] + 1. Then Ry ;s is a submatrix of
I' = R,,o. Fix an arbitrary vector y = (yo,...,y,_1) in R™, whose jth entry
y; € R". Then
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VTy= y,’Tw (= k)i

y/ (/ 1)(/ ( )d)»)
=0 k=0 -r
n—1
(z ew;) ) (S s
- =

so that ||T|| < 27d,,, where J,, is the largest modulus of the elements of f,(1). But
0, — 0 in view of the causality condition (2), hence || Ry ;| < [|T]| < 279, —
0, which implies that Var(l;) — 0 as well.

Next write Var(l) = e,(k)'[[ ) — (r“’;) k>>—1]rk ook — ()™
e,(k) and recall that F ik 18 the covariance matrix of (X, (k) + k—1m>---»
Xovi(i—ky.m) for each t. Then as in the preceeding paragraph write

I
\\

[(m=1)/v]+1
th = (Xrthrvfl,mv cee ;Xrtv,m) = \{I[théy
=0
where (‘?4)[]. =y, ;_;(lv—i+j) except that we zero out the entries with
lv—i+j > m, and let f,,(1) denote the spectral density matrix of Y,,. Let
B(Z) = Z,_; denote the backward shift operator, and write Y, = WY(B)Z,
and similarly Y,, = ¥(B)Z. Then f(i) = 2n) "P(EHTW' () and f, (1) =
(27) "' P () TP (e ), where as before Y is the covariance matrix of Z, Using
the Frobenius norm ||4|| = ,/ZU 7» we have

1f(2) = Fu ()l = (42) [P ()ZW () — P (e )
(4ﬂ2) H‘*’( >3 CROEE JCHM JCuo]
+(47) P (E)ZY (e ) — PP (e )k
< (4m)) T () = Pl - IZlF - ¥ ()

+ (@) TPED R IElF - 1) = eI
where ||W'(e"*) — ¥'(e")]|, — 0 as m — oc in view of the causality condition (2)
and the remaining norms are bounded independent of m, so that
IZ[f(2) — f(D]z] < d(m)Z'z for any z € RY, where d(m) — 0 as m — oo. Now
Theorem A.l in Anderson et al. (1999) yields

Z(g—0(m))z <Zf(A)z—Z0(m)z <Zf,(D)z <Zf(L)z+20(m)z < 2/ (G + d(m)):z.
Let F(h) Cov(Y,, Y, 1), =Y,_1,.... Yy and T,,0=Cov(¥,Y)=

[F(i—])]” o» the covariance matrlx of (X,,_1,...,Xp). For fixed i and k, let
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n=/[k+ (i —k))/v]+ 1 as before. Similarly, let T',(h) = Cov(Y,n, Yiinm)
Y= (Yu_tm---» Yom) and FE‘O:COV(Y,,,,Y) the covariance matrlx of
X1 - - - XOm?/~ Since I'j (i is a submatrix of I, and F < " is a

submatrix of Fm 0» it follows that

1T = Tegonll < T — nvon

= Sup |y( nx(] Fl’lV70)y|
[Ivll=1

= sup |3 S STl — ) =TG- )

I¥lI=1|7=0 =0
n—1 1

= sup S5 ([0 - 1 )

I¥lI=1|7=0 ?=0

n [ n=1 ! n—1
= sup /_ (Z €Mj}’j> (fn(4) —f(i))< eiMytz> dz

=1

is bounded above by 27d(m), hence

I by — (@) 7 = Ty (T — Fk7<ffk>><r<’”)- ) H

1
ke, (i— (
< I 1T = Tl I )7
1 1
< — 21
< Zng 2™ Sy = 5(m)

