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ABSTRACT: Operator stable laws are the weak limits of affine normalized partial
sums of i.i.d. random vectors. It is known that the one–dimensional marginals of
operator stable laws need not be stable, or even attracted to a stable law. In this
paper we show that for any operator stable law, there exists a basis in which the
marginals along every coordinate axis are attracted to a stable or semistable law.
This connection between operator stable and semistable laws is new and surpris-
ing. We also characterize those operator stable laws whose marginals are stable or
semistable. Finally we consider the marginals of random vectors attracted to some
operator stable law.
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1. Introduction. The theory of operator stable probability measures on finite
dimensional real vectors spaces was begun by Sharpe (1969), see also Jurek and
Mason (1993). A probability measure ν on IRd which is full (that is, not supported
on a proper hyperplane) is said to be operator stable if there is a linear operator
E on IRd (called an exponent of ν) and a vector valued function at so that for all
t > 0

νt = tEν ∗ δ(at). (1)

Here ν is known to be infinitely divisible, so νt, the t-th convolution power is
well defined. The operator tE is defined as exp(E log t) where exp is the usual
exponential mapping for matrices. For any linear operator A the measure Aν is
defined by Aν(B) = ν(A−1(B)) for Borel sets B ⊂ IRd, δ(a) denotes the point mass
in a ∈ IRd and ∗ denotes convolution.

Operator stable laws are the weak limits of affine normalized partial sums of inde-
pendent and identically distributed (i.i.d.) random vectors. (See Sharpe (1969).)
Let X, X1, X2, . . . be i.i.d. random vectors and let Y be a random vector with a
full distribution ν on IRd. If there exist linear operators An and nonrandom vectors
sn ∈ IRd such that

An(X1 + . . . + Xn)− sn ⇒ Y (2)

as n → ∞, we say that X belongs to the generalized domain of attraction of Y
(resp. ν) and write X ∈ GDOA(Y ). Here ⇒ denotes convergence in distribution.
It is shown in Sharpe (1969) that ν is operator stable if and only if GDOA(ν) 6= ∅.
Generalized domains of attraction were characterized by Meerschaert (1993) using
a multivariate theory of regular variation. In the one–dimensional situation d = 1
the operator stable measures are exactly the classical α−stable measures and the
exponent E = 1/α. If (2) holds in this case we say that X belongs to the domain
of attraction of Y .

In the general case d ≥ 2 the situation is more complex. Let E(ν) denote the
collection of all exponents of the operator stable law ν in (1) (for possibly different
shift vectors at) and S(ν) = {A : Aν = ν ∗ δ(a) for some a ∈ IRd} denote the
symmetry group of ν which is compact since ν is full. Then Holmes et al. (1982)
establish that E(ν) = E + TS(ν) where E ∈ E(ν) is arbitrary and TS(ν) is the
tangent space of S(ν). Hudson et al. (1986) established the existence of an exponent
E0 ∈ E(ν) which commutes with every element of S(ν). Such exponents are called
commuting exponents and play a central role in deriving a decomposition of the
underlying vector space as well as the exponent E in Meerschaert and Veeh (1993)
which will be crucial for our work.

Now let Y be a random vector with an operator stable distribution ν. For any
nonzero θ ∈ IRd we say that 〈Y, θ〉 is a one–dimensional marginal of Y . Here 〈x, y〉
denotes the usual Euclidean inner product on IRd. An operator stable law with
exponent E = (1/α)I, I the identity, is called multivariable stable. Samorodnitsky
and Taqqu (1994) show that every one–dimensional marginal of a multivariable
stable law is stable with the same index α. However, Marcus (1983) provides an
example showing that the converse is not true in general. In fact there exists a
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probability distribution µ on IR2 whose one–dimensional marginals are all stable
with index 0 < α < 1 but µ is not multivariate α–stable. It follows from Theorem
1 of Giné and Hahn (1983) that µ is not even infinitely divisible even though all
one–dimensional marginals are as stable laws of course infinitely divisible.

Meerschaert (1990) gives an example of an operator stable law whose marginals are
not stable, or even in the domain of attraction of a stable law. Surprisingly enough
these marginals turn out to be semistable. This shows a new connection between
semistable and operator stable laws.

