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If a set of independent, identically distributed random vectors has heavy tails, so
that the covariance matrix does not exist, there is no reason to expect that the
sample covariance matrix conveys useful information. On the contrary, this paper
shows that the eigenvalues and eigenvectors of the sample covariance matrix
contain detailed information about the probability tails of the data. The eigen-
vectors indicate a set of marginals which completely determine the moment behavior
of the data, and the eigenvalues can be used to estimate the tail thickness of each
marginal. The paper includes an example application to a data set from finance.
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1. INTRODUCTION

A probability distribution has heavy tails if some of its moments fail to
exists. Heavy tail probability distributions are important in applications to
electrical engineering, geology, hydrology, and physics; see, for example,
Brockwell and Davis [1], Feller [3], Hosking and Wallis [6], Janicki and
Weron [8], Leadbetter et al. [11], Nikias and Shao [20], Resnick and
Sta$ rica$ [24], and Samorodnitsky and Taqqu [25]. Mandelbrot [13] and
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Fama [2] pioneered the use of heavy tail distributions in finance. Jansen
and de Vries [9], Loretan and Phillips [12], and McCulloch [14] present
extensive empirical evidence of heavy tail price fluctuations in stock markets,
futures markets, and currency exchange rates. Mittnik and Rachev [19]
and Nolan et al. [21] discuss multivariable heavy tail models in finance.
These models are used for portfolio analysis involving several different
stock issues or mutual funds.

Moment estimation for heavy tail random vectors is complicated by the
fact that the component with the heaviest tail tends to dominate. Suppose
that X=(U, V) where U is normal and V is Cauchy, so that EV does not
exists. The first marginal U has light tails and hence a finite variance. The
projection of X onto any other radial direction has heavy tails since it has
both a normal and a Cauchy component, so that its mean does not exist.
Now rotate X so that the normal component lies along the diagonal. Then
the projections of X onto the coordinate axes (i.e., the marginal distribu-
tions) have heavy tails. If we only consider these marginal distributions, we
will only detect the Cauchy-like tails. In order to discover the variations in
tail behavior, we must consider every radial direction.

In this paper we show how to simultaneously estimate the thickness of
heavy tails in every radial direction. Since tail behavior is dominated by the
component with the heaviest tail, the tail thickness will be the same in
almost every direction. It is surprising that the lighter tails are even detec-
table, since these directions lie on a set of measure zero on the unit sphere.
However we will show that it is possible to detect the full range of tail
behavior for a very general class of distributions. Our procedure yields a
coordinate system in which the marginals determine the complete tail
behavior, as well as a tail thickness estimate for each marginal. Then the
tail behavior in any direction is determined by the heaviest tail marginal
which has a nonvanishing component in this direction. The coordinate
vectors are simply the eigenvectors of the sample covariance matrix, and
the tail thickness in each eigenvector direction depends on the correspond-
ing eigenvalue. Several different one dimensional tail estimators already
exist, and these can also be used to verify our estimates by applying them
to the marginals along the eigenvector directions.

At the end of this paper we present a practical application of our estima-
tion procedure. Nolan et al. [21] fit a multivariable stable model to a
portfolio of two currency exchange rates. This model assume a uniform tail
thickness in every radial direction. We apply our multivariable moment
estimator to the same data, and find that the tail thickness varies significantly
with direction. This result is verified by applying standard one variables tail
estimation methods in the directions indicated by our procedure. We
conclude that a model which allows the tail thickness to vary with radial
direction is useful to obtain a more accurate picture of the tail behavior.
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2. RESULTS

In this section we present a very robust moment estimation method for
random vectors with heavy tails. We assume only that the data belong to
the generalized domain of attraction of some operator stable law, i.e. that
the generalized central limit theorem applies. Suppose that X, X1 , X2 ,
X3 , ... are i.i.d. random vectors on Rd and that Y is full dimensional. We
say that X belongs to the generalized domain of attraction of Y if there
exist linear operators An on Rd and nonrandom vectors an # Rd such that