Then

2
Var(hh) < (ﬁ - 21 (m) m) 272(G + o(m)) — 0

as m — oo, and so Var(l; + ) — 0 as well, which proves (48). Together with
(47), the fact that A£,;> — A% as m — oo, and Theorem 4.2 in Billingsley (1968),
this proves that

tve = N(0,A) (49)
as N — oo, where
twa= (W) 1 <u<DO< (i~ k) <v—1).
Applying Lemma 8 yields (N — k)'/%e (k)/( +f ) ,Eé';k»(u) — 0 in
probablhty Note that n,(f’ = = (m(1), .. ﬁl(k))/ and f (f(<t*k>)

k1 ;
fk 0 ) Combmlng statement (49) with e, (k) (m; ((=h) | f,f ) =
mi(u) + fku ) and the fact that (N — k)/N — 1, implies that
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NW( () + 57y = 5 ) S0 (50)

as N - oo where fk ¥ ) is defined as in (30). Then (14) holds with qg,i’;“ replaced

by fi
Fmally, we must show that

NPT =gl o (51)
Write
NS — G = NY2) Ry o)™ 1 = Tl 2
<N Regi)) ™ = Tl Hrk >>||

—k
+ NPTl 17 ”—yﬁf I

and recall that (N —k)Var(s, slli= )>) < M, where M is given by (41), so that
N2 s bounded in probablhty Also, recall from the proof of Lemma 8
that k'/2||R;} — T;.}|| — 0 in probability, so the same is true with i replaced with
(i—k). A very similar argument yields k'/?||T"! i—k) — Tigizi |l — 0 in probability,
so that k1/2||R L Fk ik pll =0 in probability as rwell. Next observe that

(i G-nll < ||Fk k>|\ + ||l",;<l y|l, where ||Fk 1 || is uniformly bounded
by Theorem A.l of Anderson et al. (1999) Since Sk< k ) and 7;(j — k) differ by
only k terms and a factor (N — k)/N, it is easy to check that

Nl/zu W) _ 50k 0 in probability. It follows that N1/2(f
(;Sku ) — 0 in probabrllty, which completes the proof of Theorem 1. |

Proor oF THEOREM 2. From the two representations of x +k given by (4) and (8),
it follows that

Z<b k(/j/ (52)

=1

forj=1,...,k if we define Ok:;,o = 1 and replace i with (i — k). Equation (52)
can be modified and written as

o8 (i)

k2 k2

i—k i—k i—k

o) | = R | gl | (53)
C L

oy o

where
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. 0 0 - 0 0
ok I 0 - 0 0

. ik ik

O I N I S I
i—:k i—:k hk :
0 0, - 00 1

for fixed lag D. From the definitions of é,({'?l and (;AS,((’L, we also have

GUi=k)) A((i—k>)

k,1

A((i—k k))

0" dm

A((i—k »(i—k k))

0}({(3 ) :R/(c< ) ¢k3 , (55)
Sk i

i 5

where R(< 1s defined as in (54) with 0 <’ replacmg Hk . . From (11) we

know that Hku >)ix//i(u), hence for ﬁxed ¢ with k’—k—ﬂ we have
P

el(c éu = ekgfu[ k))ﬂ%fz(”)-
Thus,
]}I({<tfk>) L RO, (56)
where
1 0 0 0
RY = w’f.l(l) 1 ’ ! (57)

i—k i—
where 018 = (g™, 0[Py, gLk = (¢é<l D SMY, and 0
and ¢\ are the respectlve estimators of 0“’ k) "and (;5“’ k) Note that

~((i—k i—k i— ~((i—k S((i—k))* i—
(R,(f ) _Rl(c< >))¢(< k) ( ]({< ) _R1(€< ) )¢(( k))
_|_(A]((i—k>)* R(< k))*)¢(< k))
i—k))* i— i—
4 (R _ R 4 (k) (59)

where
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1 0 0 .- 0 0
0\ 1 0 - 0 0
. i—1—k i—2—k
BRI _ [ 65 g 0 0 (60)
ik ek DIk |
R e (s

and f?,(c<i_k>)* is the corresponding matrix obtained by replacing OIEfi_k)) with OA,(cf;_k»
for every season i and lag u. We mnext need to show that
R _ RUR) — 5(N1/2) and R — RUTA* — o, (N1/2). This is equivalent
to showing that