A nondegenerate probability measure ρ on IR is called semistable if it is infinitely
divisible and if there exist a b > 0 and c > 1 such that

ρc = bρ ∗ δ(s) (3)

for some shift s ∈ IR, where (bρ)(B) = ρ(b−1B). If Z is a random variable with
distribution ρ we say that either ρ or Z is (b, c) semistable if (3) holds. We say
that U belongs to the domain of semistable attraction of a random variable Z with
distribution ρ if there exist a sequence kn of natural numbers tending to infinity
with kn+1/kn → c as n →∞, an > 0 and shifts sn ∈ IR such that

an(U1 + . . . + Ukn)− sn ⇒ Z (4)

and we write U ∈ DOSA(Z). Pillai (1971) shows that DOSA(Z) 6= ∅ if and only if
Z has a (b, c) semistable distribution. For further information on semistable laws
see Kruglov (1972), Shimizu (1970), Pillai (1971), Scheffler (1994) and Meerschaert
and Scheffler (1996). Note that if ρ is α-stable then ρ is (t1/α, t) semistable for all
t > 1, so that stable laws are also semistable.

The main result of this paper is that for any operator stable random vector Y there is
a basis {θ1, . . . , θd} of IRd such that every one–dimensional marginal 〈Y, θi〉 belongs
to either the domain of attraction of some stable law, or to the domain of semistable
attraction of some semistable law on IR. This result also extends to laws belonging
to the domain of normal attraction of an operator stable law. That is, the norming
operators in (2) are of the special form An = n−E for some exponent E ∈ E(ν). We
also show that every operator stable law has marginals which are either stable or
semistable, and it turns out that these marginals are the only possible limit laws
in our main result. Finally we investigate the most general case: one–dimensional
marginals of laws in the generalized domain of attraction of some operator stable
law. Here a stochastic compactness result is the best obtainable, and again the
possible limit laws are the stable or semistable marginals of the operator stable law.

The significance of these results relates to the construction of the norming operators
An in (2), an important open problem. Hahn and Klass (1985) show that An can be
constructed by first choosing an appropriate basis (which varies with n), and then
applying one–dimensional methods to the marginals in each of these directions.
However it is not clear how to choose these bases. Our results show that there
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is a fixed basis in which one–dimensional methods can be employed, if one allows
semistable as well as stable limits.

2. One dimensional marginals of operator stable laws. In order to formulate
our first result we first introduce some notation and present the decomposition
theorem of Meerschaert and Veeh (1993). Assume that Y is a random vector on IRd

with a full operator stable distribution ν. Let E ∈ E(ν) be a commuting exponent of
ν and write E = S +N where S is semisimple and N is nilpotent. Then SN = NS.
Recall that a linear operator on IRd is said to be semisimple if its minimal polynomial
is the product of distinct prime factors and that N is called nilpotent if Nk = 0 for
some k ≥ 0. (See Hoffman and Kunze (1961).) For a linear operator A on IRd let
A∗ denote its transpose.

Then by Theorem 3.2 of Meerschaert and Veeh (1993) there exists a direct sum
decomposition IRd = U1 ⊕ · · · ⊕Us, s ≥ 1, into subspaces invariant under E and N
(and hence under S) such that

N = N1 ⊕ · · · ⊕Ns

S = S1 ⊕ · · · ⊕ Ss

(4)

where Ni is nilpotent and

Si = aiI or

Si =

 B 0 0

0
. . . 0

0 0 B

 , where B =
(

ai −bi

bi ai

)
(5)

for some ai ≥ 1
2 and bi > 0. Note that by Sharpe (1969) all the real parts of the

eigenvalues of E are necessarily ≥ 1
2 and that the first case of (5) is the case of a

real eigenvalue whereas the second case of (5) corresponds to a pair of conjugate
complex eigenvalues with real part ai. Our first result shows that every operator
stable law has one–dimensional marginals which are either stable or semistable.
This result seems to be the first known connection between operator stable and
semistable laws.

