
Innovations Algorithm for Periodically Stationary Time Series

Paul L. Anderson1

Department of Mathematics

University of Nevada

Mark M. Meerschaert

Department of Mathematics

University of Nevada

Aldo V. Vecchia

Water Resources Division

U.S. Geological Survey

April 20, 2004

AMS 1991 subject classification: Primary 62M10, 62E20; Secondary 60E07, 60F05.

Key words and phrases: time series, periodically stationary, Yule– Walker estimates, innovations algorithm,

heavy tails, regular variation.

1 On leave from Department of Mathematics, Albion College, Albion MI 49224.

1



Abstract

Periodic ARMA, or PARMA, time series are used to model periodically stationary time series.

In this paper we develop the innovations algorithm for periodically stationary processes. We

then show how the algorithm can be used to obtain parameter estimates for the PARMA

model. These estimates are proven to be weakly consistent for PARMA processes whose

underlying noise sequence has either finite or infinite fourth moment. Since many time series

from the fields of economics and hydrology exhibit heavy tails, the results regarding the

infinite fourth moment case are of particular interest.
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1 Introduction

The innovations algorithm yields parameter estimates for nonstationary time series models.

In this paper we show that these estimates are consistent for periodically stationary time

series. A stochastic process Xt is called periodically stationary if µt = EXt and γt(h) =

EXtXt+h for h = 0,±1,±2, . . . are all periodic functions of time t with the same period ν.

Periodically stationary processes manifest themselves in such fields as economics, hydrology,

and geophysics, where the observed time series are characterized by seasonal variations

in both the mean and covariance structure. An important class of stochastic models for

describing periodically stationary time series are the periodic ARMA models, in which the

model parameters are allowed to vary with the season. Periodic ARMA models are developed

in Jones and Brelsford (1967), Pagano (1978), Troutman (1979), Tjostheim and Paulsen

(1982), Salas, Tabios, and Bartolini (1985), Vecchia and Ballerini (1991), Anderson and

Vecchia (1993), Ula (1993), Adams and Goodwin (1995), and Anderson and Meerschaert

(1997).

This paper provides a parameter estimation technique that considers two types of periodic

time series models, those with finite fourth moment and the models with finite variance

but infinite fourth moment. In the latter case we make the technical assumption that the

innovations have regularly varying probability tails. The estimation procedure used adapts

the well–known innovations algorithm (see for example Brockwell and Davis (1991) p. 172)

to the case of periodically stationary time series. We show that the estimates from the

algorithm are weakly consistent. A more formal treatment of the asymptotic behavior for

the innovations algorithm will be discussed in a forthcoming paper Anderson, Meerschaert,

and Vecchia (1999).
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Brockwell and Davis (1988) discuss asymptotics of the innovations algorithm for station-

ary time series, using results of Berk (1974) and Bhansali (1978). Our results reduce to theirs

when the period ν = 1 and the process has finite fourth moments. For infinite fourth moment

time series, our results are new even in the stationary case. Davis and Resnick (1986) estab-

lish the consistency of Yule–Walker estimates for a stationary autoregressive process of finite

order with finite variance and infinite fourth moments. We extend their result to periodic

ARMA processes. However, the Durbin–Levinson algorithm to compute the Yule–Walker

estimates does not extend to nonstationary processes, and so these results are primarily of

theoretical interest. Mikosch, Gadrich, Klüppenberg and Adler (1995) investigate parameter

estimation for ARMA models with infinite variance innovations, but they do not consider

the case of finite variance and infinite fourth moment. Time series with infinite fourth mo-

ment and finite variance are common in finance and hydrology, see for example Jansen and

de Vries (1991), Loretan and Phillips (1994), and Anderson and Meerschaert (1998). The

results in this paper provide the first practical method for time series parameter estimation

in this important special case.

2 The Innovations Algorithm for Periodically Correlated Processes

Let {X̃t} be a time series with finite second moments and define its mean function µt =

E(X̃t) and its autocovariance function γt(`) = cov(X̃t, X̃t+`). {X̃t} is said to be periodically

correlated with period ν if, for some positive integer ν and for all integers k and `, (i)

µt = µt+kν and (ii) γt(`) = γt+kν(`). For a monthly periodic time series it is typical that

ν = 12. In this paper, we are especially interested in the periodic ARMA process due to

its importance in modeling periodically correlated processes. The periodic ARMA process,
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{X̃t}, with period ν (PARMAν(p, q)) has representation

Xt −
p∑

j=1

φt(j)Xt−j = εt −
q∑

j=1

θt(j)εt−j (1)

where Xt = X̃t−µt and {εt} is a sequence of random variables with mean zero and standard

deviation σt such that {σ−1
t εt} is i.i.d. The model parameters φt(j), θt(j), and σt are respec-

tively the periodic autoregressive, periodic moving average, and periodic residual standard

deviation parameters. In this paper we will consider models where Eε4
t <∞, and also mod-

els in which Eε4
t = ∞. We will say that the i.i.d. sequence {εt} is RV(α) if P [|εt| > x]

varies regularly with index −α and P [εt > x]/P [|εt| > x] → p for some p ∈ [0, 1]. In the

case where the noise sequence has infinite fourth moment, we assume that the sequence is

RV(α) with α > 2. This assumption implies that E|εt|δ < ∞ if 0 < δ ≤ α, in particular

the variance of εt exists. With this technical condition, Anderson and Meerschaert (1997)

show that the sample autocovariance is a consistent estimator of the autocovariance, and

asymptotically stable with tail index α/2. Stable laws and processes are comprehensively

treated in Samorodnitsky and Taqqu (1994).

There are some restrictions that need to be placed on the parameter space of (1). The

first restriction is that the model admits a causal representation

Xt =
∞∑

j=0

ψt(j)εt−j (2)

where ψt(0) = 1 and
∑∞

j=0 |ψt(j)| <∞ for all t. The absolute summability of the ψ-weights

ensures that (2) converges almost surely for all t, and in the mean-square to the same limit.

The causality condition places constraints on the autoregressive parameters (see for example

Tiao and Grupe (1980)) but these constraints are not the focus of this paper. It should be

noted that ψt(j) = ψt+kν(j) for all j. Another restriction on the parameter space of (1) is
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the invertibility condition,

εt =
∞∑

j=0

πt(j)Xt−j (3)

where πt(0) = 1 and
∑∞

j=0 |πt(j)| < ∞ for all t. The invertibility condition places con-

straints on the moving average parameters in the same way that (2) places constraints on

the autoregressive parameters. Again, πt(j) = πt+kν(j) for all j.

