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Abstract. Regular variation is an analytic condition on the tails of a probability
distribution which is necessary for an extended central limit theorem to hold, when the
tails are too heavy to allow attraction to a normal limit. The limiting distributions
which can occur are called operator stable. In this paper we show that moving averages
of random vectors with regularly varying tails are in the generalized domain of
attraction of an operator stable law. We also prove that the sample autocovariance
matrix of these moving averages is in the generalized domain of attraction of an
operator stable law on the vector space of symmetric matrices.
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1. INTRODUCTION

In this paper we establish the basic asymptotic theory for moving averages of
random vectors with heavy tails. Heavy tail distributions occur frequently in
applications to ®nance, geology, physics, chemistry, computer and systems
engineering. The recent books of Samorodnitsky and Taqqu (1994), Janicki and
Weron (1994), Nikias and Shao (1995), and Mittnik and Rachev (1998) review
many of these applications. Scalar time series with heavy tails are discussed in
Anderson and Meerschaert (1997), Bhansali (1993), Brockwell and Davis (1991),
Davis and Resnick (1985a, 1985b, 1986), Jansen and de Vries (1991), Kokoszka
and Taqqu (1994, 1996), Loretan and Phillips (1994), Mikosch, Gadrich,
KluÈppenberg and Adler (1995), and Resnick and StaÏricaÏ (1995). Modern
applications of heavy tail distributions were pioneered by Mandelbrot (1963) and
others in connection with problems in ®nance. When the probability tails of the
random ¯uctuations in a time series model are suf®ciently light, the asymptotics
are normal. But when the tails are suf®ciently heavy that the fourth moments fail
to exist, the asymptotics are governed by the extended central limit theorem. For
scalar models the limiting distributions are stable. Stable laws are characterized
by the fact that sums of independent stable random variables are also stable, and
the distribution of the sum can be reduced to that of any summand by an
appropriate af®ne normalization. The normal laws are a special case of stable
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laws. Stable stochastic processes are interesting because they provide the most
straightforward mechanism for generating random fractals.

For random vectors with heavy tails, the extended central limit theorem
yields operator stable limit laws, so called because the af®ne normalization
which reduces the distribution of a sum to that of one summand involves a
linear operator. Regular variation is the analytic condition necessary for the
extended central limit theorem to hold for heavy tails. See Feller (1971)
Chapter XVII for the scalar version and Meerschaert (1993) for the vector
version of the extended central limit theorem. In this paper we will show that
moving averages of random vectors with regularly varying tail probabilities are
asymptotically operator stable. The regular variation arguments at the heart of
the proof will appear familiar to any reader who is acquainted with the work of
Feller on regular variation. We will also show, using similar regular variation
methods, that the sample autocovariance matrix formed from these moving
averages is asymptotically operator stable as a random element of the vector
space of d 3 d symmetric matrices.

2. NOTATION AND PRELIMINARY RESULTS

In this section we present the notion of a regularly varying measure together with
the multivariable theory of regular variation necessary in the proofs of our main
results. The connection of regularly varying measures to generalized domains of
attraction of operator stable laws is also discussed.

Assume that fZng are i.i.d. random vectors on Rd with common distribution
ì. A sequence (An) of invertible linear operators on Rd is called regularly
varying with index F, where F is a d 3 d matrix, if

A[ën] Aÿ1
n ! ëF as n!1 (2:1)

where ëF � exp(F log ë) and exp is the exponential mapping for d 3 d matrices.
We write (An) 2 RV(F) if (2.1) holds. We say that ì is regularly varying with
exponent E if there exists a sequence (An) 2 RV(ÿE) such that

n(Anì)! ö (2:2)

where ö is some ó-®nite Borel measure on Rdnf0g which cannot be supported
on any lower dimensional subspace. Note that t:ö � (tEö) follows. Here
(Aö)(dx) � ö(Aÿ1 dx) denotes the image measure. The convergence in (2.2)
means that nì(Aÿ1

n S)! ö(S) for any Borei set S of Rd which is bounded away
from the origin, and whose boundary has ö-measure zero. Note that this is the
vague convergence on the set Rdnf0g where Rd is the one-point compacti®ca-
tion of Rd . For more information on multivariable regular variation see
Meerschaert (1993), Meerschaert and Schef¯er (1999) and Schef¯er (1998).

Regular variation is an analytic tail condition which is necessary for an
extended central limit theorem to apply. We say that fZng belongs to the
generalized domain of attraction of some full-dimensional limit Y if
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An(Z1 � � � � � Zn ÿ nbn)) Y (2:3)

for some linear operators An and nonrandom centering vectors bn. If
EkZnk2 ,1 then Y is multivariate normal and we can take An � nÿ1=2 and
bn � EZ1. Meerschaert (1993) together with Meerschaert (1994) shows that (2.3)
holds with a nonnormal limit if and only if the distribution ì is regularly varying
with exponent E, where every eigenvalue of E has real part exceeding 1

2
.

Sharpe (1969) characterized operator stable laws in terms of transforms. The
characteristic function of any random vector Y whose probability distribution is
in®nitely divisible can be written in the form Ee ihY ,si � eø(s) where

ø(s) � iha, si ÿ 1

2
s9Ms�

�
x 6�0

ehs,xi ÿ 1ÿ ihs, xi
1� hx, xiö(dx):

Here a 2 Rd , M is a symmetric d 3 d matrix, and ö is a LeÂvy measure, i.e. a ó-
®nite Borel measure on Rdnf0g which assigns ®nite measure to sets bounded
away from the origin and which satis®es

� kxk2 I(0 , kxk < 1)ö(dx) ,1. We
say that Y has LeÂvy representation [a, M , ö]. If ö � 0 then Y is multivariate
normal with covariance matrix M. A nonnormal operator stable law has LeÂvy
representation [a, 0, ö] where tö � tEö for all t . 0 and every eigenvalue of the
exponent E has real part exceeding 1

2
. If ì varies regularly with exponent E,

where every eigenvalue of E has real part exceeding 1
2
, then the limit measure ö

in (2.2) is also the LeÂvy measure of Y.
Let ì be regularly varying with exponent E and let ë � minfR(á)g, Ë �

maxfR(á)g where á ranges over the eigenvalues of E. Meerschaert (1993)
shows that in this case the moment functions

Uæ(r, è) �
�
jhx,èij<r

jhx, èijæì(dx)

Vç(r, è) �
�
jhx,èij. r

jhx, èijçì(dx)

are uniformly R±O varying whenever ç, 1=Ë < 1=ë, æ. A Borel measurable
function R(r) is R±O varying if it is real-valued and positive for r > A and if
there exist constants a . 1, 0 , m , 1, M . 1 such that m < R(tr)=R(r) < M
whenever 1 < t < a and r > A. Then R(r, è) is uniformly R±O varying if it is
an R±O varying function of r for each è, and the constants A, a, m, M can be
chosen independent of è. See Seneta (1976) for more information on R±O
variation.