An(X1+ } } } +Xn)+an O Y. (2.1)

The limit Y is operator stable with some exponent B. This means that,
given Y1 , Y2 , Y3 , ... i.i.d. with Y, for every n there exists bn # Rd such that
n&B(Y1+ } } } +Yn)&bn has the same distribution as Y. Here n&B=
exp(&B log n) where exp(A)=I+A+A2�2!+A3�3!+ } } } is the usual
exponential operator. If E &X&2<� then we have the classical central limit
theorem with Y multivariate normal, An=n&1�2I, an=&nAn EX, B=
(&1�2) I, and bn=0. In this paper we will focus on the case where Y is
nonnormal, so that X has heavy tails.

Our first result is based on the spectral decomposition of Meerschaert
[16]. Given an orthonormal basis x1 , ..., xd for Rd we write %(i)=(%, x i)
for the i th coordinate of a vector % # Rd, and X (i)=(X, x i) for the i th
marginal of X in this coordinate system.

Theorem 1. If X belongs to the generalized domain of attraction of some
nonnormal operator stable law on Rd, then there exists an orthonormal basis
x1 , ..., xd and scalars 0<\d� } } } �\1<2 such that E |X (i)| \<� for
0<\<\i and E |X (i)|\=� for \>\i . Furthermore, for any unit vector %
we have E |(X, %) |<� for 0<\<\(%) and E |(X, %) |=� for \>\(%),
where \(%)=min[\i : %(i){0].

For purposes of comparison, note that a multivariable stable law with
index : satisfies Theorem 1 in any orthonormal coordinate system, with
every \i=:. Our next result yields the range of the index function \(%).
These numbers determine the moment behavior of X.

Theorem 2. Suppose X belongs to the generalized domain of attraction
of some nonnormal operator stable law on Rd, and let *n1� } } } �*nd denote
the eigenvalues of the matrix Mn=X1 X$1+ } } } +Xn X$n . Then 2 log n�log *ni

� \i in probability for all i=1, ..., d.

Note that the tail indices \1 , ..., \d are not necessarily distinct. Let
:p< } } } <:1 denote the distinct values, i.e. the range of \(%). Define

147HEAVY TAIL MOMENT ESTIMATOR



Vj=span[xi : \i=:j] and ?j orthogonal projection onto V j . Then X has
moments up to order :j on the space Vj . The following result shows that
the orthonormal basis in Theorem 1 can be approximated by the eigenvec-
tors of the sample covariance matrix, at least when p�3. We suspect that
this results holds for any value of p, but we have not been able to prove
this.

Theorem 3. Suppose X belongs to the generalized domain of attraction
of some nonnormal operator stable law on Rd, and let %n1 , ..., %nd denote unit
eigenvectors corresponding to the eigenvalues of the matrix Mn=X1X$1
+ } } } +XnX$n . Define Vnj=span[%ni : \i=:j] and ?nj orthogonal projection
onto Vnj . Then ?n1 � ?1 and ?np � ?p in probability. If p�3 then ?nj � ?j

in probability for all j=1, ..., p.

Because unit eigenvectors are not unique (we can always replace %ni by
&%ni), we state Theorem 3 in terms of projections. We can also restate this
result directly in terms of the eigenvectors. For example, if \d< } } } <\1

then all of the subspaces Vnj are one dimensional, and Theorem 3 implies
that %ni � xi in probability for all i=1, ..., d, assuming that the eigenvectors
%ni are chosen with the appropriate sign. We can also restate Theorem 3 in
terms of subspaces. Let Gk, d denote the space of all linear subspaces of Rd

having dimension k. Topologize so that Vn � V in Gk, d if and only if
Pn � P where Pn , P are the orthogonal projection operators onto Vn , V
respectively. the space Gk, d is called a Grassman manifold. Theorem 3
shows that Vnj � Vj in probability. We can also estimate the entire index
function \(%) by combining Theorems 2 and 3. Since both the tail index
and the direction in which it applies must be estimated, the following result
is the best possible.