Given N years of data with ν seasons per year, the innovations algorithm allows us to

forecast future values of Xt for t ≥ Nν in terms of the observed values {X0, ..., XNν−1}.

Toward this end, we would like to find the best linear combination of X0, ..., XNν−1 for

predicting XNν such that the mean- square distance from XNν is minimized. For a periodic

time series, the one-step predictors must be calculated for each season i, i = 0, 1..., ν − 1.

The remainder of this section develops the innovations algorithm for periodic time series

models. We adapt the development of Brockwell and Davis (1991) to this special case, and

introduce the notation which will be used throughout the rest of the paper.

2.1 Equations for the One-Step Predictors

Let Hn,i denote the closed linear subspace sp{Xi, ..., Xi+n−1}, n ≥ 1, and let {X̂(i)
i+n}, n ≥ 0,

denote the one-step predictors, which are defined by

X̂
(i)
i+n =





0 if n = 0

PHn,i
Xi+n if n ≥ 1.

(4)

We call PHn,i
Xi+n the projection mapping of Xi+n onto the space Hn,i. Also, define

vn,i =‖ Xi+n − X̂
(i)
i+n ‖2= E(Xi+n − X̂

(i)
i+n)2.

There are two representations of PHn,i
Xi+n pertinent to the goals of this paper. The first

one relates directly to the innovations algorithm and depends on writing Hn,i as a span of
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orthogonal components, viz.,

Hn,i = sp{Xi − X̂
(i)
i , Xi+1 − X̂

(i)
i+1, ..., Xi+n−1 − X̂

(i)
i+n−1}, n ≥ 1,

so that

X̂
(i)
i+n =

n∑

j=1

θ
(i)
n,j(Xi+n−j − X̂

(i)
i+n−j). (5)

The second representation of PHn,i
Xi+n is given by

X̂
(i)
i+n = φ

(i)
n,1Xi+n−1 + · · · + φ(i)

n,nXi, n ≥ 1. (6)

The vector of coefficients, φ(i)
n = (φ

(i)
n,1, . . . , φ

(i)
n,n)

′, appears in the prediction equations

Γn,iφ
(i)
n = γ(i)

n (7)

where γ(i)
n = (γi+n−1(1), γi+n−2(2), . . . , γi(n))′ and

Γn,i =
[
γi+n−1−`(`−m)

]

`,m=0,...,n−1
, i = 0, ..., ν − 1. (8)

is the covariance matrix of (Xi+n−1, ..., Xi)
′. The condition sufficient for Γn,i to be invertible

for all n ≥ 1 and each i = 0, 1, . . . , ν − 1 is given in the following proposition. Only the

causality condition is required for the proposition to be valid.

Proposition 2.1.1 If σ2
i > 0 for i = 0, . . . , ν−1, then for a causal PARMAν(p, q) process

the covariance matrix Γn,i in (7) is nonsingular for every n ≥ 1 and each i.

Proof. See Proposition 4.1 of Lund and Basawa(1999) for a proof.

Remark. Proposition 5.1.1 of Brockwell and Davis (1991) does not extend to general

periodically stationary processes. By Proposition 2.1.1, however, if our periodic process is

a PARMA process, then we are guaranteed that the covariance matrix Γn,i is nonsingular

for every n and each i. To establish this remark consider the periodically stationary process
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{Xt} of period ν = 2 given by

X2t = Z2t,

X2t+1 = (X2t−1 +X2t−2)/
√

2

where {Zt} is an i.i.d. sequence of standard normal variables. It is easy to show that

γ0(0) = γ1(0) = 1 and γ0(1) = 0. Also, for n ≥ 1, γ0(2n) = 0, γ0(2n + 1) = 1
2n/2 ,

γ1(2n−1) = 0, and γ1(2n) = 1
2n/2 . The process {Xt} is, by definition, periodically stationary

of period ν = 2. Using (8) we let Γn,0 =
[
γi+n−1−`(`−m)

]

`,m=0,...,n−1
be the covariance matrix

of (Xn−1, ..., X0)
′. Again, it is easy to show that Γ2,0 and Γ3,0 are identity matrices, hence

nonsingular. However, Γ4,0 is a singular matrix so that Γn,0 is singular for n ≥ 4. Thus, the

process is such that Γ2,0 is invertible and γi(h)→0 as h→∞ but Γn,0 is singular for n ≥ 4.

Note that this process is not a PARMA2 process.

2.2 The Innovations Algorithm

The proposition that follows is the innovations algorithm for periodically stationary processes.

For a proof, see Proposition 5.2.2 in Brockwell and Davis (1991).

Proposition 2.2.1. If {Xt} has zero mean and E(X`Xm) = γ`(m− `), where the matrix

Γn,i = [γi+n−1−`(` −m)]`,m=0,...,n−1, i = 0, ..., ν − 1, is nonsingular for each n ≥ 1, then the

one-step predictors X̂i+n, n ≥ 0, and their mean-square errors vn,i, n ≥ 1, are given by

X̂i+n =





0 if n = 0

∑n
j=1 θ

(i)
n,j(Xi+n−j − X̂i+n−j) if n ≥ 1

(9)

and for k = 0, 1, . . . , n− 1
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v0,i = γi(0)

θ
(i)
n,n−k = (vk,i)

−1

[
γi+k(n− k) − ∑k−1

j=0 θ
(i)
k,k−jθ

(i)
n,n−jvj,i

]

vn,i = γi+n(0) − ∑n−1
j=0 (θ

(i)
n,n−j)

2vj,i.

(10)

We solve (10) recursively in the order v0,i; θ
(i)
1,1, v1,i; θ

(i)
2,2, θ

(i)
2,1, v2,i; θ

(i)
3,3 ,θ

(i)
3,2, θ

(i)
3,1, v3,i, . . . .

The corollaries which follow in this section require the invertibility condition (3). The first

corollary shows that the innovations algorithm provides consistent estimates of the seasonal

standard deviations, and the proof also provides the rate of convergence.

