
Clustered Continuous Time Random

Walks: Diffusion and Relaxation

Consequences

By Karina Weron1, Aleksander Stanislavsky2, Agnieszka Jurlewicz3,

Mark M. Meerschaert4 & Hans-Peter Scheffler5

1 Institute of Physics, Wroc law University of Technology, Wyb. Wyspiańskiego 27,
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We present a class of continuous time random walks (CTRWs), in which the random
jumps are separated by random waiting times. The novel feature of these CTRWs
is that the jumps are clustered. This introduces a coupled effect, with longer wait-
ing times separating larger jump clusters. We show that the CTRW scaling limits
are time-changed processes. Their densities solve two different fractional diffusion
equations, depending on whether the waiting time is coupled to the preceding jump,
or the following one. Those fractional diffusion equations can be used to model all
types of experimentally observed two-power-law relaxation patterns. The parame-
ters of the scaling limit process determine the power-law exponents and loss peak
frequencies.
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1. Introduction

The aim of this paper is to show that a compound subordination approach to
anomalous diffusion, based on clustered CTRW methodology, provides useful tools
to study relaxation phenomena in complex systems. This approach allows us to iden-
tify stochastic origins of all parameters describing the non-Debye fractional power-
law relaxation behavior observed in complex materials such as supercooled liquids,
amorphous semiconductors and insulators, polymers, disordered crystals, molecu-
lar solid solutions, glasses and so on (Jonscher 1983; Scher et al. 1991; Havriliak
& Havriliak 1994). Relaxation data, collected in both time and frequency domains,
show that the dielectric susceptibility χ(ω) = χ

′

(ω)−iχ
′′

(ω) exhibits the following
asymptotic dependence on frequency

χ(ω) ∼ (iω/ωp)
n−1

ω ≫ ωp,

∆χ(ω) ∼ (iω/ωp)
m

ω ≪ ωp,
(1.1)
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where ∆χ(ω) = χ(0) − χ(ω), the exponents n and m fall in the range (0, 1), and
ωp denotes the loss peak frequency, the reciprocal of a time constant characteristic
for a given material. Experimental evidence (Havriliak & Havriliak 1994; Jonscher
1996) shows that relaxation data falls into two major groups: typical relaxation
behavior, for which m ≥ 1 − n, and less typical relaxation, where m < 1 − n. The
boundary case, m = 1 − n, is known as Cole-Cole (CC) relaxation.

To fit measured dielectric susceptibility data, the empirical Havriliak-Negami
(HN) function

χHN(ω) ∼
1

[1 + (iω/ωp)α]
γ , 0 < α, γ < 1 (1.2)

has been proposed (Jonscher 1983; Havriliak & Havriliak 1994; Jonscher 1996). For
γ = 1, the formula (1.2) describes CC relaxation. The original HN function satisfies
the power-law properties (1.1) with n = 1−αγ and m = α, characteristic of typical
relaxation behavior. To model less typical power-law dielectric data, an extended
range of the power-law exponents, 0 < α < 1 and 0 < αγ < 1, has been proposed
for the HN function (Havriliak & Havriliak 1994). However, the derivation of the
HN function (1.2), based on the fractional Fokker-Planck equation (Kalmykov et al.

2004) and the continuous-time random walk (Weron et al. 2005; Jurlewicz et al.
2008), does not lead to values of γ >1. Only recently, by employing the subordina-
tion approach (Stanislavsky et al. 2010; Weron et al. 2010), developed in the last
decade in the theory of anomalous diffusion (Sokolov 2001,2002; Meerschaert et al.

2002; Meerschaert & Scheffler 2004; Piryatinska et al. 2005; Sokolov & Klafter 2006;
Magdziarz & Weron 2006; Magdziarz et al. 2007; Lubelski et al. 2008; Magdziarz
et al. 2008), has the effective picture underlying all typical and less typical relax-
ation patterns been found. In contrast to earlier studies (Metzler et al. 1999; Weron
& Kotulski 1996) where the anomalous-diffusion approach (based on a decoupled
CTRW) have led to CC relaxation only, the compound subordination framework
allows one to derive rigorously (Stanislavsky et al. 2010; Weron et al. 2010) the
original HN function as well as the novel version

χJWS(ω) ∼ 1 −
1

(1 + (iω/ωp)−α)γ
, 0 < α, γ < 1 , (1.3)

termed as JWS by Trzmiel et al. (2011). The JWS function (1.3) satisfies the power-
law properties (1.1) with n = 1 − α and m = αγ fulfilling the relation m < 1 − n,
and hence it is appropriate for description of less typical relaxation data.