THEOREM 1. Let Y be a random vector with a full operator stable distribution ν
and E ∈ E(ν) be a commuting exponent. Then, using the decomposition of IRd and
E in (4) and (5) above we have: For i = 1, . . . , s and θ0 ∈ KernN∗

i we have either
(a) 〈Y, θ0〉 is stable with index 1/ai if Si = aiI
or
(b) 〈Y, θ0〉 is (e2πai/bi , e2π1/bi) semistable if Si = diag(B, . . . , B),

where B =
(

ai −bi

bi ai

)
.
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PROOF. Since θ0 ∈ KernN∗
i we have N∗

i θ0 = 0 and hence tN
∗
i θ0 = θ0 for all t > 0.

Then tE
∗
θ0 = tE

∗
i θ0 = tS

∗
i +N∗

i θ0 = tS
∗
i tN

∗
i θ0 = tS

∗
i θ0.

Now if Si = aiI then tE
∗
θ0 = taiθ0 for all t > 0. Let T0(x) = 〈x, θ0〉 denote a

homomorphism from IRd to IR and let ν0 = T0(ν) denote the image measure. Then
(1) implies

T0(νt) = T0(ν)t = νt
0 = T0(tEν) ∗ δ(T0(at)) (6)

for all t > 0. But if ρ̂ denotes the Fourier transform of a probability measure ρ on
IR we get

T0(tEν)̂(s) =
∫

Rd

eisT0(x)d(tEν)(x) =
∫

IRd

eis〈x,tE∗
θ0〉dν(x)

=
∫

Rd

eistaiT0(x)dν(x) = T0(ν)̂(stai)

= ν̂0(stai) = (taiν)̂(s)

showing by the uniqueness theorem of the Fourier transform that T0(tEν) = (taiν0).
Hence by (6) we have

νt
0 = (taiν0) ∗ δ(st) for all t > 0

and some st ∈ IR. Since ν is full it follows that ν0 is nondegenerate and therefore
stable with index 1/ai.

Now assume that Si = diag(B, . . . , B) where B =
(

ai −bi

bi ai

)
. Then tS

∗
i =

taiR(bi log t) for all t > 0, where R(s) is a rotation of angle s in the U∗
i space.

That is R is an orthogonal operator with R(s + 2π) = R(s), R is continuous and
R(0) = I. Hence, as before tE

∗
θ0 = tS

∗
i θ0 = taiR(bi log t)θ0. Define ν0 = T0(ν) as

above. Then (6) holds for all t > 0. But

T0(tEν)̂(s) =
∫

IRd

eistai 〈x,R(bi log t)θ0〉dν(x).

If we set t0 = exp(2π/bi) we get R(bi log t0) = I and hence

T0(tE0 ν)̂(s) =
∫

IRd

eist
ai
0 T0(x)dν(x)

= ν̂0(stai
0 ) = (tai

0 ν0)̂(s).

Therefore
νt0
0 = (tai

0 ν0) ∗ δ(T0(at0))

showing that ν0 is (tai
0 , t0) semistable. This concludes the proof.

REMARK. The following example shows that the marginals of an operator stable
law are not necessarily semistable. Hence the result of Theorem 1 is in some sense
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the best possible. Suppose that d = 4 and E = B1 ⊕ B2 where Bi are of the form
(5) with a1 = a2 = a and b1/b2 irrational. Let e1, . . . , e4 denote the standard basis
for R4 and let V1 = Span{e1, e2}, V2 = Span{e3, e4}. Take Yi independent operator
stable with exponent Bi on Vi and let Y = (Y1, Y2) so that Y is operator stable on IR4

with exponent E, with two independent 2–dimensional components. Suppose Yi has
semistable but not stable marginals, for example we can take the Lévy measure of
Yi concentrated on one orbit. Then Z1 = 〈Y, e1〉 is (e2πa/b1 , e2π1/b1) semistable and
Z2 = 〈Y, e3〉 is (e2πa/b2 , e2π1/b2) semistable. Then the Lévy measure φi of Zi satisfies
φi(t,∞) = t−1/a hi(log t) where hi is periodic with period log(e2πa/bi) = 2πa/bi.
But then Z = Z1 + Z2 = 〈Y, e1 + e3〉 has Lévy measure φ = φ1 + φ2 and so
φ(t,∞) = t−1/a h(log t) where h is not periodic, hence Theorem 1 of Kruglov (1972)
shows that Z is not semistable.