Corollary 2.2.1. In the innovations algorithm, for each i = 0, 1,. . ., ν − 1 we have

vm,〈i−m〉 → σ2
i as m→ ∞,

where

〈k〉 =




k − ν[k/ν] if k = 0, 1, ...,

ν + k − ν[k/ν + 1] if k = −1,−2, ....

and [ · ] is the greatest integer function. Note that 〈k〉 denotes the season associated with

time k.

Proof. Let Hi+n−1 = sp{Xj,−∞ < j ≤ i + n− 1}. Then

σ2
i+m = E(ε2

i+m) = E(Xi+m +
∞∑

j=1

πi+m(j)Xi+m−j)
2 = E(Xi+m − PHi+m−1

Xi+m)2

where

∞∑

j=1

πi+m(j)Xi+m−j = PHi+m−1
(εi+m −Xi+m) = −PHi+m−1

Xi+m

since εi+m ⊥Hi+m−1. Thus, we have,

σ2
i+m = E(Xi+m − PHi+m−1

Xi+m)2
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≤ E(Xi+m − PHm,i
Xi+m)2

= vm,i

≤ E
(
Xi+m +

m∑

j=1

πi+m(j)Xi+m−j

)2

= E
(
εi+m −

∑

j>m

πi+m(j)Xi+m−j

)2

= E(εi+m)2 + E
( ∑

j>m

πi+m(j)Xi+m−j

)2

= σ2
i+m + E

( ∑

j>m

πi+m(j)Xi+m−j

∑

k>m

πi+m(k)Xi+m−k

)

≤ σ2
i+m +

∑

j,k>m

(|πi+m(j)||πi+m(k)|E|Xi+m−jXi+m−k|)

≤ σ2
i+m +

∑

j,k>m

(
|πi+m(j)||πi+m(k)|

√
γi+m−j(0)γi+m−k(0)

)

≤ σ2
i+m +

( ∑

j>m

|πi+m(j)|
)2

M,

where M = max{γi(0) : i = 0, 1, . . . , ν − 1}. Since 〈i−m〉 +m = i+ kν for all m and some

k we write

σ2
〈i−m〉+m ≤ vm,〈i−m〉 ≤ σ2

〈i−m〉+m +M
( ∑

j>m

|πi(j)|
)2

yielding

σ2
i ≤ vm,〈i−m〉 ≤ σ2

i +M
( ∑

j>m

|πi(j)|
)2

where vm,〈i−m〉 = E(Xnν+i − PMXnν+i)
2 and M=sp{Xnν+i−1, . . . , Xnν+i−m}, n arbitrary.

Hence, as m→ ∞, vm,〈i−m〉 → σ2
i .

Corollary 2.2.2 lim
m→∞

‖Xi+m − X̂
(i)
i+m − εi+m‖ = 0.

Proof.

E(Xi+m − X̂
(i)
i+m − εi+m)2 = E(Xi+m − X̂

(i)
i+m)2

10



−2E[εi+m(Xi+m − X̂
(i)
i+m)] + E(ε2

i+m)

= vm,i − 2σ2
i+m + σ2

i+m

= vm,i − σ2
i+m

where the last expression approaches 0 as m→ ∞ by Corollary 2.2.1.

Corollary 2.2.3 θ
(〈i−m〉)
m,k → ψi(k) as m→ ∞ for all i = 0, 1, . . . , ν−1 and all k = 1, 2, . . . ,.

Proof. We know that

θ
(i)
m,k = v−1

m−k,iE
(
Xi+m(Xi+m−k − X̂

(i)
i+m−k)

)

and

ψi+m(k) = σ−2
i+m−kE(Xi+mεi+m−k).

By the triangle inequality,

|θ(i)
m,k − ψi+m(k)| ≤

∣∣∣∣θ
(i)
m,k − σ−2

i+m−kE
(
Xi+m(Xi+m−k − X̂

(i)
i+m−k)

)∣∣∣∣

+

∣∣∣∣σ
−2
i+m−kE

(
Xi+m(Xi+m−k − X̂

(i)
i+m−k − εi+m−k)

)∣∣∣∣

=
∣∣∣∣θ

(i)
m,k − σ−2

i+m−kθ
(i)
m,kvm−k,i

∣∣∣∣

+

∣∣∣∣σ
−2
i+m−kE

(
Xi+m(Xi+m−k − X̂

(i)
i+m−k − εi+m−k)

)∣∣∣∣

≤
∣∣∣∣θ

(i)
m,k − σ−2

i+m−kθ
(i)
m,kvm−k,i

∣∣∣∣

+|σ−2
i+m−k|

√
γi+m(0)‖Xi+m−k − X̂

(i)
i+m−k − εi+m−k‖.

As m → ∞, the first term on the right-hand side approaches 0 by Corollary 2.2.1 and the

fact that θ
(i)
m,k is bounded in m. Also, as m → ∞, the second term on the right-hand side

approaches 0 by Corollary 2.2.2 and the fact that σ−2
i+m−k

√
γi+m(0) is bounded in m. Thus,

|θ(i)
m,k − ψi+m(k)| → 0 as m → ∞, and consequently, |θ(〈i−m〉)

m,k − ψi(k)| → 0 as m → ∞, k

arbitrary but fixed.
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Corollary 2.2.4 φ
(〈i−m〉)
m,k → −πi(k) as m→ ∞ for all i = 0, 1, . . . , ν−1 and k = 1, 2, . . . ,.

Proof. Define φ(i)
m = (φ

(i)
m,1, . . . , φ

(i)
m,m)′ and π(i)

m = (πi+m(1), . . . , πi+m(m))′. We show that

(φ(i)
m + π(i)

m ) → 0 as m→ ∞. From Theorem A.1 in the Appendix we have

m∑

j=1

(φ
(i)
m,j + πi+m(j))2 ≤ 1

2πC
(φ(i)

m + π(i)
m )′Γm,i(φ

(i)
m + π(i)

m )

=
1

2πC
Var

( m∑

j=1

(φ
(i)
m,j + πi+m(j))Xi+m−j

)

=
1

2πC
Var

(
εi+m − (Xi+m − X̂

(i)
i+m)

−
∑

j>m

πi+m(j)Xi+m−j

)

since

εi+m − (Xi+m − X̂
(i)
i+m) =

m∑

j=1

(φ
(i)
m,j + πi+m(j))Xi+m−j +

∞∑

j=m+1

πi+m(j)Xi+m−j.