In this paper, we start by describing the clustered CTRW, accounting for inter-
actions between space jumps and waiting times. Then we examine the relaxation
behavior (1.1) with any n and m falling into the range (0, 1). We derive the gov-
erning diffusion equations and the time-domain relaxation functions corresponding
to the HN and JWS shape functions, eqs. (1.2), (1.3), respectively. In our study,
we draw special attention to the origins of the loss peak frequency ωp. The anal-
ysis moves forward to a linkage between kinetics and thermodynamics in relaxing
materials. The point is that the theory of CTRW processes has free parameters
(diffusive coefficients, indices of random processes and others) which, as we show,
can depend on temperature. This feature is well known in experimental physics, for
example, as the Arrhenius law. All this opens a way to relate different branches of
physics.
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Clustered CTRWs: Diffusion and Relaxation Consequences 3

2. CTRW and anomalous diffusion

The CTRW process W (t) determines the location reached at time t, for a parti-
cle performing a random walk, in which random particle jumps are separated by
random waiting times (Klafter & Sokolov 2011). Together, the jumps and the inter-
jump waiting times form a sequence of independent and identically distributed
(i.i.d.) random vectors (Ri, Ti), i ≥ 1. Both the length and the direction of the
random jump variable Ri can depend on the waiting time Ti. The position of the
particle after n jumps reads

R(n) =

n∑

i=0

Ri . (2.1)

In the classical waiting-jump CTRW idea of Montroll & Weiss (1965), in which the
jump Ri occurs after the waiting-time, the random number of the particle jumps
performed by time t > 0 is given by the renewal counting process

Nt = max{n ∈ N : T (n) ≤ t} , (2.2)

where

T (n) =

n∑

i=0

Ti , T (0) = 0 (2.3)

is the time of the nth jump. Then the location of a particle at time t is given by
the random sum

W−(t) = R(Nt) =

Nt∑

i=1

Ri. (2.4)

In the alternative jump-waiting CTRW scenario, the particle jump Ri precedes the
waiting time. Now the counting process Nt + 1 gives the number of jumps by time
t, and the particle location at time t is given by

W+(t) = R(Nt + 1) =

Nt+1∑

i=1

Ri. (2.5)

This is called the overshoot CTRW, or briefly OCTRW, see Jurlewicz et al. (2011b).
In summary, the CTRW process W−(t) and the OCTRW process W+(t) are ob-
tained by the subordination of the random walk R(n) to the renewal counting
process Nt, and the first passage process Nt + 1, respectively. Let us mention that,
in general, subordination modifies a random process, replacing the deterministic
time index by a random clock process, which usually represents a second source of
uncertainty (see Sato (1999) or Feller (1971) for more details).

As far as the diffusion mechanism underlying the relaxation phenomenon is con-
cerned, the diffusion limit (diffusion front) of the random sum given by (2.4) or (2.5)

should be considered. The diffusion front X̃(t) of a process X(t) is represented by
the asymptotic behavior of the rescaled process f(c)X(ct) when dimensionless time-
scale coefficient c tends to infinity and the space-rescaling function f(c) is chosen
appropriately. The possible general form of the diffusion limit, as well as conditions
providing its existence, have already been precisely determined for both CTRW and
OCTRW processes (Weron et al. 2010; Jurlewicz et al. 2011b). When the jumps
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Figure 1. (Color online) Sample paths of the original CTRW (dashed line) and the resulting
clustered CTRW (solid line). Coupling between the waiting time and the corresponding
jump in the clustered CTRW comes from summing up a random number of spatio-temporal
steps of the original CTRW.

Ri and the waiting times Ti are stochastically independent (i.e., uncoupled), the
CTRW and OCTRW diffusion limits and, as a consequence, the corresponding type
of relaxation, are the same. On the other hand, if the coupled case (i.e., dependent
coordinates in the random vector (Ti, Ri)) is considered, the waiting-jump and
jump-waiting schemes may lead to essentially different relaxation patterns.