Theorem 4. Define \̂n(%)=2 log n�log *ni where i is the largest integer
such that (%, %ni){0. If p�3 then \̂n � \ in the following sense: There
exists a sequence of random linear operators In on Rd with In � I in probabil-
ity such that \̂n(In%) � \(%) in probability for every unit vector % # Rd.

If E &X&2<� then the classical central limit theorem applies. Then
E &X&\<� exists for all 0<\<2, and the higher order moments may or
may not exist. Although we have not attempted a complete analysis, the
following result shows that our estimator remains useful in this case.

Theorem 5. Suppose E &X&2<� and let *n1� } } } �*nd denote the
eigenvalues of the matrix Mn=X1X$1+ } } } +XnX$n . Then 2 log n�log *ni � 2
almost surely for all i=1, ..., d.

148 MEERSCHAERT AND SCHEFFLER



3. PROOFS

Recall that X, X1 , X2 , X3 , ... are independent random vectors on Rd with
common distribution +, and Y is a random vector on Rd whose distribu-
tion & is full, i.e. it cannot be supported on any d&1 dimensional affine
subspace of Rd. We assume that + belongs to the generalized domain of
attraction of &, so that

An+n V $(an) � &, (3.1)

where An are linear operators on Rd, +n is the n-fold convolution product
of + with itself, V denotes convolution, and $(an) is the unit mass at an # Rd.
Sharpe [26] calls the class of all possible full limits in (3.1) the operator
stable laws. Sharpe shows that a full operator stable law & on a finite
dimensional real vector space V is infinitely divisible, and there exists a
(not necessarily unique) linear operator B on V called an exponent such
that &t=tB& V $(bt) for all t>0, where &t is the t-fold convolution power of
&, tB=exp(B log t), tB&(dx)=&(t&Bdx) and bt # V.

Proof of Theorem 1. Write the minimal polynomial of B as f1(x) } } } fp(x)
where every root of f j has real part aj and a1< } } } <ap . Then a1 , ..., ap is
the real spectrum of B and so a1>1�2 since & has no normal component;
see, for example, Jurek and Mason [10, Theorem 4.6.5]. Define Vj=
ker fj (B) and let dj=dim Vj . Then B=B1 � } } } �Bp where Bj is the
restriction of B to Vj , and every eigenvalue of the dj_dj matrix Bj has real
part equal to aj . Theorem 4.2 of Meerschaert [16] shows that we can
always choose & spectrally compatible with +, so that An=An1 � } } } �Anp

for all n, where Anj is the restriction of An to Vj . The remark following the
proof of that theorem shows that we may also assume without loss of
generality that the subspaces Vj are mutually orthogonal. (Note that for &
spectrally compatible with + the subspaces Vj=Wj in that remark.) Let
[xi=1�i�b1] be an arbitrary orthonormal basis for V1 , and for j=
2, ..., p take [xi : bj&1<i�bj] an arbitrary orthonormal basis for Vj , where
bj=d1+ } } } +d j . Then x1 , ..., xd is an orthonormal basis for Rd. Define
:j=1�aj for j=1, ..., p and let \i=:j for all bj&1<i�bj . Theorem 3.3 of
Meerschaert [16] shows that for all %{0 in Rd

| |(x, %) |\ +(dx)

exists for 0<\<\(%) and diverges for \>\(%), where \(%)=min[\i : %(i){0],
and %(i)=(%, x i) is the i th coordinate of the vector % # Rd in this coor-
dinate system. If %=xi then this integral is E |X (i)|\, and more generally it
represents E |(X, %) |\=E |�i %(i)X (i)| \. Then X (i) has absolute moments
up to order \ i , and linear combinations of the X (i) have moments up to the
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order of the component with the heaviest tail. This concludes the proof of
Theorem 1.