Now,

1

2πC
Var

(
εi+m − (Xi+m − X̂

(i)
i+m)

−
∑

j>m

πi+m(j)Xi+m−j

)

≤ 1

2πC
· 2

[
Var

(
εi+m − (Xi+m − X̂

(i)
i+m)

)
+ Var

( ∑

j>m

πi+m(j)Xi+m−j

)]

=
1

πC

[
vm,i − σ2

i+m + Var
( ∑

j>m

πi+m(j)Xi+m−j

)]

=
1

πC

[( ∑

j>m

|πi+m(j)|
)2

M +
( ∑

j>m

|πi+m(j)|
)2

M
]

where the first inequality is a result of the fact that V ar(X−Y ) ≤ 2V ar(X)+2V ar(Y ) and

the last inequality follows from the proof of Corollary 2.2.1 recalling that M = max{γi(0) :

i = 0, 1, . . . , ν− 1}. The right hand side of the last inequality approaches 0 as m approaches

∞ since
∑ |πi(j)| < ∞ for all i = 0, 1, . . . , ν − 1. We have shown, for fixed but arbitrary k,
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that |φ(i)
m,k + πi+m(k)| → 0 as m → ∞. Using the notation of Corollary 2.2.1, our corollary

is established.

3 Weak Consistency of Innovation Estimates

Given N years of data X̃0, X̃1, . . . , X̃Nν−1, where ν is the number of seasons per year, the

estimated periodic autocovariance at season i and lag ` is defined by

γ∗i (`) = N−1
N−1∑

j=0

(X̃jν+i − µ̃i)(X̃jν+i+` − µ̃i+`)

where

µ̃i = N−1
N−1∑

j=0

X̃jν+i

and any terms involving X̃t are set equal to zero whenever t > Nν − 1. For what follows, it

is simplest to work with the function

γ̂i(`) = N−1
N−1∑

j=0

Xjν+iXjν+i+` (11)

where Xt = X̃t − µt. Since γ∗i (`) and γ̂i(`) have the same asymptotic properties, we use (11)

as our estimate of γi(`). If we replace the autocovariances in the innovations algorithm with

their corresponding sample autocovariances we obtain the estimator, θ̂
(〈i−k〉)
k,j , of θ

(〈i−k〉)
k,j . We

prove in this section that the innovations estimates are weakly consistent in the sense that

(θ̂
(〈i−k〉)
k,1 − ψi(1), . . . , θ̂

(〈i−k〉)
k,k − ψi(k), 0, 0, . . .)

P→ 0

in R∞ where
P→ is used to denote convergence in probability. Results are presented for both

the finite and infinite fourth moment cases. Theorems 3.1 through 3.4 below relate to the

case where we assume the underlying noise sequence has finite fourth moment. Analogously,

theorems 3.5 through 3.8 relate to the infinite fourth moment case where we assume the
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underlying noise sequence is RV(α) with 2 < α ≤ 4 (see first paragraph of section 2). The

latter set of theorems require regular variation theory for proof and are therefore treated

separately from the first set of theorems. We assume throughout this section that the

associated PARMA process is causal and invertible. With this assumption it can be shown

that the spectral density matrix of the corresponding vector process, (see Anderson and

Meerschaert (1997), pg. 778), is positive definite. We emphasize this fact in the statements

of each of the theorems in this section, since it is essential in their proofs. Replacing the

autocovariances given in (8) with their corresponding sample autocovariances yields the

sample covariance matrix Γ̂n,i for season i = 0, . . . , ν − 1. In theorems 3.1 and 3.2 we make

use of the matrix 2-norm given by

‖A‖2 = max
‖x‖2=1

‖Ax‖2 (12)

where ‖x‖2 = (x′x)
1
2 (see Golub and Van Loan (1989) pg. 56).

Theorem 3.1. Let {Xt} be the mean zero PARMA process with period ν given by

(1) with E(ε4
t ) < ∞. Assume that the spectral density matrix, f(λ), of its equivalent

vector ARMA process (see Anderson and Meerschaert (1997), pg. 778) is such that mzz′ ≤

z′f(λ)z ≤ Mzz′, −π ≤ λ ≤ π, for some m and M such that 0 < m ≤ M < ∞ and for all z

in Rν. If k is chosen as a function of the sample size N so that k2/N → 0 as N → ∞ and

k → ∞, then ‖Γ̂−1
k,i − Γ−1

k,i‖2

P→ 0.

Proof. The proof of this theorem is patterned after that of Lemma 3 in Berk (1974). Let
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pk,i = ‖Γ−1
k,i‖2

, qk,i = ‖Γ̂−1
k,i − Γ−1

k,i‖2
, and Qk,i = ‖Γ̂k,i − Γk,i‖2. Then

qk,i = ‖Γ̂−1
k,i − Γ−1

k,i‖2

= ‖Γ̂−1
k,i(Γ̂k,i − Γk,i)Γ

−1
k,i‖2

≤ ‖Γ̂−1
k,i‖2

‖Γ̂k,i − Γk,i‖2‖Γ
−1
k,i‖2

= ‖Γ̂−1
k,i − Γ−1

k,i + Γ−1
k,i‖2

‖Γ̂k,i − Γk,i‖2‖Γ
−1
k,i‖2

≤
{
‖Γ̂−1

k,i − Γ−1
k,i‖2

+ ‖Γ−1
k,i‖2

}
‖Γ̂k,i − Γk,i‖2‖Γ

−1
k,i‖2

= (qk,i + pk,i)Qk,ipk,i.

(13)

Now,

Q2
k,i = ‖Γ̂k,i − Γk,i‖

2

2 ≤
k−1∑

`,m=0

[
γ̂i+k−`−1(l −m) − γi+k−`−1(`−m)

]2

.

Multiplying the above equation by N and taking expectations yields

NE(Q2
k,i) ≤ N

k−1∑

`,m=0

Var
(
γ̂i+k−`−1(`−m)

)
.

Anderson (1989) shows that N Var(γ̂i+k−`−1(`−m)) is bounded above by
∣∣∣∣η − 3

∣∣∣∣
( ∞∑

m1=0

∞∑

m2=0

|ψi+k−`−1(m1)||ψi+k−m−1(m2)|
)2

<∞

where η = E(ε4
t ). Define

C = max
{
|η − 3|

( ∞∑

m1=0

∞∑

m2=0

|ψi(m1)||ψj(m2)|
)2

, 0 ≤ i, j ≤ ν − 1
}

which is independent of N and k so that we can write

NE(Q2
k,i) ≤ k2C

which holds for all i. Thus, E(Q2
k,i) ≤ k2C/N → 0 as k → ∞ since k2/N → 0 as N → ∞.