An important and useful example of coupled CTRW, different from the most
popular Lévy walk (Klafter & Sokolov 2011), has been identified using the clus-
tered CTRW concept, introduced by Weron et al. (2005) and developed further by
Jurlewicz et al. (2011a). While in the Lévy walk the jump size is fully determined
by the waiting time (or equivalently, by flight duration), in a clustered CTRW,
coupling arises from clustering of a random number of jumps, see Figure 1. The
clustered CTRW scheme is relevant to numerous physical situations, including the
energy release of individual earthquakes in geophysics, the accumulated claims in
insurance risk theory, and the random water inputs flowing into a reservoir in hy-
drology (Weissmann et al. 1989; Klafter & Zumofen 1994; Huillet 2000). In all these
cases, summing the individual contributions yields the total amount (in general, ran-
dom) of the studied physical magnitude over certain time intervals. In the clustered
CTRW, the waiting time and the subsequent jump are both random sums with the
same random number of summands, and as a consequence, this type of CTRW is
coupled, even if the original CTRW before clustering had no dependence between
the corresponding waiting times and jumps. If the random number of jumps in a
cluster has a heavy-tailed distribution, then the effect of clustering on the limiting
distribution can be profound. In this case, the OCTRW jump-waiting scheme and
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the traditional CTRW waiting-jump model are significantly different in both their
diffusion limit, and their governing equations (Weron et al. 2005; Jurlewicz et al.

2011a).
Considering those cases crucial for modeling of relaxation phenomena, assume

that the waiting times Ti have a heavy-tailed distribution with parameter 0 < α < 1;
i.e., for some τ0 > 0 we have Pr(Ti ≥ t) ∼ (t/τ0)−α for large t. Moreover, let the
jump distribution be symmetric and belong to the normal domain of attraction
of a symmetric Lévy-stable law with the index of stability η, 0 < η ≤ 2; i.e.,
for some ρ0 > 0 we have Pr(|Ri| ≥ x) ∼ (x/ρ0)−η for large x if 0 < η < 2 or
0 < 〈D2Ri〉 = ρ2

0 < ∞ if η = 2. Then, a heavy-tailed distribution of cluster sizes
with tail exponent 0 < γ < 1 yields different anomalous diffusion limits

W̃−(t) = CR̃η(H−
γ (S̃α(t/τ0))) (2.6)

and

W̃+(t) = CR̃η(H+
γ (S̃α(t/τ0))) (2.7)

of clustered CTRW and clustered OCTRW, respectively Weron et al. (2010) and
Jurlewicz et al. (2011a). Here C is a positive constant dependent on the tail expo-
nents α, η and proportional to the scaling parameter ρ0. Each limit takes the form
of the parent process R̃η(t), coming from the diffusion limit of the cumulative-jump

sequence (2.1), subordinated to a pair of time changes. The inner time change S̃α(t)
is an inverse-time α-stable subordinator that captures the effect of the waiting-time
sequence. The novelty of the clustered CTRW limit is the intermediate time change,
H−

γ (t), H+
γ (t), that reflects the clustering, for under- and over-shooting processes.

The processes R̃η(t), H−
γ (t) and S̃α(t) in the representation (2.6) of the clustered

CTRW diffusion front are stochastically independent (as well as those in (2.7)),
since the clustered CTRW (and OCTRW) models assume stochastic independence
between the waiting times, jumps, and cluster sizes. The parent process R̃η(t) is
a symmetric η-stable Lévy process (in particular, for η = 2 it is just a standard
Brownian motion). The directing process S̃α(t) is defined as

S̃α(t) = inf{τ ≥ 0 : T̃α(τ) > t} ,

where T̃α(t) is a strictly increasing stable Lévy process with the stability index
α, being the diffusion front of the cumulative-waiting-time sequence (2.3). The
stable Lévy process R̃η(t) with the stability index η is 1/η-self-similar, and hence

R̃η(t)
d
= t1/ηR̃η(1) (Embrechts & Maejima 2002). Similarly, T̃α(t) is 1/α-self-similar,

which implies the inverse scaling S̃α(t)
d
= tαS̃α(1) for the inverse subordinator