In particular it is shown in Meerschaert (1993) (see also Schef¯er (1998) for
a more general case) that for any ä. 0 there exist real constants m, M, r0 such
that

Vç(tr, è)

Vç(r, è)
> mtçÿ1=ëÿä
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Uæ(tr, è)

Uæ(r, è)
< Mtæÿ1=Ë�ä

for all kèk � 1, all t > 1 and all r > r0. A uniform version of Feller (1971)
p. 289 (see Schef¯er (1998) for a detailed proof) yields that for some positive
real constants A, B, t0 we have

A <
tæÿçVç(t, è)

Uæ(t, è)
< B

for all kèk � 1 and all t > t0.
If ì is regularly varying with index E then Meerschaert and Schef¯er (1997)

show that there exists a unique direct sum decomposition Rd � V1 � � � � � Vp

and real numbers 0 , ë � a1 , � � � , ap � Ë with the following properties: the
subspaces V1 � � � Vp are mutually orthogonal; for any nonzero vector è 2 Vi the
marginal absolute moment EjhZn, èijr exists for r, 1=ai and this moment is
in®nite for r. 1=ai; PiAn � AnPi and PiE � EPi where Pi is orthogonal
projection onto Vi; every eigenvalue of PiE has real part equal to ai; for any
nonzero vector x 2 Rd we have logkPiAnxk=log n! ÿai (uniformly on
compact subsets); and logkPiAnk=log n! ÿai. This is called the spectral
decomposition.

The spectral decomposition implies that the distribution Piì of the random
vector PiZn on Vi varies regularly with exponent PiE. Since every eigenvalue of
the exponent PiE has real part equal to ai, we can also apply the above R±O
variation results whenever è 2 Vi and ç, 1=ai , æ. For a linear operator A let
At denote its transpose.

Lemma 2.1. Assume that the distribution ì of Z is regularly varying with
index E; let Rd � V1 � � � � � Vp be the spectral decomposition of Rd and let
0 , a1 , . . . , ap denote the corresponding real parts of the eigenvalues of E.
Then for any i � 1, . . ., p, given 0 ,ç, 1=ai , æ there exists n0 and constants
K1, . . ., K4 . 0 such that

(i) nEjhAnZ, èijæ I(jhAnZ, èij < 1) , K1

(ii) nEjhAnZ, èijæ I(kAnZk < 1) , K2

(iii) nEjhAnZ, èijç I(jhAnZ, èij. 1) , K3

(iv) nEjhAnZ, èijç I(kAnZk. 1) , K4

(2:4)

for all n > n0 and all kèk � 1 in Vi.

Proof. Suppose we are given an arbitrary sequence of unit vectors èn in Vi,
and write rnxn � At

nèn where rn . 0 and kxnk � 1. Then we have
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nEjhAnZ, ènijæ I(jhAnZ, ènij < 1) � nEjhZ, At
nènijæ I(jhZ, At

nènij < 1)

� nEjhZ, rnxnijæ I(jhZ, rnxnij < 1)

� nræn EjhZ, xnijæ I(jhZ, xnij < rÿ1
n )

� nrænUæ(rÿ1
n , xn)

Since æ. 1=ai both Uæ(r, è) and V0(r, è) are uniformly R±O varying on
compact subsets of è 6� 0 in Vi. Then for some m, M, t0 we have

m <
tæV0(t, è)

Uæ(t, è)
< M (2:5)

for all kèk � 1 in Vi and all t > t0. Since (2.2) holds where ö cannot be
supported on any lower dimensional subspace we must have kAnk ! 0. Then
kAnèk ! 0 uniformly on compact subsets of Rdnf0g, and so for some n0 we
have kAnèk < tÿ1

0 for all kèk � 1 and all n > n0. Then for all n > n0 we have

nrænUæ(rÿ1
n , xn) < mÿ1 nV0(rÿ1

n , xn)

� mÿ1 nP(jhZ, xnij. rÿ1
n )

� mÿ1 nP(jhZ, rnxnij. 1)

� mÿ1 nP(jhZ, At
nènij. 1)

� mÿ1 nP(jhAnZ, ènij. 1)

< mÿ1 nP(kAnZk. 1)

as n!1, and this upper bound holds independent of our choice of the
sequence èn. By (2.2) we have nP(kAnZk. 1) � nAnìfz: kzk. 1g ! öfz:
kzk. 1g (if fz: kzk. 1g is not a continuity set of ö then we can use the upper
bound nP(kAnZk. r) instead, where 0 , r , 1). Then the sequence of real
numbers nP(kAnZk. 1) is bounded above by some K . 0, and assertion (i) of
(2.4) holds with K1 � mÿ1 K . Since

nEjhAnZ, ènijæ I(kAnZk < 1) < nEjhAnZ, ènijæ I(jhAnZ, ènij < 1)

we immediately obtain assertion (ii) with K2 � K1. Now write
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nEjhAnZ, ènijç I(jhAnZ, ènij. 1) � nEjhZ, At
nènijç I(jhZ, At

nènij. 1)

� nEjhZ, rnxnijç I(jhZ, rnxnij. 1)

� nrçn EjhZ, xnijç I(jhZ, xnij. rÿ1
n )

� nrçnVç(rÿ1
n , xn)

Since ç, 1=ai we also have Vç(r, è) uniformly R±O varying on compact
subsets of è 6� 0 in Vi. Then for some m9, M9, t0 we have

m9 <
tæÿçVç(t, è)

Uæ(t, è)
< M9 (2:6)

for all kèk � 1 in Vi and all t > t0. Choosing t0 large enough so that both (2.5)
and (2.6) hold whenever t > t0 and kèk � 1 in Vi, and then choosing
n0 � n0(t0) such that kAnèk < tÿ1

0 for all kèk � 1 whenever n > n0, we have
for all n > n0 that

r çnVç(rÿ1
n , xn) < M9nrænUæ(rÿ1

n , xn)

and so assertion (iii) of (2.4) holds with K3 � M9K1. Finally write

nEjhAnZ, ènijç I(kAnZk. 1) � nEjhAnZ, ènijç I(jhAnZ, ènij. 1)

� nEjhAnZ, ènijç I(kAnZk. 1 and jhAnZ, ènij < 1)

< nEjhAnZ, ènijç I(jhAnZ, ènij. 1)� nP(kAnZk. 1)

so that assertion (iv) of (2.4) holds with K4 � K3 � K. This concludes the proof
of Lemma 2.1.