Let Md
s denote the vector space of d_d symmetric matrices with real

entries. Define the outer product mapping T: Rd � Md
s by Tx=xx$. Using

the usual inner product on Md
s we have (M, N) =� i, j MijN ij where Mij

denotes the ij entry of the matrix M. Then it is easy to check that
(Tx, Ty) =(x, y) 2 so that &Tx&=&x&2 in the associated Euclidean norms.
Let Mn=X1X$1+ } } } +XnX$n=TX1+ } } } +TXn . Meerschaert and Scheffler
[17] show that

AnMnAn* O W, (3.2)

where W is a random element of the vector space Md
s . The limit W is full

and operator stable on a subspace of Md
s and W is invertible with prob-

ability one. Note that Mn is symmetric and nonnegative definite so that
there exists an orthonormal basis of eigenvectors %n1 , ..., %nd corresponding
to the nonnegative eigenvalues *n1� } } } �*nd of Mn .

Lemma 1. For all %{0 in Rd the random variable (W, T%) has a
density with respect to Lebesgue measure.

Proof. Let , denote the Le� vy spectral measure of &; see, for example,
Jurek and Mason [10, p. 33]. Since & is full and has no normal component,
, cannot be concentrated on any d&1 dimensional subspace of Rd. Define
L=span[supp(T,)] so that L is a linear subspace of Md

s and T, is full on
L. Meerschaert and Scheffler [17] show that W is full and operator stable
on L, and then Theorem 4.10.2 of Jurek and Mason [10] shows that W
has a density on L. Since , is full on Rd we can choose y, ..., yd linearly
independent in Rd with all yi # supp(,). Otherwise span[supp(,)] has
dimension less than d and , would not be full. Then, by the lemma to the
proof of Theorem 2 in Meerschaert and Scheffler [17], Ty i # L for all
i=1, ..., d. If T% is perpendicular to L, then (Ty i , T%) =( yi , %) 2=0 for
all i=1, ..., d, which is a contradiction. Then (W, T%) is a one dimensional
marginal of W on L and so it has a density by the Fubini theorem.

Lemma 2. (log *nd �2 log n) � ap in probability.

Proof. For $>0 arbitrary write

P _} log *nd

2 log n
&ap }>$&

�P[log *nd>2(ap+$) log n]+P[log *nd<2(ap&$) log n]

=P[ max
&%&=1

(Mn%, %) >n2(ap+$)]+P[ max
&%&=1

(Mn %, %) <n2(ap&$)].
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Now choose \ so that 2ap<\&1<2(ap+$) and note that E &X&2\<� by
Theorem 3 of Hudson et al. [7] and hence E &TX&\=E &X&2\<�.
Furthermore since ap>1�2 we have \<1 so that |x+ y| \�|x|\+| y| \.
Then

P[ max
&%&=1

(Mn%, %)>n2(ap+$)]=P[&Mn &>n2(ap+$)]

�P _ :
n

i=1

&TX i&>n2(ap+$)&
�\ 1

n2(ap+$)+
\

E } :
n

i=1

&TX i&}
\

�n1&2\(ap+$)E &TX&\

which tends to zero as n � � by choice of \. Let L� j=V1 � } } } �Vj .
Theorem 3.2 of Meerschaert [16] shows that for any x # L� j "L� j&1 we have
naj&=<&(An*)&1 x&<naj+= for all large n. (Note that since the subspaces Vi

are mutually orthogonal we have Vi=V i* , thus for & spectrally compatible
with + we have Li*=V1 � } } } �Vi in that result.) Choose %0 # L� p"L� p&1

and write (An*)&1 %0=rn%n where rn>0 and &%n&=1. Choose =<$ so that
nap&=<rn<nap+= for all large n. Then

P[ max
&%&=1

(Mn%, %) <n2(ap&$)]�P[(Mn %0 , %0) <n2(ap&$)]

=P[(AnMn An*%n , %n)<r&2
n n2(ap&$)]

�P[(AnMn An*%n , %n)<n2(=&$)].