(Meerschaert & Scheffler 2004). To ease notation, and without any real loss of

generality, we assume henceforth that 〈eikR̃η(1)〉 = e−|k|η and 〈e−kT̃α(1)〉 = e−kα

.
The undershooting H−

γ (t) and overshooting H+
γ (t) processes have the same dis-

tributions as the processes T̃−
α (S̃α(t)) and T̃α(S̃α(t)), respectively, for the value of

parameter α equal to γ, where T̃−
α (t) = lim

sրt
T̃α(s) is the left-limit process corre-

sponding to T̃α(t). The names refer to the property that for any time t ≥ 0

H−
γ (t) ≤ t ≤ H+

γ (t) , (2.8)
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so that the under- and overshooting processes under- and over-estimate the exact
instant of time t ≥ 0, respectively. As shown in Weron et al. (2010) and Jurlewicz
et al. (2011a), both processes are 1-self-similar and, for a fixed t ≥ 0 the distribution
of H−

γ (t) is the same as tJ for the random variable J with the probability density
function (p.d.f.)

pJ(x) =
sin(πγ)

π
xγ−1(1 − x)−γ , 0 < x < 1 , (2.9)

while H+
γ (t)

d
= tZ, where the p.d.f. of Z reads

pZ(x) =
sin(πγ)

π
x−1(x − 1)−γ , x > 1 . (2.10)

The functions pJ (x) and pZ(x) are easily recognized as special cases of the well-
known beta densities. The p.d.f. pJ(x) concentrates near 0 and 1 which means that
the most probable values for H−

γ (t) occur near 0 and t. Moreover, H−
γ (t) has finite

moments of any order that can be calculated directly from the density (2.9). On
the other hand, pZ(x) concentrates near 1 and possesses the power-law property
pZ(x) ∝ x−γ−1 for large x. Hence the values of H+

γ (t) not only concentrate near
t, but also are dispersed along the positive half-line, and even the first moment of
H+

γ (t) diverges because of the heavy tail of its distribution.

Assuming that the simple normalizing function f(c) = c−α/η was used to arrive
at the diffusion limits, the positive constant parameter C in (2.6) and (2.7) can be
explicitly computed:

C = ρ0

(
q(η)

q(α)

)1/η

(2.11)

where

q(ζ) =






Γ(1−ζ) cos(0.5πζ) for 0 < ζ < 1;

π/2 for ζ = 1;

Γ(2−ζ) cos(0.5πζ)/(1−ζ) for 1 < ζ < 2;

1/2 for ζ = 2.

Thus C is just the scaling jump parameter ρ0, multiplied by a proportionality
constant that only depends on the tail exponents α and η. In particular, the constant
C is not influenced by the clustering parameters.

3. Two power-law responses and anomalous diffusion

From rather general assumptions, the theoretical attempt to model non-exponential
relaxation phenomena is based on the idea of relaxation of an excitation undergoing
diffusion in the system under study (Metzler & Klafter 2000). Consequently, the
time-domain relaxation function φ(t) can be related with the dielectric susceptibility
χ(ω) as

χ(ω) =

∞∫

0

e−itωd(1 − φ(t)).
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In the framework of a one-dimensional CTRW, the time-domain relaxation function
φ(t) is given in terms of the temporal decay of a given mode k by the Fourier
transform

φ(t) = 〈eikW̃ (t)〉 , (3.1)

where k > 0 has the physical sense of a wave number, and W̃ (t) denotes the diffu-
sion front under consideration. If experimental tools probe the system for a given
mode, the above formula gives the temporal relaxation response after a macroscopic
excitation. The relaxation patterns φ(t) are determined by the stochastic properties
of the jumps, the inter-jump times, and the detailed construction of the counting
process.