3. Domains of normal attraction. In this section we will investigate the one–
dimensional marginals of laws in the domain of normal attraction of an operator
stable law. Let X, X1, X2, . . . be i.i.d. random vectors with common distribution µ
and let ν be a full operator stable law. If for some E ∈ E(ν) there exist nonrandom
vectors sn ∈ IRd such that

n−E(X1 + . . . + Xn)− sn ⇒ Y (7)

as n → ∞, we say that X belongs to the domain of normal attraction of Y (resp.
ν) and write X ∈ DONA(Y ). Domains of normal attraction were characterized by
Jurek (1980) who also showed that DONA(Y ) does not depend on the particular
choice of the exponent E ∈ E(ν).

Let ρ be a nondegenerate α-stable probability measure on IR and assume that
U,U1, U2, . . . are i.i.d. random variables. We say that U belongs to the domain of
attraction of a random variable Z with distribution ρ, if there exist an > 0 and
shifts sn ∈ IR such that

an(U1 + . . . + Un)− sn ⇒ Z. (8)

In this case we write U ∈ DOA(Z). It is a classical result that DOA(Z) 6= ∅ if and
only if Z has an α-stable distribution.

Similarly, let ρ be a nondegenerate (b, c) semistable distribution for some c > 1.
We say that U belongs to the domain of semistable attraction of a random variable
Z with distribution ρ, if there exist a sequence kn of natural numbers tending to
infinity with kn+1/kn → c as n →∞, an > 0 and shifts sn ∈ IR such that

an(U1 + . . . + Ukn
)− sn ⇒ Z. (9)

We write U ∈ DOSA(Z). It is shown in Pillai (1971) that DOSA(Z) 6= ∅ if and
only if Z has a (b, c) semistable distribution.
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Now we come to the main result of this paper. Given an operator stable random
vector Y with distribution ν, we construct a basis in which, for any X ∈ DONA(Y ),
there is a complete set of one–dimensional marginals along the coordinate axes, each
of which is attracted to some stable or semistable law on IR. This basis does not
depend on which X we choose, and the limiting stable distributions are themselves
one–dimensional marginals of Y as identified in Theorem 1. Since Y ∈ DONA(Y )
this result also applies a fortiori to operator stable laws.

THEOREM 2. Let Y be a random vector with a full operator stable distribution
ν and let E ∈ E(ν) be a commuting exponent. Let X ∈ DONA(Y ). Then, using
the decomposition of IRd and E in (4) and (5) above we have: For i = 1, . . . , s and
nonzero θ0 ∈ U∗

i we have either
(a) 〈X, θ0〉 ∈ DOA(〈Y, θ̄0〉) for some unit vector θ̄0 ∈ KernN∗

i if Si = aiI;
or
(b) 〈X, θ0〉 ∈ DOSA(〈Y, θ̄0〉) for some unit vector θ̄0 ∈ KernN∗

i ,

if Si = diag(B, . . . , B), where B =
(

ai −bi

bi ai

)
. Here 〈Y, θ̄0〉 is (e2πai/bi , e2π/bi)

semistable as in Theorem 1.

PROOF. Assume first that Si = aiI for some ai ≥ 1/2. Since E∗
i = S∗

i +N∗
i and S∗

i

and N∗
i commute we get nE∗

θ0 = nainN∗
i θ0. Choose j ≥ 1 such that N

∗(j−1)
i θ0 6= 0

but N∗j
i θ0 = 0. Then

nN∗
i θ0 = θ0 + (log n)N∗

i θ0 + . . . +
1

(j − 1)!
(log n)j−1N

∗(j−1)
i θ0

and hence
nN∗

i θ0

(log n)j−1
→ 1

(j − 1)!
N

∗(j−1)
i θ0 = r̄0θ̄0 (10)

for some unit vector θ̄0 and some r̄0 > 0. Note that since N∗
i θ̄0 = 1/(r̄0(j −

1)!)N∗j
i θ0 = 0 we have θ̄0 ∈ KernN∗

i . Now write nE∗
θ0 = nainN∗

i θ0 = r−1
n θn for

some rn > 0 and ‖θn‖ = 1. If we write nN∗
i θ0 = ρnθn we get from (10) that

θn → θ̄0. Furthermore r−1
n = naiρn. Then (7) implies

rn

(
〈X1, θ0〉+ . . . + 〈Xn, θ0〉

)
− rn〈sn, nE∗

θ0〉

=rn

(
〈X1 + . . . + Xn, θ0〉 − 〈sn, nE∗

θ0〉
)