Since &%n&=1 for all n, given any subsequence there exists a further sub-
sequence n$ along which %n$ � %, where &%&=1. Then (An$Mn$A*n$%n$ , %n$)
=(An$Mn$A*n$ , T%n$) O (W, T%) by continuous mapping. For any =1>0
there exists \>0 such that P[(W, T%) <\]<=1 �2, since by Lemma 1
(W, T%) has a Lebesgue density. Now choose n0 such that (n$)2(=&$)<\
and |P[(An$Mn$A*n$ , T%n$) <\]&P[(W, T%)<\]|<=1 �2 for all n$�n0 .
Then

P[(An$Mn$ A*n$ , T%n$) <(n$)2(=&$)]�P[(An$Mn$A*n$ , T%n$)<\]

�P[(W, T%) <\]+=1 �2<=1

for n$�n0 . Since for any subsequence there is a further subsequence along
which P[(AnMnAn*%n , %n)<n2(=&$)] � 0, this convergence holds along
the entire sequence, which concludes the proof.

151HEAVY TAIL MOMENT ESTIMATOR



Lemma 3. (log *n1 �2 log n) � a1 in probability.

Proof. The proof is similar to Lemma 2. Without loss of generality Mn

is invertible, and (3.2) along with continuous mapping implies that
(AnMnAn*)&1OW&1. Write P[|log *n1 �2 log n&a1|>$]�P[*n1>n2(a1+$)]
+P[*n1<n2(a1&$)], use 1�*n1=max[(M &1

n %, %): &%&=1] for the first
term and *n1=min[(Mn%, %): &%&=1] for the second term.

Proof of Theorem 2. Let Ci denote the collection of all orthogonal
projection operators onto subspaces of Rd with dimension i. The Courant�
Fischer Max�Min Theorem of linear algebra (see Rao [22]) implies that

*ni =min
P # Ci

max
&%&=1

(PMnP%, %)

= max
P # Cd&i+1

min
&%&=1

(PMnP%, %). (3.3)

Let Pj denote the orthogonal projection operator onto Lj=Vj � } } } �Vp

and bj=dim(Lj)=dj+ } } } +dp , where j is chosen so that \i=:j . Since Pj

commutes with both B and An , it follows immediately from (3.1) that Pj+
belongs to the generalized domain of attraction of the operator stable law
Pj & on Lj whose exponent Bj � } } } �Bp has real spectrum a j , ..., ap . Let *n

denote the smallest eigenvalue of the matrix PjMnPj and apply Lemma 3
above to see that log *n(2 log n)&1 � aj in probability. Now let P� j denote
the orthogonal projection onto L� j=V1 � } } } �Vj and b� j =dim(L� j)=
d1+ } } } +dj . Then P� j+ belongs to the generalized domain of attraction
of the operator stable law P� j & whose exponent B1 � } } } �Bj has real
spectrum a1 , ..., aj , and we can apply Lemma 2 above to see that
log *� n(2 log n)&1 � aj in probability, where *� n is the largest eigenvalue of
the matrix P� jMnP� j . Now apply (3.3) to see that

*n�*n, b� j&1+1�*ni�*n, b� j
�*� n

using the fact that b� j&1<i�b� j . The theorem follows easily.

Lemma 4. If i>b� d&1 and j<p then ?j%ni � 0 in probability.

Proof. Since Mn%ni=*ni%ni we can write ?j%ni=(?j Mn �*ni) %ni where

&?jMn �*ni&=&A&1
n An? jMnAn*(An*)&1&�*ni

=&?jA&1
n AnMnAn*(An*)&1&�*ni

�&?jA&1
n & &AnMnAn*& &(An*)&1&�*ni ,
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where &AnMnAn*& O &W& by (3.2) and the continuous mapping theorem.
Apply Theorem 3.2 of Meerschaert [16] as in the proof of Lemma 2 to see
that for any x # L� j"L� j&1 we have naj&=<&(An*)&1 x&<naj+= for all large n,
or equivalently log &(An*)&1 x&�log n � aj . This convergence is uniform on
compact subsets of x # L� j "L� j&1 and so we also have log &? j (An*)&1&�log n
� aj and log &(An*)&1&�log n � ap . Similarly, Theorem 4.1 of Meerschaert
[16] shows that for any =>0, x # Li"Li+1 we have log &Anx&�log n � &aj .
This convergence is uniform on compact subsets of x # Lj"Lj+1 and so we
also have log &?j An&�log n � &a j and log &An&�log n � &a1 . Then