For the cluster CTRW and OCTRW models, the anomalous diffusion fronts
W̃±(t) in (2.6) and (2.7) have frequency-domain dielectric susceptibility functions
that can be identified as the JWS and HN functions, eqs. (1.3) and (1.2), respec-
tively, see Stanislavsky et al. (2010) and Weron et al. (2010). The characteristic
material constant ωp, appearing in both functions, takes the form

ωp =
|Ck|η/α

τ0
(3.2)

where C is defined by (2.11), reflecting its stochastic origins. Representations (2.6)
and (2.7) allow us to develop analytical formulas for the corresponding time-domain
relaxation functions φJWS(t) and φHN (t) in terms of the three-parameter Mittag-
Leffler function (Mathai et al. 2009)

Eγ
α,β(z) =

∞∑

j=0

(γ, j)

Γ(β + jα)

zj

j!
, α, β, γ > 0 .

Here (γ, j) = γ(γ + 1)(γ + 2) . . . (γ + j − 1) = Γ(j + γ)/Γ(γ) is the Appell’s symbol
with (γ, 0) = 1. Observe that

〈eikW̃±(t)〉 =

∫ ∞

−∞

eikxp±(x, t)dx , (3.3)

where p±(x, t) are p.d.f.’s of the anomalous diffusion processes W̃±(t). Hence, the
Fourier-Laplace (FL) images IFL(p±)(k, s) of the functions p±(x, t) are just the
Laplace images of the corresponding time-domain JWS and HN relaxation func-
tions. According to the results of Jurlewicz et al. (2011a) and Stanislavsky & Weron
(2010), we can derive p−(x, t) as a mild solution† of the following fractional pseudo-
differential equation

(Cη∂η
x + τα

0 ∂α
t )γp−(x, t) = δ(x)

(t/τ0)−αγ

Γ(1 − αγ)
,

where δ(x) is the Dirac delta function. Equivalently,

L(φJWS)(s) = IFL(p−)(k, s) =
sαγ−1

(sα + |Ck|η/τα
0 )γ

. (3.4)

† A mild solution to a differential equation is a function whose Laplace or Fourier transform
solves the corresponding algebraic equation. See Baeumer et al. (2005) or Meerschaert & Scheffler
(2008) for more details.
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and hence

L(φJWS)(s) =
sαγ−1

(sα + ωα
p )γ

(3.5)

with ωp as in (3.2). Using the following relation

L
[
tβ−1Eγ

α,β(±λtα)
]

=
sαγ−β

(sα ∓ λ)γ

we obtain

φJWS(t) = Eγ
α,1(−ωα

p tα) . (3.6)

Similarly, we obtain that p+(x, t) is a mild solution of

(Cη∂η
x + τα

0 ∂α
t )γp+(x, t) =

= γ
CΓ(1−γ)

∫ ∞

0
u−γ−1 pR(x/C, u)

∫ τα
0

u

0
pS(τ, t) dτ du,

where pR(x, t) and pS(τ, t) are the p.d.f.’s of R̃η(t) and S̃α(t), respectively (Jurlewicz
et al. 2011a; Stanislavsky & Weron 2010). This implies that

IFL(p+)(k, s) =
1

s

{
1 −

(
|Ck|η/τα

0

sα + |Ck|η/τα
0

)γ
}

. (3.7)

As a consequence, we have

L(φHN)(s) =
1

s

{
1 −

(
ωα

p

sα + ωα
p

)γ
}

(3.8)

and

φHN(t) = 1 − (ωpt)
αγEγ

α,αγ+1(−ωα
p tα) . (3.9)

Plots of the HN and JWS time-domain relaxation functions, obtained by numerical
simulations, are presented in Fig. 2. The short- and long-time behaviors of these
functions, which exactly follow the high- and low-frequency power laws (1.1), read

1 − φHN(t) ∼ (ωpt)
αγ

/Γ(αγ + 1) for ωpt ≪ 1 ,

φHN(t) ∼ γ (ωpt)
−α

/Γ(1 − α) for ωpt ≫ 1 ,

and

1 − φJWS(t) ∼ γ (ωpt)
α

/Γ(α + 1) for ωpt ≪ 1 ,

φJWS(t) ∼ (ωpt)
−αγ

/Γ(1 − αγ) for ωpt ≫ 1 .

Figures 3 and 4 illustrate power-law properties of the HN and JWS time-domain
relaxation functions.
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Figure 2. (Color online) Examples of the relaxation functions φHN(t) and φJWS(t) with
various values of the parameters α and γ.