3. MOVING AVERAGES

Suppose that fZjg1j�ÿ1 is a double sequence of i.i.d. random vectors with
common distribution ì varying regularly with index E, i.e. (2.2) holds. De®ne
the moving average process

X t �
X1

j�ÿ1
CjZ tÿ j (3:1)

where Cj are d 3 d real matrices such that for each j either Cj � 0 or else Cÿ1
j

exists and AnCj � CjAn for all n. The spectrum of the exponent of regular
variation E is connected with the tail behavior of the random vectors Zn. Let
Ë � maxfR(á)g and ë � minfR(á)g where á ranges over the eigenvalues of E
as before. Lemma 2 of Meerschaert (1993) or Schef¯er (1998), Corollary 4.21
implies that EkZnkr exists for 0 , r, 1=Ë and is in®nite for r. 1=ë. Then the
following lemma implies that the moving average (3.1) is well-de®ned as long as
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X1
j�ÿ1

kCjkä ,1 (3:2)

for some ä, 1=Ë with ä < 1. Here kAk denotes the operator norm of a linear
operator A on Rd . For the remainder of the paper we will assume that this is the
case, so that the moving average (3.1) is well-de®ned.

Lemma 3.1. Suppose that EkZnká ,18á,á0 and that (3.2) holds for
some ä,á0, ä < 1. Then (3.1) exists almost surely.

Proof. First suppose á0 . 1 so that EkZnk,1. Then
PkCjkä ,1

implies that
PkCjk,1 because kCjkä ! 0 since the series converges, so

kCjk, 1 for all large j, and for such j we have kCjk < kCjkä.
Then we have kX tk � k

P
jCjZ tÿ jk <

PkCjZ tÿ jk <
PkCjk:kZ tÿ jk so that

EkX tk< E
PkCjk kZ tÿ jk�

P
EkCjk kZ tÿ jk�

PkCjkEkZ tÿ jk�EkZ1k
PkCjk

,1 by monotone convergence and then X t exists almost surely. To see this, note
that ~X �PkCjk kZ tÿ jk is a well-de®ned random variable which is nonnegative
and has a ®nite mean and so it is almost surely ®nite, i.e. the sum in (3.1) converges
absolutely with probability one.

If á0 < 1 then
PkCjkä ,1 for some ä,á0 and EkZ1kä ,1 as well.

Also jx� yjä < jxjä � jyjä 8x, y > 0 so

EkXtkä � E

X
j

CjZ tÿ j

ä" #

< E
X

j

kCjk kZ tÿ jk
 !ä
24 35

< E
X

j

kCjkäkZ tÿ jkä
 !" #

�
X

j

kCjkäEkZ1kä ,1

so as before X t converges absolutely almost surely.

Theorem 3.2. Suppose that Xt is a moving average de®ned by (3.1) where
fZng are i.i.d. with common distribution ì on Rd . Suppose that ì varies
regularly with exponent E, where every eigenvalue of E has real part exceeding
1
2
. Then for the norming operators An in (2.2) we have

An(X 1 � � � � � X n ÿ nan)) U (3:3)

where an 2 Rd and U is full-dimensional and operator stable.
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Remark 3.3. In the proof of Theorem 3.2 we show that we can take the
centering constants an �

P
jCjbn in (3.3) where bn are the centering constants

from (2.3) above. The operator stable limit U �P jCjY in (3.3) is nonnormal
with LeÂvy measure

P
jCjö.

Before we proof Theorem 3.2 we need an additional result that shows that
under the general assumptions on the moving averages parameter matrices Cj

the spectral decomposition remains invariant under Cj.

Lemma 3.4. Suppose the ì is regularly varying with index E and spectral
decomposition Rd � V1 � . . . � Vp and norming operators An as in (2.2). If
Cj is invertible and CjAn � AnCj for all n then CjVi � Vi for all i � 1 � � � p.

Proof. Let Li � Vi � � � � � Vp and Li � V1 � � � � � Vi. Meerschaert and
Schef¯er (1998) show that for any x 2 LinLi�1 we have logkAnxk=log n!
ÿai. This convergence is uniform on compact subsets of x 2 LinLi�1. For any
x 2 LinLiÿ1 we have logk(At

n)ÿ1xk=log n! ai (uniformly on compact sets).
Since Cj is invertible there exist cj . 0 and bj ,1 such that cjkxk <
kCjxk < bjkxk for all x. Then logkCjAnxk=log n! ÿai if and only if
x 2 LinLi�1, and logkAnCjxk=log n! ÿai if and only if Cjx 2 LinLi�1. Since
AnCj � CjAn this implies that Cÿ1

j (LinLi�1) � LinLi�1, and so Cj(LinLi�1)
� LinLi�1. Similarly we have logk(At

n)ÿ1xk=log n! ai if and only if
x 2 LinLiÿ1 as well as logk(At

n)ÿ1(C t
j)
ÿ1xk=log n! ai if and only if (C t

j)
ÿ1x

2 LinLiÿ1. Then (C t
j)
ÿ1(LinLiÿ1) � LinLiÿ1 and since the subspaces Vi are

mutually orthogonal it follows that Cj(LinLiÿ1) � LinLiÿ1. Then Cj(Li \ Li)
� Li \ Li and Li \ Li � Vi. This concludes the proof of Lemma 3.4.

Proof of theorem 3.2. Suppose that (2.3) holds and de®ne

X
(m)
t �

X
j jj<m

CjZ tÿ j

a(m)
n �

X
j jj<m

Cjbn

U (m) �
X
j jj<m

CjY

for m > 1, where Y is the limit in (2.3). From (2.3) it follows that

An

Xn

t�1

(Z tÿ j ÿ bn): j jj < m

 !
) (Y , . . ., Y )

since we know that the convergence holds for the j � 0 component, and since
the difference between this component and any other component (at most 2m

304 M. M. MEERSCHAERT AND H.-P. SCHEFFLER

# Blackwell Publishers Ltd 2000



terms) tends to zero in probability. Now by the continuous mapping theorem we
obtain

An(X
(m)
1 � � � � � X (m)

n ÿ na(m)
n )) U (m)

and since U (m) ! U �P jCjY almost surely it suf®ces to show (e.g. by
Billingsley (1968) Theorem 4.2) that

lim
m!1 lim sup

n!1
P(kTk. å) � 0

where

T �
X
j jj. m

Xn

t�1

AnCj(Z tÿ j ÿ bn):