It follows that Qk,i
P→ 0 and since pk,i is bounded for all i and k (see Appendix, Theorem

A.1), we also have pk,iQk,i
P→ 0. From (13) we can write

qk,i ≤
p2

k,iQk,i

1 − pk,iQk,i
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if 1 − pk,iQk,i > 0, i.e., if pk,iQk,i < 1. Now,

P (qk,i > ε) = P (qk,i > ε|pk,iQk,i < 1)P (pk,iQk,i < 1)

+ P (qk,i > ε|pk,iQk,i ≥ 1)P (pk,iQk,i ≥ 1)

≤ P
( p2

k,iQk,i

1 − pk,iQk,i

> ε
)

+ P (qk,i > ε|pk,iQk,i ≥ 1)P (pk,iQk,i ≥ 1).

Since p2
k,iQk,i

P→ 0 and (1 − pk,iQk,i)
P→ 1, then by Theorem 5.1, Corollary 2 of Billingsley

(1968)
p2

k,i
Qk,i

1−pk,iQk,i

P→ 0. Also, we know that limk→∞ P (pk,iQk,i ≥ 1) = 0 so

lim
k→∞

P (qk,i > ε) ≤ lim
k→∞

P (
p2

k,iQk,i

1 − pk,iQk,i
> ε) + 1 · lim

k→∞
P (pk,iQk,i ≥ 1)

= 0 + 1 · 0

= 0

and it follows that qk,i
P→ 0. This proves the theorem.

Substituting sample autocovariances for autocovariances in (7) yields the Yule-Walker

estimators

φ̂
(i)
k = Γ̂−1

k,i γ̂
(i)
k (14)

assuming Γ̂−1
k,i exists. The next theorem shows that φ̂

(i)
k is consistent for φ

(i)
k .

Theorem 3.2. If the hypotheses of Theorem 3.1 hold, then (φ̂
(i)
k − φ

(i)
k )

P→ 0.

Proof. Write

φ̂
(i)
k − φ

(i)
k = Γ̂−1

k,i γ̂
(i)
k − Γ−1

k,iγ
(i)
k

= Γ̂−1
k,i γ̂

(i)
k − Γ̂−1

k,iγ
(i)
k + Γ̂−1

k,iγ
(i)
k − Γk,iγ

(i)
k

= Γ̂−1
k,i(γ̂

(i)
k − γ

(i)
k ) + (Γ̂−1

k,i − Γ−1
k,i )γ

(i)
k .

16



Then,

‖φ̂(i)
k − φ

(i)
k ‖2 ≤ ‖Γ̂−1

k,i‖2
‖γ̂(i)

k − γ
(i)
k ‖2 + ‖Γ̂−1

k,i − Γ−1
k,i‖2

‖γ(i)
k ‖2

= ‖Γ̂−1
k,i − Γ−1

k,i + Γ−1
k,i‖2

‖γ̂(i)
k − γ

(i)
k ‖2 + qk,i‖γ(i)

k ‖2

≤
{
‖Γ̂−1

k,i − Γ−1
k,i‖2

+ ‖Γ−1
k,i‖2

}
‖γ̂(i)

k − γ
(i)
k ‖2 + qk,i‖γ(i)

k ‖2

= (qk,i + pk,i)‖γ̂(i)
k − γ

(i)
k ‖2 + qk,i‖γ(i)

k ‖2.

The last term on the right-hand side of the inequality goes to 0 in probability by Theorem

3.1 and the fact that

‖γ(i)
k ‖2 =

k−1∑

j=0

(
γi+j(k − j)

)2

≤
ν−1∑

i=0

∞∑

j=0

γ2
i (j) <∞

by the absolute summability of {γi(k)} for each i = 0, 1, . . . , ν − 1. The first term on the

right-hand side of the inequality goes to 0 in probability if we can show that ‖γ̂(i)
k − γ

(i)
k ‖2

P→ 0

by Theorem 3.1 and the fact that pk,i is uniformly bounded. Write

‖γ̂(i)
k − γ

(i)
k ‖

2

2 =
k−1∑

j=0

(
γ̂i+j(k − j) − γi+j(k − j)

)2

which leads to

E‖γ̂(i)
k − γ

(i)
k ‖

2

2 =
k−1∑

j=0

E
(
γ̂i+j(k − j) − γi+j(k − j)

)2

≤
k−1∑

j=0

C/N

= kC/N

where kC/N → 0 by hypothesis and where C is as in the proof of Theorem 3.1. It follows

that ‖γ̂(i)
k − γ

(i)
k ‖2

P→ 0 and hence (φ̂
(i)
k − φ

(i)
k )

P→ 0.

Theorem 3.3. Under the conditions of Theorem 3.1, we have that

φ̂
(〈i−k〉)
k,j

P→ −πi(j)

17



for all j.

Proof. From Corollary 2.2.4 we know that φ
(i)
k,j + πi+k(j) → 0 for all j as k → ∞. From

Theorem 3.2 we have φ̂
(i)
k,j − φ

(i)
k,j

P→ 0 for all j so that

|φ̂(i)
k,j + πi+k(j)| = |φ̂(i)

k,j − φ
(i)
k,j + φ

(i)
k,j + πi+k(j)|

≤ |φ̂(i)
k,j − φ

(i)
k,j| + |φ(i)

k,j + πi+k(j)|
P→ 0

as k → ∞ for all fixed but arbitrary j, by the continuous mapping theorem. Another

application of the continuous mapping theorem yields

φ̂
(〈i−k〉)
k,j + πi(j) − πi(j)

P→ 0 − πi(j) = −πi(j)

using the notation of Corollary 2.2.1. This proves the theorem.

Theorem 3.4. Under the conditions in Theorem 3.1, we have that

θ̂
(〈i−k〉)
k,j

P→ ψi(j)

for all j.