=rn

〈
n−E(X1 + . . . + Xn)− sn, nE∗

θ0

〉
=

〈
n−E(X1 + . . . + Xn)− sn, θn

〉
⇒ 〈Y, θ̄0〉

using Billingsley (1968), Theorem 5.5. Note that by Theorem 1 (a) 〈Y, θ̄0〉 is non-
degenerate stable with index 1/ai.
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Assume now that Si = diag(B, . . . , B) where B =
(

ai −bi

bi ai

)
for some ai ≥ 1/2

and bi > 0. Note that in this case

nE∗
θ0 = nE∗

i θ0 = naiR(bi log n)nN∗
i θ0

where R(·) is a rotation of the Ui space as in the proof of Theorem 1.

For n ≥ 1 define
kn = inf{k ≥ 1 : bi log k ≥ 2πn}.

Then it follows that kn+1/kn → exp(2π/bi) = c > 1. Furthermore, if we write
bi log kn = 2πn + δn for some δn ≥ 0, we get from the definition of kn that

0 ≤ δn = bi log kn − 2πn < bi log kn − bi log(kn − 1)

= bi log
kn

kn − 1
→ 0 as n →∞.

Hence R(bi log kn) = R(δn) → R(0) = I as n →∞.

Write kE∗

n θ0 = kai
n R(bi log kn)kN∗

i
n θ0 = r−1

n θn for some rn > 0 and unit vectors θn.
Furthermore, if we set k

N∗
i

n θ0 = ρnωn for some ρn > 0 and ‖ωn‖ = 1 we get as in
the proof of the first case that ωn → θ̄0 for some unit vector θ̄0 ∈ KernN∗

i . But
r−1
n = kai

n ρn and θn = R(bi log kn)ωn → θ̄0 as n →∞.

Then, by (7) and Theorem 5.5 of Billingsley (1968) we get

rn

(
〈X1, θ0〉+ . . . + 〈Xkn

, θ0〉
)
− rn〈skn

, kE∗

n θ0〉
=rn

(
〈X1 + . . . + Xkn

, θ0〉 − 〈skn
, kE∗

n θ0〉
)

=rn

〈
k−E

n (X1 + . . . + Xkn)− skn , kE∗

n θ0

〉
=

〈
k−E

n (X1 + . . . + Xkn − skn , θn

〉
⇒ 〈Y, θ̄0〉

as n → ∞ showing that 〈X, θ0〉 ∈ DOSA(〈Y, θ̄0〉). Note that by Theorem 1(b)
〈Y, θ̄0〉 is (b, c) semistable with c = exp(2π/bi) > 1. This concludes the proof.

REMARK: Since Y ∈ DONA(Y ) for any full operator stable distribution Theorem
2 applies to Y showing that 〈Y, θ0〉 for any nonzero θ0 ∈ U∗

i and any i = 1, . . . , s
belongs to some domain of (semistable) attraction.

COROLLARY 1. In the situation of Theorem 2 there exists a basis {θ1, . . . , θd}
of IRd such that 〈X, θi〉 belongs to the domain of (semistable) attraction of some
non-degenerate (semi) stable law on IR.

PROOF. For i = 1, . . . , s let {θ(i)
1 , . . . , θ

(i)
di
}, di = dim U∗

i be a basis of U∗
i . Then

the union of these basis vectors form a basis of IRd which by Theorem 2 has the
desired property.
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REMARK: The example in Marcus (1983) shows that as for multivariate stable
laws in our general situation we can not expect to characterize operator stable laws
by their one–dimensional marginals.