For this it suf®ces to show that

lim
m!1 lim sup

n!1
P(jhT , xij. å) � 0 (3:4)

for any unit vector x 2 Vi where 1 < i < p. Decompose T � A� Bÿ C where

A �
X
j jj. m

Xn

t�1

AnCjZ tÿ j I(kAnZ tÿ jk < 1)

B �
X
j jj. m

Xn

t�1

AnCjZ tÿ j I(kAnZ tÿ jk. 1)

C �
X
j jj. m

nAnCjbn:

First suppose that ai . 1, so that assertion (ii) of Lemma 2.1 holds with æ � 1.
Write C t

jx � rjxj where rj . 0 and kxjk � 1. Note that xj 2 Vi by Lemma 3.4.
Then
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P [jhA, xij. å=3] < 3åÿ1 EjhA, xij

< 3åÿ1
X
j jj. m

nEjhAnCjZ1, xijI(kAnZ1k < 1)

� 3åÿ1
X
j jj. m

nEjhCjAnZ1, xijI(kAnZ1k < 1)

� 3åÿ1
X
j jj. m

nEjhAnZ1, C t
jxijI(kAnZ1k < 1)

� 3åÿ1
X
j jj. m

rjnEjhAnZ1, xjijI(kAnZ1k < 1)

< 3åÿ1 K2

X
j jj. m

kCjk

which tends to zero as m!1 in view of the fact that (3.2) holds with
ä, 1=ap < 1=ai , 1. Choosing 0 ,ä, 1=ap so that (3.2) holds, we have
that assertion (iv) of Lemma 2.1 holds with ç � ä. Note also that
jx� yjä < jxjä � jyjä since ä, 1=ai , 1. Then

P [jhB, xij. å=3] < 3åÿäEjhB, xijä

< 3åÿä
X
j jj. m

nEjhAnCjZ1, xijä I(kAnZ1k. 1)

� 3åÿä
X
j jj. m

nEjhCjAnZ1, xijä I(kAnZ1k. 1)

� 3åÿä
X
j jj. m

nEjhAnZ1, C t
jxijä I(kAnZ1k. 1)

� 3åÿä
X
j jj. m

räj nEjhAnZ1, xjijä I(kAnZ1k. 1)

< 3åÿäK4

X
j jj. m

kCjkä

which tends to zero as m!1 in view of the fact that (3.2) holds. The standard
convergence criteria for triangular arrays (e.g. Araujo and GineÂ (1980)) shows
that we can take bn � EZ1 I(kAnZ1k < 1) in (2.3). Then for all n > n0 we have
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jhC, xij <
X
j jj. m

njhAnCjbn, xij

�
X
j jj. m

njhAnCjEZ1 I(kAnZ1k < 1), xij

<
X
j jj. m

nEjhAnCjZ1, xijI(kAnZ1k < 1)

< K2

X
j jj. m

kCjk

which tends to zero as m!1 as in the argument for A. Since

P(jhT , xij. å) < P(jhA, xij. å=3)� P(jhB, xij. å=3)� P(jhC, xij. å=3)

it follows that (3.4) holds when x is a unit vector in Vi and ai . 1.
Suppose then that 1

2
, ai < 1 and note that (2.4) part (ii) holds with æ � 2.

Since C � EA we have by Chebyshev's inequality that

P[jhAÿ C, xij. å=2] < 2åÿ2 var(hA, xi)

� 2åÿ2
X
j jj. m

n var[hAnCjZ1, xiI(kAnZ1k < 1)]

< 2åÿ2
X
j jj.m

nE[hAnCjZ1, xi2 I(kAnZ1k < 1)]

� 2åÿ2
X
j jj. m

nr 2
j E[hAnZ1, xji2 I(kAnZ1k < 1)]

< 2åÿ2 K2

X
j jj. m

kCjk2

which tends to zero as m!1 in view of the fact that (3.2) holds with ä < 1. If
1
2

, ai , 1 then (2.4) part (iv) holds with ç � 1 and so
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P [jhB, xij. å=2] < 2åÿ1 EjhB, xij

< 2åÿ1
X
j jj. m

nEjhAnCjZ1, xijI(kAnZ1k. 1)

� 2åÿ1
X
j jj. m

rjnEjhAnZ1, xjijI(kAnZ1k. 1)

< 2åÿ1 K4

X
j jj.m

kCjk

which tends to zero as m!1 in view of the fact that (3.2) holds with ä < 1.
Finally if ai � 1 then (2.4) part (iv) holds with ç � ä where we choose ä, 1
such that (3.2) holds. Then argue as before that

P [jhB, xij. å=2] < 2åÿäEjhB, xijä

< 2åÿä
X
j jj. m

nEjhAnCjZ1, xijä I(kAnZ1k. 1)

� 2åÿä
X
j jj. m

räj nEjhAnZ1, xjijä I(kAnZ1k. 1)

< 2åÿäK4

X
j jj. m

kCjkä

which tends to zero as m!1 in view of the fact that (3.2) holds. Since

P(jhT , xij. å) < P(jhAÿ C, xij. å=2)� P(jhB, xij. å=2)

it follows that (3.4) holds when x is a unit vector in Vi and ai < 1, which
concludes the proof of Theorem 3.2.

Remark 3.5. The assumption that AnCj � CjAn is somewhat restrictive, but
necessary for our method of proof. It may be possible to relax this restriction.
For example, it is not hard to check that for ®nite moving averages X t �
C0 Zt � � � � � CqZ tÿq we have

(CAnCÿ1)(X 1 � � � � � X n ÿ nan)) CY

where C � C0 � � � � � Cq. We conjecture that the same is true in general, i.e.
that (3.3) holds even with AnCj 6� CjAn if we replace An by CAnCÿ1, but we
have not been able to prove this.
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4. SAMPLE AUTOCOVARIANCE MATRIX FOR MOVING AVERAGES

In the previous section we proved that moving averages of random variables with
regularly varying tail probabilities are asymptotically operator stable. In this
section we prove that the sample autocovariance matrix formed from these
moving averages is also asymptotically operator stable as a random element of
the vector space of d 3 d symmetric matrices. The sample covariance matrix at
lag h of the moving average X t is de®ned by

Ã̂n(h) � 1

n

Xn

t�1

X tX 9t�h: (4:1)

Meerschaert and Schef¯er (1999) consider the asymptotic behavior of the sample
covariance matrix of an i.i.d. sequence of random vectors with regularly varying
tails. Suppose that fZng are i.i.d. random vectors on Rd with common
distribution ì, where ì varies regularly with exponent E, i.e. (2.2) holds and
every eigenvalue of E has real part exceeding 1

4
. Then

An

Xn

i�1

ZiZ9i ÿ Bn

 !
At

n ) W (4:2)

where An is taken from the de®nition (2.2) above, Bn � EZ1 Z91 I(kAnZ1k < 1),
and W is a nonnormal operator stable random element of the vector space M d

s

of symmetric d 3 d matrices with real entries.