log(&?j A&1
n & &(An*)&1&�*ni)

log n
=

log &? jA&1
n &

log n
+

log &(An*)&1&
log n

&
log *ni

log n

� aj+ap&2ap<0

and so ?jMn �*ni � 0 in probability. Since &%ni&=1 this implies that

&?j%ni&=&(? jMn�*ni) %ni&�&? jMn �*ni & &%ni& � 0

in probability, which concludes the proof.

Lemma 5. If i�b� 1 and j>1 then ?j%ni � 0 in probability.

Proof. The proof is similar to Lemma 4.

Proof of Theorem 3. We will show that ?np � ?p in probability. The
proof that ?n1 � ?1 in probability is similar. Convergence in probability is
equivalent to the fact that for any subsequence there exists a further sub-
sequence along which we have almost sure convergence. For any i>b� p&1

and j<p we have ?j%ni � 0 in probability and so &?p %ni & � 1 in probabil-
ity. Then for any subsequence n1 there exists a further subsequence n2 such
that &?p%n2 , i (|)& � 1 for all i>b� p&1 and all | # 00 where P[00]=1.
Then ?p%n2 , i (|) is relatively compact so given any subsequence n3 of n2

there exists a further subsequence n4 depending on | such that ?p %n4 , i (|)
�%i (|) for all i>b� p&1 . By continuity we have &%i (|)&=1 and (%i (|), %k(|))
=0 for i{k, and since ?p=?2

p we also have ?p%n4 , i (|) � ?p %i (|) so that
?p %i (|)=%i (|), hence % i (|) # Vp and so the vectors % i (|) form an ortho-
normal basis for Vp . Then for any x # Rd we have

?n4 , p(|) x = :
b� p&1<i�b� p

(x, %n4 , i (|)) %n4 , i (|)

� :
b� p&1<i�b� p

(x, % i (|)) %i (|)=?px.
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We have shown that for all | # 00 , for any subsequence n3 of n2 there
exists a further subsequence n4 such that ?n4 , p(|) � ?p . This means that for
all | # 00 we have ?n2 , p(|) � ?p . Then for every subsequence n1 we have
shown that there exists a further subsequence n2 such that ?n2 , p � ?p

almost surely, so ?np � ?p in probability. Finally if p�3 we need to show
that ?nj � ?j in probability for all j=1, ..., p. If p<3 there is nothing to
prove. If p=3 then ?nj � ?j in probability for j=1 and j=3 and so ?n2=
I&?n1&?n3 � I&?1&?3=?2 in probability as well.

Proof of Theorem 4. Given %{0 choose j so that \(%)=1�aj=:j , and
let P� nj=?n1+ } } } +?nj denote orthogonal projection onto the space
L� j=V1 � } } } �Vj . If p�3 then Theorem 3 implies that P� nj � P� j in prob-
ability, and so %n � P� j% in probability where %n=P� nj%. Since % # L� j we
have P� j %=% so in fact %n � % in probability. Since both ?nj � ?j and
%n � % in probability and since

&?nj%n&?j%&�&?nj %n&?j%n&+&?j%n&? j%&

�&?nj&?j& &%n&+&?j& &%n&%&

�&?nj&?j&+&%n&%&

we also have ?nj%n � ?j% in probability. Since % � L� j&1 we have ? j%{0,
and so given any =>0 any $>0 (choose $ smaller than &?j%&) we
have P[?nj%n=0]�P[&?nj%n&?j%&>$]<=�2 for all large n. By con-
struction we always have ?nr%n=0 when r> j. Theorem 2 implies that
log *ni�(2 log n) � aj in probability for all b� j&1<i�b� j , and so we also have