N5 =050 = 0 (61)
and

N1/2(0(< —t—k)) é/(((i;/;)))io (62)
for £=1,...,.D—1 and u=1,...,D. Using estimates from the proof of

Anderson et al (1999 Cor 2.2.4) and condition (13) of Theorem 1, it is not hard
to show thatNl/z(qSk” + () — 0as N — oo forany u = 1,...,k. This leads
to

N2 () — 0 (63)

by replacmg i with i — £ for fixed ¢. Letting ax = N'2(¢), WR) | o(u)) and
by N1/2(¢k /u) + mi_¢(u)) we see that by = ay_,. Since ak — 0 then b — 0 as
k — oo. Hence,

NS + 7o) = 0 (64)
as k — oo. Subtracting (64) from (63) yields
NP (i T = 50 — o, (65)
which holds for / =1,...,u — l and u = 1, ..., k. Since

i—0—k)) ) i—0—k) ik
O =0 = ol = g

we have (61) with u = 1. The cases u = 2, ..., D follow iteratively using (10), (53),
and (65). Thus, (61) is established. To prove (62), we need Lemma 9. (|

Lemma 9. Foralll=1,...,u—1landu=1,...,k, we have

NG — gy Lo, (66)
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Proor. Starting from (42), we need to show that tjé,’nk D () — ,(\f;k»,(u) -0,
where

N—1
i—{— k —1/2 i—0—k
ot ) = (N = k)P Wl
=k

N-1
i—k — i—k
t/(\jm,kz)é(u) =(N—k+0' Z Wl(li‘,p)e)
j=k—t
i—(—k m _ i—f—
W = e (k) (T, ‘X;m >><k>s(, )tk

and
X,'(rfff[fk»(k) = (X(jtpyitittyprm 7 =0, k= 1),
XD (k= 0) = Xy ko timyirm 7 =0,k — €= 1),
F,(C”Z) i) is t(1<16 g:)ovariance matrix of Xj"f( : kil)(k)(ziil]ggi Fl(cmf)z,(pm is the covariance
matrix of X, " (k — ). Note that E(w,;,~ "w,,",) =0 unless
J=i—l+({(i—l—ky+l—{i—k)/v, (67)

which is always an integer. For each j, there is at most one j' that satisfies (67) for
je{k—4,...,N—1}. If such a j exists then
i—0—k))  ((i—k - m _
E(Wi;k >)W1(4§" kfi) = Uf_zeu(k)'(rmfszﬂ IC(F](C—)Z,O’—k)) leu(k—0),
where C = E ( ( X j<i7k (k—10)). Note that the (k — ¢)-dimensional
vector X(,< )(k Z) is just the first (k—¢) of the k entries of the vector
X <<H*k»(k) Hence the matrix Cis just I’ (m <) _p With the last £ columns deleted.

jm

Then (F,E':Zﬁkfm) C =I(k,£), which is the k x k identity matrix with the last ¢

columns deleted. But then for any fixed u, for all k& large, we have
eu(k) (T, )" C = ey(k — £)'. Then

i—0—k i—k m -
EGw W0 = a2 ek — 0 (0", ) eulk = 0)
-1

Consequently,
Var(wi ™ = w2 = [l = w7
=0, (F/(cnzz >) ul + G?—é(ﬂi@,(i%));ul
— 207 /(F/(c )e<‘ k));ul
= o e — (T )]
—0

© Blackwell Publishing Ltd 2005



PARAMETER ESTIMATION 515
by Lemma 1 applied to the finite moving average. Thus,

i—l—k i—k — i—(—k i—k
Var(ii ™ ) — i, @) < (V= k) Var(l T — w0 = k)

— 0
since for each j = k,..., N — 1 there is at most one ;' satisfying (67) along with
j=k—"¥,...,N— 1. Then Chebyshev’s inequality shows that t%;f£7k>)(u)
—t](é,’n_:z)[(u) r 0. Since tl(é,’,:,f»(u) — t,(\ffk_k»(u) LR 0 we also get t](\ff,:k»(u)—
tj(\fl,:fz)(u) L.0. Now the Lemma follows easily using (50) along with (51).