Theorem 4.1. Suppose that Ã̂n(h) is the sample covariance matrix de®ned
by (4.1) where Xt is the moving average (3.1) and fZng are i.i.d. with common
distribution ì on Rd . Suppose that ì varies regularly with exponent E, where
every eigenvalue of E has real part exceeding 1

4
and (2.2) holds. Assume that

Ex9Zn � 0 for all x 2 Rd such that Ejx9Znj,1. Then for all h we have

nAn Ã̂n(h)ÿ
X1

j�ÿ1
CjBnC t

j�h

" #
At

n )
X1

j�ÿ1
CjWC t

j�h
(4:3)

where An, Bn and W are as in (4.2).

The method of proof is similar to that of Theorem 3.2 above but much more
involved. The assertion of Theorem 4.1 follows easily from the following two
main propositions whose proofs are included in the appendix. The ®rst key
proposition asserts that the quadratic terms of Ã̂n(h) dominate.

Proposition 4.2. Under the assumptions of Theorem 4.2 we have

An nÃ̂n(h)ÿ
Xn

t�1

X1
j�ÿ1

CjZ tÿ j Z9tÿ jC
t
j�h

" #
At

n!
P

0 (4:4)
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as n!1.

The next proposition establishes the convergence of the quadratic terms of
the sample autocovariance matrix to the limit in (4.3).

Proposition 4.3. Under the assumptions of Theorem 4.1 we have

An

Xn

t�1

X1
j�ÿ1

Cj(Z tÿ j Z9tÿ j ÿ Bn)C t
j�h

" #
At

n )
X1

j�ÿ1
CjWC t

j�h
(4:5)

as n!1.

Proof of theorem 4.1. Combining Propositions 4.2 and 4.3 we have

nAn Ã̂n(h)ÿ
X1

j�ÿ1
CjBnC t

j�h

" #
At

n � An nÃ̂n(h)ÿ
Xn

t�1

X1
j�ÿ1

CjBnC t
j�h

" #
At

n

� An nÃ̂n(h)ÿ
Xn

t�1

X1
j�ÿ1

CjZ tÿ j Z9tÿ jC
t
j�h

" #
At

n

� An

Xn

t�1

X1
j�ÿ1

Cj(Z tÿ j Z9tÿ j ÿ Bn)C t
j�h

" #
At

n

) 0�
X1

j�ÿ1
CjWC t

j�h

which concludes the proof.

Remark 4.4. If ap , 1
2

then EZ1 Z91 exists and consequently the auto-
covariance set as 1

2
matrix Ã(h) � EXtX 9t�h is well-de®ned. In this case

Meerschaert and Schef¯er (1999) show that we can take Bn � EZ1 Z91 in (4.2)
and then (4.3) becomes

nAn[Ã̂n(h)ÿ Ã(h)]At
n )

X1
j�ÿ1

CjWC t
j�h
: (4:6)

Since An ! 0 slower than nÿ1=2 when ap , 1
2
, we also have in this case that

Ã̂n(h)! Ã(h) in probability, and (4.6) provides the rate of convergence. If a1 . 1
2

then Meerschaert and Schef¯er (1999) show that we can take Bn � 0 in (4.2) and
then (4.3) becomes

nAnÃ̂n(h)At
n )

X1
j�ÿ1

CjWC t
j�h
: (4:7)
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Since An ! 0 faster than nÿ1=2 when a1 . 1
2
, we also have in this case that Ã̂n(h)

is not bounded in probability, and (4.7) provides the rate at which it blows up.
An application of Proposition 3.1 in Resnick (1986) shows that the regular

variation (2.2) implies weak convergence of the associated point processes. All
of the results in this paper can also be established using point process methods.
In the special case of scalar norming (where (2.3) holds with An � aÿ1

n I for all
n) we say that fZng belongs to the domain of attraction of Y. In this special
case a result equivalent to Theorem 4.1 was obtained by Davis, Marengo, and
Resnick (1985) and Davis and Marengo (1990) using point process methods. In
this case the random matrix W is multivariate stable. Since we are norming by
constants in this case, one immediately obtains the asymptotic distribution of
the sample autocorrelations using the continuous mapping theorem. It is not
possible to extend this argument to the general case considered in this paper
(with norming by linear operators).

In Theorem 4.1, the assumption that Ex9Zn � 0 when the mean exists can be
removed if we use the centered version of the sample covariance matrix de®ned
by

Ĝn(h) � 1

n

Xn

t�1

(Xt ÿ X )(X t�h ÿ X )9: (4:8)

where X � 1=n
Pn

t�1 X t is the sample mean.

Theorem 4.5. Suppose that Ĝn(h) is the sample autocovariance matrix
de®ned by (4.8) where Xt is the moving average (3.1) and fZng are i.i.d. with
common distribution ì on Rd . Suppose that ì varies regularly with exponent
E, where every eigenvalue of E has real part exceeding 1

4
. Then for all h we

have

nAn Ĝn(h)ÿ
X1

j�ÿ1
CjBnC t

j�h

" #
At

n )
X1

j�ÿ1
CjWC t

j�h
, (4:9)

where An, Bn and W are as in (4.2).

Proof. Note that the difference between the two formulas (4.1) and (4.8)
can be written in the form
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1

n

Xn

t�1

(X t ÿ X )(X t�h ÿ X )9ÿ 1

n

Xn

t�1

X tX 9t�h

� ÿ 1

n

Xn

t�1

X t X 9ÿ 1

n

Xn

t�1

X X 9t�h � 1

n

Xn

t�1

X X 9

� ÿX X 9ÿ X X ÿ 1

n

Xh

t�1

Xt � 1

n

Xn�h

t�n�1

X t

 !
9
�X X 9

� X X 9� oP(X X 9)

and so it suf®ces to show that nAn X X 9At
n ! 0 in probability. For this it suf®ces

to show that for all unit vectors x 2 Vi and y 2 Vl we have

nx9An X X 9At
n y � ���

n
p

x9An X :
���
n
p

y9An X!P 0

and so it suf®ces to show that
���
n
p

x9An X ! 0 in probability for any unit vector
x 2 Vi for any i � 1, . . ., p.