4. Temperature dependence of free parameters

In the theory of relaxation (Scher et al. 1991; Jonscher 1996; Magdziarz & Weron
2006), considerable effort has gone into finding any function that could scale such
quantities as relaxation time, viscosity, and diffusion coefficient. The scaling idea
provides a linkage between thermodynamics and kinetics in relaxing materials near
the phase (glass-like) transition. For the clustered CTRW model of anomalous dif-
fusion presented here, the parameters ρ0, τ0, α, γ and η are free, in the sense that
they are independent of time and space coordinates. On the other hand, they may
vary with the changing thermodynamic state of the physical system (characterized
by temperature or pressure). Their temperature/pressure dependence is given by
transition-state theory.

The indices α and γ directly determine the power-law exponents m and n charac-
terizing the asymptotic behavior of the relaxation patterns in time and in frequency.
The parameter α is associated with the temporal properties of the relaxing system
under consideration. The inverse α-stable process S̃α(t) accounts for the resting
time of a walker (Baeumer et al. 2005), and the walker randomly moves all the
time only if α = 1, whereas it rests forever when α = 0. The index γ describes the
spatial-temporal clustering present in the relaxing system. If γ = 1, the influence of
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Figure 3. (Color online) Power-law behavior of the HN relaxation functions φHN(t) with
various values of the parameters α and γ.

clustering on the diffusion limit disappears, whereas the case 0 < γ < 1 corresponds
to a more complicated structure, including the over- or undershooting component
of the compound time change. If γ is close to 0, large clusters of jumps separated
by long inter-jump times become more and more dominant. In contrast, as γ tends
to 1, the clustered spatial-temporal steps become comparable to the steps without
clustering.

Changes of temperature and pressure can modify the coefficients α and γ, as in
case of so-called beta relaxation (Jonscher 1983, 1996), as well as the tail exponent
η of the random jumps, which characterizes the diffusion dynamics. It is surprising
that α and γ are independent of the thermodynamic quantities, in the case of so-
called alpha relaxation (Jonscher 1983, 1996). If η is also temperature/pressure
independent, we can explain the temperature/pressure dependence of the loss-peak
frequency

ωp =
|ρ0k|

η/α

τ0

(
q(η)

q(α)

)1/α
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Figure 4. (Color online) Power-law behavior of the JWS relaxation functions φJWS(t)
with various values of the parameters α and γ.

(see, eqs. (3.2) and (2.11)) in terms of the scaling coefficients ρ0 and τ0. The spatial
scaling coefficient ρ0 should increase with temperature, making long jumps more
likely (since Pr(Ri ≥ x) ≈ (x/ρ0)−η for large jump length x so it increases with ρ0).
In contrast, the temporal scaling coefficient τ0 should decrease, resulting in shorter
waiting times. These properties follow the classical Arrhenius law, assuming an
exponential character of ρ0 and 1/τ0 depending on the pressure and the reciprocal
of temperature. The loss-peak frequency ωp is thus proportional to exp(−E/kBT−
PV/kBT), where kB is the Boltzmann constant, T the temperature, P the pressure,
and E and V are the activation energy and volume, respectively.

The proposed stochastic model for two power-law relaxation can also reveal
the interrelation between the empirical thermodynamic behavior of the relaxing
system and the anomalous diffusion parameters, when α, γ, and η also dependent on
temperature/pressure. However, this analysis requires more advanced techniques,
and is beyond the scope of this paper.
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5. Conclusions

In this paper, we have shown that clustered continuous time random walks and their
diffusion limits illuminate the role of random processes in the parametrization of
relaxation phenomena. The key result is that the empirical relaxation functions can
be derived from diffusion models, introducing free scaling parameters, independent
on time and space coordinates. This allows one to consider the parameters as mate-
rial coefficients, depending on thermodynamic quantities. As we have demonstrated,
the η-stable parent process R̃η(t) that models particle jumps does not change the
type of the relaxation response, and it only affects the material constant ωp by
determining the spatial features of the anomalous diffusion W±(t). The index α
of the process S̃α(t) that codes the waiting times between jumps, and the index
γ of the clustering process H±

γ (t), determine the power-law behavior of the relax-
ation function in time and frequency. These coefficients characterize the complex
dynamics of relaxing systems.
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