Proof. From the representations of X̂i+k given by (5) and (6) and the invertibility of Γk,i

for all k and i, one can check that

θ
(i)
k,j =

j∑

`=1

φ
(i)
k,`θ

(i)
k−`,j−`,

j = 1, . . . , k if we define θ
(i)
k−j,0 = 1. Also, because of the way the estimates θ̂

(i)
k,j and φ̂

(i)
k,j are

defined we have

θ̂
(i)
k,j =

j∑

`=1

φ̂
(i)
k,`θ̂

(i)
k−`,j−`,

j = 1, . . . , k if we define θ̂
(i)
k−j,0 = 1. We propose that, for every n,

θ̂
(〈i−k〉)
k,`

P→ ψi(`),

18



` = 1, . . . , n as k → ∞ and N → ∞ according to the hypotheses of the theorem. We use

strong induction on n. The proposition is true for n = 1 since

θ̂
(〈i−k〉)
k,1 = φ̂

(〈i−k〉)
k,1

P→ −πi(1) = ψi(1).

Now, assume the proposition is true for n = j−1,i.e., θ̂
(〈i−k〉)
k,`

P→ ψi(`), ` = 1, . . . , j−1. Note

that θ̂
(〈i−k〉)
k−`,j−`

P→ ψi(j−`) as N → ∞ and k → ∞ according to k2/N → 0 since (k−`)2/N → 0

also. Additionally, φ̂
(〈i−k〉)
k,`

P→ −πi(`), so by the continuous mapping theorem,

θ̂
(〈i−k〉)
k,j

P→
j∑

`=1

−πi(`)ψi(j − `) = ψi(j)

hence the theorem follows.

Corollary 3.4 v̂k,〈i−k〉
P→ σ2

i where

v̂k,〈i−k〉 = γ̂i(0) −
k−1∑

j=0

(θ̂
(〈i−k〉)
k,k−j )2v̂j,〈i−k〉.

Proof. Using a strong induction argument similar to that in Theorem 3.4 yields the result.

In Theorems 3.5 and 3.6 the matrix 1-norm is used to obtain the required bounds on the

appropriate statistics since these theorems deal with the infinite fourth moment case. The

matrix 1-norm is given by

‖A‖1 = max
‖x‖1=1

‖Ax‖1

where ‖x‖1 = |x1| + · · · + |xk| (see Golub and Van Loan (1989) pg. 57). We also need to

define

aN = inf{x : P (|εt| > x) < 1/N}

where

a−1
N

N−1∑

t=0

εtν+i ⇒ S(i),

S(i) is an α-stable law, and ⇒ denotes convergence in distribution.

19



Theorem 3.5 Let {Xt} be the mean zero PARMA process with period ν given by (1)

with 2 < α ≤ 4. Assume that the spectral density matrix, f(λ), of its equivalent vector

ARMA process is such that mzz′≤z′f(λ)z≤Mzz′, −π ≤ λ ≤ π, for some m and M such

that 0 < m ≤ M and for all z in Rν. If k is chosen as a function of the sample size N so

that k5/2a2
N/N → 0 as N → ∞ and k → ∞, then ‖Γ̂−1

k,i − Γ−1
k,i‖1

P→ 0.

Proof. Define pk,i, qk,i, and Qk,i as in Theorem 3.1 with the 1-norm replacing the 2-norm.

Starting with the equations (13), we want to show that Qk,i
P→ 0. Toward this end, it is

shown in the Appendix, Theorem A.2, that there exists a constant, C, such that

E
∣∣∣∣Na

−2
N

(
γ̂i(`) − γi(`)

)∣∣∣∣ ≤ C

for all i = 0, 1, . . . , ν − 1, for all ` = 0,±1,±2, . . ., and for all N = 1, 2, . . .. If we have a

random k × k matrix A with E|aij| ≤ C for all i and j then

E‖A‖1 = E
(

max
1≤j≤k

k∑

i=1

|aij|
)

≤ E
k∑

i,j=1

|aij|

= k2C.

Thus

E(Qk,i) = E‖Γ̂k,i − Γk,i‖1 ≤ k2a2
NC/N

for all i,k, and N . We therefore have that Qk,i
P→ 0 and since

pk,i = ‖Γ−1
k,i‖1

≤ k1/2‖Γ−1
k,i‖2

then pk,iQk,i
P→ 0 if k5/2a2

NC/N → 0 as k → ∞ and N → ∞. To show that qk,i
P→ 0 we

follow exactly the proof given in Theorem 3.1 and this concludes the proof of our theorem.
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Theorem 3.6 Given the hypotheses set forth in Theorem 3.5 we have that (φ̂
(i)
k −φ(i)

k )
P→

0.

Proof. From the proof of Theorem 3.2 with the 1-norm replacing the 2-norm we start

with the inequality

‖φ̂(i)
k − φ

(i)
k ‖1 ≤ (qk,i + pk,i)‖γ̂(i)

k − γ
(i)
k ‖1 + qk,i‖γk,i‖1.

The last term on the right-hand side of the inequality goes to 0 in probability by Theorem

3.5 and the fact that

‖γ(i)
k ‖1 =

k−1∑

j=0

|γi+j(k − j)| ≤
ν−1∑

i=0

∞∑

j=0

|γi(j)| <∞

by the absolute summability of {γi(k)} for each i = 0, 1, . . . , ν − 1. The first term on the

right-hand side of the inequality goes to 0 in probability if we can show that ‖γ̂(i)
k − γ

(i)
k ‖1

P→ 0

since we know that k−1/2pk,i is uniformly bounded. By Theorem A.2 in the Appendix

E‖γ̂(i)
k − γ

(i)
k ‖1 =

k−1∑

j=0

E|γ̂i+j(k − j) − γi+j(k − j)|

≤ kCa2
N/N

where the last term approaches 0 by hypothesis. It follows that ‖γ̂(i)
k − γ

(i)
k ‖1

P→ 0 and hence

(φ̂
(i)
k − φ

(i)
k )

P→ 0.

Theorem 3.7 Let {Xt} be the mean zero PARMA process with period ν given by (1)

with 2 < α ≤ 4. Assume that the spectral density matrix, f(λ), of its equivalent vector

ARMA process is such that mzz′≤z′f(λ)z≤Mzz′, −π ≤ λ ≤ π, for some m and M such

that 0 < m ≤ M and for all z in Rν. If k is chosen as a function of the sample size N so

that k5/2a2
N/N → 0 as N → ∞ and k → ∞, then θ̂

(〈i−k〉)
k,j

P→ ψi(j) for all j and for every

i = 0, 1, . . . , ν − 1.

Proof. The result follows by mimicking the proofs given in Theorems 3.3 and 3.4.
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We state the next corollary without proof since it is completely analogous to Corollary

3.4.