We next consider the special case of operator stable laws with semisimple exponents
E. It is shown in Theorem 2.1 of Meerschaert and Veeh (1993) that the nilpotent
part of every exponent E ∈ E(ν) is the same. (The statement of that theorem
contains an obvious typographical error.) Hence, if the nilpotent part of an exponent
E ∈ E(ν) is zero then every exponent of ν is semisimple. In that case, when we
reduce to one–dimensional methods by projecting onto the coordinate axes in the
appropriate basis, the limit laws are obtained by projecting the limiting random
vector Y onto these same coordinate axes.

COROLLARY 2. Let Y be a random vector with a full operator stable distribution
ν and let E = S ∈ E(ν) be a semisimple commuting exponent. Let X ∈ DONA(Y ).
Then, using the decomposition of IRd and E in (4) and (5) above we have: For
i = 1, . . . , s and nonzero θ0 ∈ U∗

i we have either
(a) 〈X, θ0〉 ∈ DOA(〈Y, θ0〉) if Si = aiI, where 〈Y, θ0〉 has a nondegenerate 1/ai-
stable law.
or

(b) 〈X, θ0〉 ∈ DOSA(〈Y, θ0〉) if Si = diag(B, . . . , B), where B =
(

ai −bi

bi ai

)
. Here

〈Y, θ0〉 is nondegenerate (e2πai/bi , e2π/bi) semistable.

PROOF. Since N = 0, KernN∗
i = U∗

i for i = 1, . . . , s so by Theorem 1 〈Y, θ0〉 is
nondegenerate and either stable with index 1/ai or (e2πai/bi , e2π/bi) semistable.

For X ∈ DONA(Y ) we get (10) for j = 1 and hence r̄0 = 1 and θ̄0 = θ0 = θn for all
n ≥ 1 in the proof of the first part of Theorem 2. Then the argument of that part
shows that 〈X, θ0〉 ∈ DOA(〈Y, θ0〉).
In the proof of the second part of Theorem 2 we get in our present situation that
ρn = 1 and ωn = θ0 for all n ≥ 1. Hence r−1

n = kai
n and θn = R(bi log kn)θ0 → θ0

as n →∞. Then as before it follows that 〈X, θ0〉 ∈ DOSA(〈Y, θ0〉). This concludes
the proof.

4. Generalized domains of attraction. We now investigate the one–dimensional
marginals of laws belonging to the generalized domain of attraction of a full oper-
ator stable law. In this most general situation, all we can show is a stochastic
compactness result. We say that a sequence of random variables (Zn)n is stochasti-
cally compact if the laws of Zn are weakly relatively compact and all limit laws are
nondegenerate.

THEOREM 3. Let Y be a random vector with a full operator stable distribution
ν. Let X ∈ GDOA(ν) and assume that X1, X2, . . . are i.i.d. as X. Then for all
nonzero θ ∈ IRd there exist rn > 0 and bn ∈ IR such that(

rn

n∑
i=1

〈Xi, θ〉 − bn

)
n≥1
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is stochastically compact. Moreover, the limit set is contained in the set {〈Y, θ0〉 :
θ0 6= 0} of all one–dimensional marginals of Y .

PROOF. Fix any nonzero θ ∈ IRd and write (A∗
n)−1θ = r−1

n θn for some ‖θn‖ = 1
and some rn > 0 where An are the norming operators for X in (2). Using the
compactness of the unit sphere in IRd any sequence (n′) contains a further sequence
(n′′) ⊂ (n′) such that θn → θ0 along (n′′). Since

〈Xi, θ〉 = 〈AnXi, (A∗
n)−1θ〉 = r−1

n 〈AnXi, θn〉

we get if we let bn = 〈sn, θn〉 that

rn

n∑
i=1

〈Xi, θ〉 − bn =
n∑

i=1

〈AnXi, θn〉 − 〈sn, θn〉

=
〈
An

n∑
i=1

Xi − sn, θn

〉
⇒ 〈Y, θ0〉

along (n′′) using Billingsley (1968), Theorem 5.5. Since Y is full, 〈Y, θ0〉 is nonde-
generate for all θ0 6= 0. This concludes the proof.
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