If ai , 1 then EPiZt exists. Note that (4.8) is not changed if we replace Zt by
Zt ÿ EPiZt so that without loss of generality EPiZt � 0. Let Sn � X 1 �
� � � � X n so that X � Sn=n. In the case ai , 1, Meerschaert (1993), along with
the spectral decomposition shows that we can take Pibn � EPiZt � 0 in (2.3)
and then we have from (3.3) that AnPiSn � nAnPi X ) U and so
n1=2 AnPi X ! 0 in probability. It follows that n1=2x9An X ! 0 in probability.
If ai . 1 then Meerschaert (1993) along with the spectral decomposition shows
that we can also take Pibn � 0 in (2.3) and it follows as before that
n1=2x9An X ! 0 in probability.

If ai � 1 we can apply Lemma 2.1 part (ii) with æ � 1� å. 1=ai for any
å. 0. By (3.3) we have An(Sn ÿ nan)) U , and so we have nAn(X ÿ an)) U ,
and then nx9An(X ÿ an)) x9U by continuous mapping. Then

���
n
p

x9An(X ÿ an)
! 0 in probability and so it suf®ces to show that

���
n
p

x9Anan ! 0, where
without loss of generality an �

P
jCjbn and bn � EZ1 I(kAnZ1k < 1). Argue as

in the proof of lemma 5.1 that U1(r, è) , CU1�å(r, è) for all r large and all è
unit vectors in Vi. Then as in the proof of Lemma 5.1 we have (letting
At

nx � rnèn with rn . 0 and kènk � 1) that

jnx9Anbnj < nEjhAnZ1, xijI(kAnZ1k < 1)

< CkPiA
ÿ1
n kånEjhAnZ1, xij1�å I(jhAnZ1, xij < 1)

, CkPiA
ÿ1
n kåK1

for all n large, and so for all large n we have
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jn1=2x9Ananj � nÿ1=2

���� X1
j�ÿ1

nx9AnCjbn

����
< nÿ1=2

X1
j�ÿ1

kCjk jnx9Anbnj

< nÿ1=2CkPiA
ÿ1
n kåK1

X1
j�ÿ1

kCjk

where the series converges. Since log(nÿ1=2kPiA
ÿ1
n kå)=log n! ÿ1

2
� aiå, 0 for

small å. 0 we obtain n1=2x9Anan ! 0, which concludes the proof.

Remark 4.6. Davis, Marengo, and Resnick (1985) and Davis and Marengo
(1990) also establish the joint convergence of the sample autocovariance
matrices over all lags jhj < h0, in the special case of scalar norming. It is
straightforward to extend the results in this paper to establish joint convergence
as well. In Meerschart and Schef¯er (1998) we apply this joint convergence to
compute the asymptotic distribution of the sample cross-correlations for a
bivariate moving average. This extends the results of Davis et al. to the case
where the norming operator An and Cj are diagonal. The general case, where
both An and Cj are arbitrary linear operators, remains open.

5. APPENDIX

In this section we prove Proposition 4.2 and Proposition 4.3 above and hence complete the
proof of Theorem 4.1. Throughout this section we assume that the assumptions of
Theorem 4.1 hold. That is, we assume that fZng are i.i.d. with common distribution ì on
Rd , and that ì varies regularly with index E, where every eigenvalue of E has real part
exceeding 1

4
and (2.2) holds. Assume further that Ex9Zn � 0 for all x 2 Rd such that

Ejx9Znj,1.
Recall from section 2 that in view of the spectral decomposition we can (and hence

will) assume without loss of generality that An is block diagonal with respect to the
direct sum decomposition Rd � V1 � . . . � Vp, where the Vi-spaces are mutually
orthogonal and form the spectral decomposition relative to E. Let 1

4
, a1 , . . . , ap

denote the real parts of the eigenvalues of E.
Since the proofs of the two propositions are quite long we split them into several

lemmas.

Proof of proposition 4.2. Let V1, . . ., Vp be the spectral decomposition of E and
a1 , � � � , ap the associated real spectrum (see section two above). Recall that Vi ? Vj

and that Pi is the orthogonal projection onto Vi. We also assume as before that (3.2)
holds for some ä, 1=ap with ä < 1. It will suf®ce to show that

x9An nÃ̂n(h)ÿ
Xn

t�1

X1
j�ÿ1

CjZ tÿ j Z9tÿ jC
t
j�h

" #
At

n y!P 0 (5:1)

for all unit vectors x 2 Vi and y 2 Vl. Note that
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nÃ̂n(h) �
Xn

t�1

X tX 9t�h �
Xn

t�1

X1
j�ÿ1

CjZ tÿ j

 ! X1
q�ÿ1

CqZ t�hÿq

 !
9

�
Xn

t�1

X1
j�ÿ1

CjZ tÿ j

 ! X1
k�ÿ1

Ck�h Z tÿk

 !
9

(set k � qÿ h)

�
Xn

t�1

X1
j�ÿ1

X1
k�ÿ1

CjZ tÿ j Z9tÿk C t
k�h

�
Xn

t�1

X1
j�ÿ1

CjZ tÿ j Z9tÿ jC
t
j�h �

X
k 6� j

CjZ tÿ j Z9tÿk C t
k�h

 !

�
Xn

t�1

X1
j�ÿ1

CjZ tÿ j Z9tÿ jC
t
j�h �

Xn

t�1

X1
j�ÿ1

X
k 6� j

CjZ tÿ j Z9tÿk C t
k�h

so that (5.1) is equivalent to

x9An

Xn

t�1

X1
j�ÿ1

X
k 6� j

CjZ tÿ j Z9tÿk C t
k�h

" #
At

n y!P 0: (5:2)

We now have to consider several cases separately.

Case i: Suppose that x 2 Vi and y 2 Vl are unit vectors with ai � al . 1. Choose
ä. 0 such that ä. 1=(ai � al), ä, 1=ai, ä, 1=al, and ä < 1. Write C t

j A
t
nx � rè where

r . 0 and kèk � 1. Then r � kC t
j A

t
nxk � kC t

j A
t
n Pixk � kC t

j PiA
t
nxk < kCjk kPiAnk and

so

Ejx9AnCjZ1jä � Ej(C t
j A

t
nx)9Z1jä

� Ejrè9Z1jä

< kPiAnkäkCjkäEjhZ1, èijä

� kPiAnkäkCjkäEjhZ1, Pièijä

� kPiAnkäkCjkäEjhPiZ1, èijä

< kPiAnkäkCjkäEkPiZ1kä

and likewise

EjZ92C t
k�h At

n yjä < kPlAnkäkCk�hkäEkPlZ2kä:

Then
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E

����x9An

Xn

t�1

X1
j�ÿ1

X
k 6� j

CjZ tÿ j Z9tÿk C t
k�h

" #
At

n y

����ä

� E

����Xn

t�1

X1
j�ÿ1

X
k 6� j

x9AnCjZ tÿ j Z9tÿk C t
k�h At

n y

����ä

< E
Xn

t�1

X1
j�ÿ1

X
k 6� j

jx9AnCjZ tÿ j Z9tÿk C t
k�h At

n yj
 !ä
24 35

< E
Xn

t�1

X1
j�ÿ1

X
k 6� j

jx9AnCjZ tÿ j Z9tÿk C t
k�h yAt

n yjä
" #

� E
Xn

t�1

X1
j�ÿ1

X
k 6� j

jx9AnCjZ tÿ jjäjZ9tÿk C t
k�h yAt

n yjä
" #

�
Xn

t�1

X1
j�ÿ1

X
k 6� j

E(jx9AnCjZ tÿ jjäjZ9tÿk C t
k�h yAt

n yjä)

�
Xn

t�1

X1
j�ÿ1

X
k 6� j

Ejx9AnCjZ tÿ jjäEjZ9tÿk C t
k�h yAt

n yjä

by independence of Z tÿ j, Z tÿk

<
Xn

t�1

X1
j�ÿ1

X
k 6� j

kPiAnkäkCjkäEkPiZ1kä:kPlAnkäkCk�hkäEkPlZ2kä

� nkPiAnkäkPlAnkäEkPiZ1käEkPlZ2kä
X1

j�ÿ1

X
k 6� j

kCjkäkCk�hkä

where EkPiZ1kä ,1 because ä, 1=ai, EkPlZ2kä ,1 because ä, 1=al, andX1
j�ÿ1

X
k 6� j

kCjkäkCk�hkä <
X1

j�ÿ1
kCjkä

 ! X1
j�ÿ1

kCk�hkä
 !

�
X1

j�ÿ1
kCjkä

 !2

,1

and furthermore since

logkPiAnk
log n

! ÿai and
logkPlAnk

log n
! ÿal

we have

log(nkPiAnkäkPlAnkä)

log n
! 1ÿ äai ÿ äal , 0
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since ä. 1=(ai � al). Then nkPiAnkäkPlAnkä ! 0 and it follows that (5.2) holds in this
case.

Case ii: Suppose that x 2 Vi and y 2 Vl are unit vectors with ai � al < 1. Then
ai , 1 and al , 1 so EkPiZ1k,1 and EkPlZ2k,1. Then by assumption Ex9Z1 � 0
and EZ92 y � 0. De®ne Zin � ZiI(kAnZik < 1) and ìn � EZin and let

Ai, j,n � (Zin ÿ ìn)(Zjn ÿ ìn)9

Bi, j,n � Zinì9n ÿ ìn Z9jn

Ci, j,n � ZiZ9j I(kAnZik. 1 or kAnZjk. 1)

Di, j,n � ÿìnì9n

so that EAi, j,n � 0 and ZiZ9j � Ai, j,n � Bi, j,n � Ci, j,n � Di, j,n. Then let

A �
Xn

t�1

X1
j�ÿ1

X
k 6� j

x9AnCjAtÿ j, tÿk,nC t
k�h At

n y

and similarly for B, C, D to obtain

x9An

Xn

t�1

X1
j�ÿ1

X
k 6� j

CjZ tÿ j Z9tÿk C t
k�h

" #
At

n y � A� B� C � D

and so in order to establish (5.2) it suf®ces to show that each of A, B, C, D tends to zero
in probability. Let Zin � Zin ÿ ìn so that Aijn � Zin Z9jn. Since Zin and Z jn are
independent with mean zero for i 6� j it is easy to check that EA � 0. Then

var(A) � E
Xn

t�1

X1
j�ÿ1

X
k 6� j

x9AnCj Z tÿ j,n Z9tÿk,nC t
k�h At

n y

 !2

� E
Xn

t1�1

X1
j1�ÿ1

X
k1 6� j1

x9AnC j1 Z t1ÿ j1,n Z9t1ÿk1,nC t
k1�h At

n y

 !24
:
Xn

t2�1

X1
j2�ÿ1

X
k2 6� j2

x9AnC j2 Z t2ÿ j2,n Z9t2ÿk2,nC t
k2�h At

n y

 !35
�
Xn

t1�1

Xn

t2�1

X1
j1�ÿ1

X1
j2�ÿ1

X
k1 6� j1

X
k2 6� j2

E[hZ t1ÿ j1,n, C t
j1

At
nxi

:hZ t1ÿk1,n, C t
k1�h At

n yihZ t2ÿ j2,n, C t
j2

At
nxihZ t2ÿk2,n, C t

k2�h At
n yi]:

If any one of t1 ÿ j1, t1 ÿ k1, t2 ÿ j2, or t2 ÿ k2 is distinct then this term vanishes since
E Zin � 0, using the independence to write the mean of the product as the product of the
means. The only nonvanishing terms for a given t1, j1, k1 occur when either

(a) t1 ÿ j1 � t2 ÿ j2 and t1 ÿ k1 � t2 ÿ k2

(b) t1 ÿ j1 � t2 ÿ k2 and t1 ÿ k1 � t2 ÿ j2.

Given t1, j1, k1 for every t2 � 1, . . ., n there exists a unique j2, k2 satisfying (a) or (b).
Indeed we have
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(a) j2 � (t2 ÿ t1)� j1 and k2 � (t2 ÿ t1)� k1

(b) j2 � (t2 ÿ t1)� k1 and k2 � (t2 ÿ t1)� j1

so that j2 6� k2 is guaranteed. Now let p � t1 ÿ j1, q � t1 ÿ k1, j � j1, t � t1, k � k1,
and Ä � t2 ÿ t1 so that in case

(a) t2 ÿ j2 � p, t2 ÿ k2 � q, j2 � Ä� j, and k2 � Ä� k
(b) t2 ÿ j2 � q, t2 ÿ k2 � p, j2 � Ä� k, and k2 � Ä� j.