Corollary 3.7 v̂k,〈i−k〉
P→ σ2

i where

v̂k,〈i−k〉 = γ̂i(0) −
k−1∑

j=0

(θ̂
(〈i−k〉)
k,k−j )2v̂j,〈i−k〉.

Remarks.

1. All of the results in this section hold true for second-order stationary ARMA models

since they are a special case of the periodic ARMA models with ν = 1.

2. In Theorem 3.2 and Theorem 3.6, we not only have that (φ̂
(i)
k − φ

(i)
k )

P→ 0 in R∞ but

also in `2.

APPENDIX

Theorem A.1. Let {Xt} be a mean zero periodically stationary time series with period

ν ≥ 1. Also, let Yt = (Xtν+ν−1, . . . , Xtν)
′ be the corresponding ν-variate stationary vector

process with spectral density matrix, f(λ). If there exists constants c and C such that

cz′z ≤ z′f(λ)z ≤ Cz′z for all z ∈ Rν where 0 < c ≤ C < ∞, then ‖Γk,i‖2≤2πC and

‖Γ−1
k,i‖2

≤1/(2πc) for all k and i. Note that ‖A‖2 is the matrix 2-norm defined by (12).

Proof. Let Γ(h) = Cov(Yt, Yt+h), Y = (Yn−1, . . . , Y0)
′, and Γ = Cov(Y, Y ) = [Γ(i− j)]n−1

i,j=0

where Yt is as stated in the theorem. In the notation of (8) we see that Γ = Γnν,0 =

Cov(Xnν−1, . . . , X0)
′. For fixed i and k let n = [k+i

ν
] + 1. Then Γk,i = Cov(Xi+k−1, . . . , Xi)

′

is a submatrix of Γ = Γnν,0. It is clear that ‖Γ−1‖2 ≥ ‖Γ−1
k,i‖2

and ‖Γk,i‖2 ≤ ‖Γ‖2, since Γk,i

is the restriction of Γ onto a lower dimensional subspace. The spectral density matrix of Yt

is f(λ) = 1
2π

∑∞
h=−∞ e−iλhΓ(h) so that Γ(h) =

∫ π
−π e

iλhf(λ)dλ. Define the fixed but arbitrary

22



vector y ∈ Rnν such that y = (y0, y1, . . . , yn−1)
′ where yj = (yjν, yjν+1, . . . , yjν+ν−1)

′. Then

y′Γy =
n−1∑

j=0

n−1∑

k=0

y′jΓ(j − k)yk

=
n−1∑

j=0

n−1∑

k=0

y′j(
∫ π

−π
eiλ(j−k)f(λ)dλ)yk

=
∫ π

−π
(
n−1∑

j=0

eiλjyj)
′f(λ)(

n−1∑

k=0

e−iλkyk)dλ

≤ C
∫ π

−π
(
n−1∑

j=0

eiλjyj)
′(

n−1∑

k=0

e−iλkyk)dλ

= C
n−1∑

j=0

n−1∑

k=0

y′jyk

∫ π

−π
eiλ(j−k)dλ

= 2πC
n−1∑

j=0

y′jyj

= 2πCy′y.

Similarly, y′Γy ≥2πcy′y. If Γy = λy then y′Γy = y′λy = λy′y so 2πcy′y ≤ λy′y ≤ 2πCy′y

which shows that every eigenvalue of Γ lies between 2πc and 2πC for all n. If we write

λ1 ≤ · · · ≤ λnν for the eigenvalues of Γ then since λ1 = 1
‖Γ−1‖ 2

and λnν = ‖Γ‖2 we have

‖Γk,i‖2 ≤ ‖Γ‖2 = λnν ≤ 2πC

and

‖Γ−1
k,i‖2

≤ ‖Γ−1‖2 =
1

λ1
≤ 1

2πc
.

The next result given in the Appendix affirms that E|Na−2
N (γ̂i(`) − γi(`)| is uniformly

bounded for all i = 0, 1, . . . , ν − 1, for all ` = 0,±1,±2, . . ., and for all N = 1, 2, . . .. We

assume that (1) and (2) hold and that the i.i.d. sequence {εt} is RV(α) with 2 < α < 4.

Then the squared noise Zt = ε2
t belong to the domain of attraction of an α/2-stable law. We
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also have that

γi(`) = E(Xnν+iXnν+i+`)

=
∞∑

j=−∞
ψi(j)ψi+`(j + `)

assuming E(εt) = 0, and E(ε2
t ) = 1. In preparation for the following two lemmas we define

the quantities

Vη(y) = E|Z1|ηI(|Z1| ≥ y)

Uζ(y) = E|Z1|ζI(|Z1| ≤ y)

and recall that aN=inf{x : P (|εt| > x) < 1/N}.

Lemma A.1. Let the i.i.d. sequence {Zt} be in the domain of attraction of an α-stable

law where 1 < α < 2 and E(Zt) = 0. For all δ > 0, there exists some constant K such that

P
(∣∣∣∣

N∑

i=1

Zi

∣∣∣∣ > dN t
)
≤ Kt−α+δ

for all t > 0 and N ≥ 1 where dN = a2
N and NV0(dN)→1.

Proof. For fixed but arbitrary t > 0 define

TN =
N∑

i=1

Zi,

TNN =
N∑

i=1

ZiI(|Zi| ≤ dN t),

EN =
N⋃

i=1

(|Zi| > dN t)

and

GN = {|TNN | > dN t}.

Then P (|TN | > dN t) ≤ P (EN) + P (GN). Also,

P (EN) ≤ NP (|Z1| > dN t) = NV0(dN t) ≤ C1t
−α+δ
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for all t greater than or equal to some t0, where the last inequality follows from Potter’s

Theorem (see Bingham, Goldie, and Teugels (1987), pg.25). Now, by Chebychev’s inequality,

P (GN) ≤ E(T 2
NN )/(d2

Nt
2) where

E(T 2
NN ) = NEZ2

1I(|Z1| ≤ dN t)

= +N(N − 1)E{Z1I(|Z1| ≤ dN t)Z2I(|Z2| ≤ dN t)}

= IN + JN .