Now, since
A(i—t— A(i— L ((i—t— L ((i—
91({51 k) _ 9}({&&/61)) _ ¢’1({f1 k) _ 4’1&4}?)

we have (62) with u = 1. The cases u = 2,...,D follow iteratively using (55),
Lemma 9 and (52) with 6, ¢ replaced by 6, ¢. Thus, (62) is established. From (58)
to (62), it follows that

GUi=k) _ gUi=k) _ R/&(Fk>)(¢;<<i—k>> _ ¢(<i—k>>)
(R _ RURI (K)o (N2, (68)

To accommodate the derivation of the asymptotic distribution of 00 — 0", we
need to rewrite (68). Define

2 A((0—k 0—k N((0—k 0—k
0—0=0" — o0 o5 o0

A((v—1—k v—1—k A((v—1—k v—1—k

N
(69)

and

0—k 0—k v—1—k v—1—k
¢ =(o ), e el T e Y.
Using (69) we can rewrite (68) as
0—0=Ri(d— )+ (R — R})§ + 0p(N'/?), (70)

where ([) is the estimator of ¢ and
Ry = diag(R{" RIS RIOTTR)Y
and
Ry = diag(R{ ™ R RTIR

noting that both R, and R} are Dv x Dv matrices. The estimators of R, and R; are
respectively Ry and R}. Now write (R} — R;)¢ = Cx(0 — 0), where

D—1
Ck —_ ZBn’kH[van(Dﬁﬁ)] (71)

n=1
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and
n D-—n n
,——/\.\ _ o /_.-/H
By =diag(0,...,0, ;0 ... o0 0,000,
1-k 1-k V—1—k V—1—k
BT 0,0, T gl R
D—n n D—n

with IT the orthogonal Dv x Dv cyclic permutation matrix (23). Thus, we write
equation (70) as

0—0=Ri(p— )+ Cu(0—0) +0p(N'?). (72)
Then,
(I = C)(0—0) = Ri(¢ — §) + 0p(N'/?)
so that
0—0=(1-C)) 'Ri(dp— ) +0p(N'?). (73)

Let C = limy_,..Cj so that Cis C; with qﬁ,({f;_k)) replaced with —m,(u). Also, let
R = lim,_ Ry, where

R = diag(R©, ... RVV)

and R? as defined in (57). Equation (56) shows that Ry %, R and then Theorem 1
along with equation (73) yield

N'2(0—0) = N(0, V),

where
V=(-C)'RAR[I-C)"] (74)
and A is as in (15). Let
1 0 0 0
o= | b P
1 a(D—1) moa(D=2) - mopn(l) I
It can be shown that
AD = sOdiag(672, 673, ...,072)SW.

From the equation, y,(u) = 0| —m(O)y,_,(u—£), it follows that RVS? =
Ip.p, the D x D identity matrix. Therefore,
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ROAORY = ROSOdiag(a72, 673, ..., 072)S? RV

. -2 -2 -2
=diag(o; 5,0, 5,---,0,p)
and it immediately follows that

RAR' = diag(a2DY, ... ¢ DU D),

o Yy—1
where D) = diag(a7%,07%,...,0,%). Thus, eqn (74) becomes
V= (- C) 'diag(csD”,... a2 D[ - C)7'T. (76)

Also, from the relation y,;(u) = >_)_, — m:(O)Y;_,(u — £), it can be shown that

D—1
(1 _ C)71 _ ZEnl—[[Dv—n(D+l)]7
n=0

where E, is defined in (21). Using estimates from the proof of Corollary 2.2.3
in Anderson et al. (1999) along with condition (17) it is not hard to show that
N2y — 0) — 0. Then it follows that

NY2(0 =) = N(0, V),

where Y = (Yo(1), ..., ¥o(D),...,,_1(1),...,¢,_1(D)). We have proved the
theorem. 0
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