P _} 2 log n
log *ni

&
1
aj }>$&<

=
2dj

for all b� j&1<i�b� j , for all large n. Then we have

P[| \̂n(%n)&\(%)|>$]

�P[?nj%n=0]+P[?nr %n {0 _r> j]

+P _} 2 log n
log *ni

&
1
aj }>$ for some b� j&1<i�b� j&

�P[?nj%n=0]+0+ :
b� j&1<i�b� j

P _} 2 log n
log *ni

&
1
aj }>$&

<
=
2

+0+dj
=

2dj
==
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for all large n, so that \̂(%n) � {(%) in probability. Now let In %=P� nj% when
\(%)=1�a j , so that %n=In %. Since I%=P� j % for such % we see that &In&I&
is bounded above by the maximum of &P� nj&P� j& over j=1, ..., p and hence
In � I in probability.

Proof of Theorem 5. The strong law of large numbers yields that
Mn �n � M almost surely. Then &Mn &�n � &M& almost surely and so

2 log n \log *nd

2 log n
&

1
2+=2 log n \log &Mn &

2 log n
&

1
2+

=log(&Mn&�n) � log &M&

almost surely. It follows easily that 2 log n�log *nd � 2. Since X is full, M is
invertible. In fact, if %{0 then %$M%=E(%$XX$%)=E (X, %) 2>0 since X
is full, so M is positive definite. Then &(Mn �n)&1&=n &M &1

n & � &M&1&
almost surely and so

2 log n \log *n1

2 log n
&

1
2+=2 log n \&log &M &1

n &
2 log n

&
1
2+

= &log(n &M &1
n &) � &log &M&1&

almost surely. Then 2 log n�log *n1 � 2, and the theorem follows from the
fact that *n1�*ni�*nd .

4. APPLICATION TO FINANCE

Nolan et al. [21] examine n=2853 daily fluctuations in the exchange
rates of two foreign currencies versus the US Dollar. They consider the
vector data Xt=(Dt , Yt) where Dt , Yt denote the exchange rate fluctua-
tions on day t for the Deutsche Mark and Yen, respectively. They fit a
model which assumes that X1 , ..., Xn are i.i.d. according to some multi-
variate : stable distribution, i.e., an operator stable distribution with
exponent B=:&1I. They pool estimates of : along the coordinate axes and
conclude that : is near 1.6. Then they estimate the Le� vy spectral measure
of the multivariable stable law assuming that the stable index : is known,
and find that the preponderance of probability mass lies near the diagonal
line with slope +1. This reflects that fact that Dt and Yt are fairly highly
correlated.
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We apply our estimator to the same exchange rate data assuming only
that Xt belongs to the generalized domain of attraction of some operator
stable law. We begin by scaling the data. We divide each entry by 0.004
which is the approximate median for both Dt and Yt . This has no effect on
the eigenvectors but helps to obtain good estimates of the tail thickness.
Then we compute

Mn=\ � t D2
t

� t DtYt

�t DtYt

�t Y 2
t +=\9142

5990
5990
8590+

which has eigenvalues *n1=2870, *n2=14862 and associated unit eigen-
vectors %n1=[0.69, &0.72]$, %n2=[0.72, 0.69]$. Now we compute that
2 ln 2853�ln 2870=1.998 and 2 ln 2853�ln 14862=1.656. Then we estimate
the tail indices :1 .2.0 and :2 .1.65, and the corresponding coordinate
directions x1 .[1, &1]$ and x2 .[1, 1]$. Since :1 is much larger than :2 ,
the tail behavior of Xt varies significantly with radial direction.

Rotating to the new coordinates we let Nt=(Dt&Yt)�- 2 and St=
(Dt+Yt)�- 2. Our estimator predicts that Nt has a finite second moment
but St only has moments up to order 1.65. This is in complete accord with
the findings of Nolan et al. Since both marginals Dt=(St+Nt)�- 2 and Yt

=(St&Nt)�- 2 have a nonvanishing St component, both have heavy tails
with the same tail index :=1.65. Pooling tail estimates from each marginal
is misleading in this case, since it fails to detect the lighter tails along the
diagonal with slope &1.