Note that,

IN
d2

N t
2

=
NU2(dN t)

d2
N t

2
= NV0(dN t)

U2(dnt)

(dN t)2V0(dN t)
≤ C2t

−α+δ

for all t ≥ t0 by Karamata’s Theorem (see Feller(1971), pg. 283). Also, for all t ≥ t0
∣∣∣∣
JN

d2
N t

2

∣∣∣∣ ≤ N2

d2
N t

2

∣∣∣∣EZ1I(|Z1| ≤ dN t)EZ2I(|Z2| ≤ dN t)
∣∣∣∣

=
{
N

dN t

∣∣∣∣EZ1I(|Z1| > dN t)
∣∣∣∣
}2

=
{
NV1(dN t)

dN t

}2

=
{
NV0(dN t)

(dN t)
3V1(dN t)

U4(dN t)

U4(dN t)

(dN t)4V0(dNt)

}2

≤ C3t
−α+δ

by Karamata’s Theorem. Hence P (|TN | > dN t) ≤ Kt−α+δ for all t ≥ t0 with K = C1 +C2 +

C3. Now, enlarge K if necessary so that Kt−α+δ
0 > 1. Then

P
(∣∣∣∣

N∑

i=1

Zi

∣∣∣∣ > dN t
)
≤ Kt−α+δ

holds for t > 0 because P (|∑N
i=1 Zi| > dN t) ≤ 1.

Lemma A.2. Under the conditions of Lemma A.1.,

E
∣∣∣∣d

−1
N

N∑

i=1

Zi

∣∣∣∣ → E|Y |
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where

d−1
N

N∑

i=1

Zi ⇒ Y.

Proof. By Billingsley (1995), pg. 338, it suffices to show that E|d−1
N TN |1+ε < ∞ for all N

where TN =
∑N

i=1 Zi. By Lemma A.1.,

E|d−1
N TN |1+ε =

∫ ∞

0
P (|d−1

N TN |1+ε > t)dt

=
∫ 1

0
P (|d−1

N TN |1+ε > t)dt+
∫ ∞

1
P (|d−1

N TN |1+ε > t)dt

≤ 1 +
∫ ∞

1
K(t

1
1+ε )−α+δdt

where the last term is finite.

Theorem A.2. There exists a constant, C > 0, such that

E|Na−2
N (γ̂i(`) − γi(`))| ≤ C

for all i = 0, 1, . . . , ν − 1, for all ` = 0,±1,±2, . . ., and for all N = 1, 2, . . .. Proof. By the

proof of Lemma 2.1 of Anderson and Meerschaert (1997) we have

Na−2
N

(
γ̂i(`) −N−1

N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j

)
= A1 + A2 + A3 + A4

where

V ar(A1) ≤ Na−4
N σ4

NK

E|A2| ≤ Na−2
N |µN |K

E|A3| ≤ Na−2
N VNK

|A4| ≤ Na−2
N µ2

NK

where

µN = Eε1I(|ε1| ≤ aN)
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σ2
N = Eε2

1I(|ε1| ≤ aN)

VN = E|ε1|I(|ε1| ≤ aN )

K =
∞∑

j=−∞
|ψi(j)|

∞∑

j=−∞
|ψi+`(j)|

and ψi(j) = 0 for j < 0. For α > 2 we have σ2
N ≤ 1, |µN | ≤ VN , and VN ∼ α

α−1
aN

N
. Then

Na−1
N VN → α

α−1
implies Na−1

N VN ≤ K for all N , so Na−1
N |µN | ≤ K for all N . Therefore,

E|A2| ≤ a−1
N K, E|A3| ≤ a−1

N K, and |A4| ≤ Na−1
N |µN |Na−1

N |µN |N−1 ≤ N−1a−1
N K for all N ,

and finally, since

(E|A1|)2 ≤ E(|A1|2) = E(A2
1) = Var(A1)

we have

E|A1| ≤
√

Var(A1) ≤ N1/2a−2
N σ2K1/2

for all N . Thus, for all N , i, and `, we have

E
∣∣∣∣Na

−2
N

(
γ̂i(`) −N−1

N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j

)∣∣∣∣

≤ E|A1| + E|A2| + E|A3| + |A4|

≤ N1/2a−2
N σ2K1/2 + a−1

N K + a−1
N K +N−1a−1

N K

≤ K0N
1/2a−2

N

for all N , i, and `. Next write

N−1
( N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j

)
− γi(`)

= N−1
N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)(ε2

tν+i−j − 1)

and apply Lemma A.2. with dN = a2
N and Zt = ε2

t − 1 to see that

E|a−2
N

N−1∑

t=0

(ε2
tν+i−j − 1)| → E|Si−j|
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where, as in Anderson and Meerschaert (1997) we have the corresponding weak convergence

result

a−2
N

N−1∑

t=0

(ε2
tν+r − 1) ⇒ Sr

for all r = 0, 1, . . . , ν − 1 where S0, . . . , Sν−1 are i.i.d. α/2-stable laws. Then we have

E|a−2
N

∑N−1
t=0 (ε2

tν−r − 1)| < C(r) for r = 0, . . . , ν − 1 since this sequence is convergent, hence

bounded. Let B0 = max{C(r)} and write

E
∣∣∣∣N

−1
N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j − γi(`)
∣∣∣∣

= E

∣∣∣∣
∞∑

j=−∞
ψi(j)ψi+`(j + `)

[
N−1

N−1∑

t=0

(ε2
tν+i−j − 1)

]∣∣∣∣

≤
∞∑

j=−∞
|ψi(j)ψi+`(j + `)|E

∣∣∣∣N
−1

N−1∑

t=0

(ε2
tν+i−j − 1)

∣∣∣∣

≤
( ∞∑

j=−∞
|ψi(j)|

)( ∞∑

j=−∞
|ψi+`(j)|

)
B0a

2
N/N

= Ba2
N/N.

Finally, we have

E|γ̂i(`) − γi(`)| ≤

E
∣∣∣∣γ̂i(`) −N−1

N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j

∣∣∣∣

+ E

∣∣∣∣N
−1

N−1∑

t=0

∞∑

j=−∞
ψi(j)ψi+`(j + `)ε2

tν+i−j − γi(`)

∣∣∣∣

≤ K0N
1/2a−2

N N−1a2
N +Ba2

NN
−1

= K0N
−1/2 +Ba2

NN
−1

where a2
N/N is regularly varying with index 2

α
−1. For 2 < α < 4, N−1/2 = o(a2

N/N). Hence,

E|γ̂i(`) − γi(`)| ≤ Ca2
N/N .
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