We verify our results by applying an alternative one variable tail
estimator in the rotated coordinate directions. The most commonly used
robust tail estimator, due to Hill [5], estimates the tail index : using the
largest order statistics. We apply Hill's estimator to the largest 525 order
statistic for each of Dt , Yt , St , and Nt to obtain tail index estimates of 1.6,
1.6, 1.7, and 2.0, respectively. This provides additional evidence that the
tails of Nt are lighter than those of St , and that the heavier tails determine
the tail behavior of both marginals Dt and Yt . Using asymptotic results of
Hall [4] we can also compute individual 900 confidence intervals for each
tail estimate, yielding (1.49, 1.72), (1.49, 1.72), (1.60, 1.84), and (1.87, 2.16),
respectively. Since the last two intervals do not overlap, we can be
reasonably sure that :1 {:2 .

5. REMARKS

Our estimator is based on the eigenvalues and eigenvectors of the matrix
Mn=�i XiX$i . The (uncentered) sample covariance matrix 1 n*=n&1Mn

has the same eigenvectors as Mn , so if we substitute 1 n* for Mn then all of
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the results of this paper still holds, except that in Theorem 2 we have
2 log n�(log *ni&log n) � \ i where *n1� } } } �*nd are the eigenvalues of
1 n*. Theorem 3 of Meerschaert and Scheffler [18] implies that the
asymptotic behavior of 1 n* is identical to that of the usual sample
covariance matrix 1n=n&1 �i (Xi&X� n)(Xi&X� n)$, where X� n=n&1 �i X i is
the sample mean. Then all of the results of this paper still hold with Mn

replaced by 1n , except that in Theorem 2 we have 2 log n�(log *ni&log n)
� \i where *n1� } } } �*nd are the eigenvalues of 1n .

The proof of Theorem 3 also provides information on the rate of con-
vergence of the eigenvectors. For example if p=2 then na2&a1&=(?nj&?j) �
0 in probability for all j, for any =>0. In our introductory example (see
Section 1) we have a1=1�2 for the normal component and a2=1 for the
Cauchy component, so the rate of convergence is - n. Theorem 3 can also
be used together with alternative tail estimation methods. Once we change
to the coordinates determined by the eigenvectors of the sample covariance
matrix, we can apply any one variable tail estimator to determine the tail
thickness for each marginal. See McCulloch [15] for a recent survey and
critique of several one variable tail estimation methods.

For a multivariable stable law with index :, the tail thickness is the same
in every radial direction. One important application of Theorem 3 is to test
this hypothesis. We have proven (for p arbitrary) that the eigenvectors
corresponding to the smallest and largest eigenvalues of the sample co-
variance matrix are consistent estimators of the directions in which the tails
of X are lightest and heaviest, respectively. Project the data onto these two
eigenvector directions, and then apply any of the standard one variable tail
estimators to each of these two marginals. If the difference in the tails is
statistically signicant, we can reject the hypothesis that the data are multi-
variable stable.

Models which do not allow the tail thickness parameter : to vary with
direction are too restrictive for many practical applications. Resnick and
Greenwood [23] were the first to study the asymptotics of a class of
models which are now called marginally stable. This means that the
marginals of the limit Y in (2.1) are univariate stable. If the norming
operators An are diagonal this is always so, as may easily be seen by pro-
jecting (2.1) onto the coordinate axes. Then the exponent B of the operator
stable limit Y is also diagonal with entries aj where :j=1�aj ranges over the
tail index of the stable marginals. The main result of this paper, Theorem 3,
shows how to estimate the coordinate system in which a given data set is
marginally stable, or in the domain of attraction of a marginally stable law.
Further research into the properties of marginally stable laws and their
domains of attraction would be useful to provide more robust methods for
multivariable data analysis in the presence of heavy tails.
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