Then in case (a) the only nonvanishing terms for a given t, j, k are of the form

E[hZ pn, C t
j A

t
nxihZqn, C t

k�h At
n yihZ pn, C t

Ä� j A
t
nxihZqn, C t

Ä�k�h At
n yi]

� E[hZ pn, C t
j A

t
nxihZ pn, C t

Ä� j A
t
nxihZqn, C t

k�h At
n yihZqn, C t

Ä�k�h At
n yi

� E[x9AnCj Z pn Z9pnC t
Ä� j A

t
nx]E[y9AnCk�h Zqn Z9qnC t

Ä�k�h At
n y]

� (x9AnCjMnC t
Ä� j

At
nx)(y9AnCk�h MnC t

Ä�k�h At
n y)

where Mn � E Zin Z9in. In case (b) the only nonvanishing terms are of the form

E[hZ pn, C t
j A

t
nxihZqn, C t

k�h At
n yihZqn, C t

Ä�k At
nxihZ pn, C t

Ä� j�h At
n yi]

� E[hZ pn, C t
j A

t
nxihZ pn, C t

Ä� j�h At
n yihZqn, C t

k�h At
n yihZqn, C t

Ä�k At
nxi]

� (x9AnCjMnC t
Ä� j�h

At
n y)(y9AnCk�h MnC t

Ä�k At
nx)

so that

var(A) �
Xn

t�1

Xn

t�Ä�1

X1
j�ÿ1

X
k 6� j

[(x9AnCjMnC t
Ä� j

At
nx)(y9AnCk�h MnC t

Ä�k�h At
n y)

� (x9AnCjMnC t
Ä� j�h

At
n y)(y9AnCk�h MnC t

Ä�k At
nx)]:

Now we need to bound the terms in this sum. Write C t
jx � rjxj, At

nxj � anjxnj,
C t

j y � r j yj, and At
n yj � bnjynj where xj, xnj, yj, ynj are unit vectors and rj, anj, r j, bnj are

positive reals. Then for example we have

x9AnCjMnC t
Ä� j

At
nx � x9CjAnMnAt

n
C t
Ä� jx

� (C t
jx)9AnMnAt

nC t
Ä� jx

� rjrÄ� jx9j AnMnAt
nxÄ� j

where

x9j AnMnAt
nxÄ� j � x9j AnE Z1n Z91n At

nxÄ� j

� Ex9j An Z1n Z91n At
nxÄ� j

� EhZ1n, At
nxjihZ1n, At

nxÄ� ji

<
��������������������������������������������������������������
EhZ1n, At

nxji2 EhZ1n, At
nxÄ� ji2

q
:

Since Z1n � Z1n ÿ ìn where ìn � EZ1n we have for example that
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EhZ1n, At
nxji2 � EhZ1n ÿ ìn, At

nxji2

� E(hZ1n, At
nxji ÿ EhZ1n, At

nxji)2

� var(hZ1n, At
nxji)

< E[hZ1n, At
nxji2]

so that, calculating in a similar manner for the remaining terms, we have for example

x9AnCjMnC t
Ä� j

At
nx < rjr j�Ä

��������������������������������������������������������������
EhZ1n, At

nxji2 EhZ1n, At
nxÄ� ji2

q
and then

var(A) <
Xn

t�1

Xn

t�Ä�1

X1
j�ÿ1

X
k 6� j

(rjr j�Ä[EhZ1n, At
nxji2 EhZ1n, At

nxj�Äi2]1=2

:rk�hrk�h�Ä[EhZ1n, At
n yk�hi2 EhZ1n, At

n yk�h�Äi2]1=2

� rjr j�h�Ä[EhZ1n, At
nxyi2 EhZ1n, At

n yj�h�Äi2]1=2

:rk�h rk�Ä[EhZ1n, At
n yk�hi2 EhZ1n, At

nxk�Äi2]1=2�:
To bound the expectations on the right hand side of the inequality above we need

Lemma 5.1. For all unit vectors x 2 Vi, y 2 Vl, for some n0, for all n > n0 and all j,
k, h, Ä, for some Kn . 0 satisfying nKn ! 0 we have

[EhZ1n, At
nxji2 EhZ1n, At

nxj�Äi2:EhZ1n, At
n yk�hi2 EhZ1n, At

n yk�h�Äi2]1=2

� [EhZ1n, At
nxji2 EhZ1n, At

n yj�h�Äi2:EhZ1n, At
n yk�hi2 EhZ1n, At

nxk�Äi2]1=2 (5:3)

< Kn:

Proof of lemma 5.1. Suppose that ai . 1
2
. Then al , 1

2
so EkPiZ1k2 � 1 while

EkPlZ1k2 ,1. Recall that Pl � P2
l � Pt

l for this orthogonal projection operator,
AnPl � PlAn and that jhx, èi < kxk when è is a unit vector. Then for all unit vectors
è 2 Vl we have

EhZ1n, At
nèi2 � EhAnZ1, èi2 I(kAnZ1k < 1)

< EhAnZ1, èi2

� EhAnZ1, Plèi2

� EhPlAnPlZ1, èi2

< EkPlAnPlZ1k2

< kPlAnk2 EkPlZ1k2:

Since 1=ai , 2 we can apply part (ii) of Lemma 2.1 with æ � 2 to get

nEhZ1n, At
nèi2 � nEhAnZ1, èi2 I(kAnZ1k < 1) , K2

for all n > n0 and all kèk � 1 in Vi. Then (5.3) holds in this case with
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Kn � 2[(K2=n)2(kPlAnk2 EkPlZ1k2)2]1=2

� 2(K2=n)kPlAnk2 EkPlZ1k2

so that nKn ! 0 since kPlAnk ! 0. If al . 1
2

so that ai , 1
2

then a similar argument
establishes (5.3) with Kn � 2(K2=n)kPiAnk2 EkPiZ1k2 and again nKn ! 0. Otherwise we
have ai < 1

2
and al < 1

2
. If both EkPiZ1k2 and EkPlZ1k2 exist then (5.3) holds with

Kn � 2kPiAnk2kPlAnk2 EkPiZ1k2 EkPlZ1k2 and then

log nKn

log n
� log(nkPiAnk2kPlAnk2)

log n
! 1ÿ 2(ai � al) , 0

since ai . 1
4

and al . 1
4

by assumption, so again nKn ! 0. Otherwise suppose that ai < 1
2

and al < 1
2

with EkPiZ1k2 � 1 and EkPlZ1k2 ,1. Then ai � 1
2

and so we can apply part
(ii) of Lemma 2.1 with æ � 2� å for any å. 0. Observe that for all t and all è we have

U2(t, è) �
�
jhz,èij< t

jhz, èij2ì(dz)

�
�

0<jhz,èij, 1

jhz, èij2ì(dz)�
�

1<jhz,èij< t

jhz, èij2ì(dz)

<

�
0<jhz,èij, 1

jhz, èij2ì(dz)�
�

1<jhz,èij< t

jhz, èij2�åì(dz)

< 1� U2�å(t, è)

and since U2�å(t, è)!1 uniformly on kèk � 1 in Vi, for some t0 and C . 0 we have
for all t > t0 and all kèk � 1 in Vi that U2(t, è) < CU2�å(t, è). As in the proof of
Lemma 2.1 we can choose n0 such that kAnèk < tÿ1

0 for all kèk � 1 and all n > n0.
Enlarge n0 if necessary so that Lemma 2.1 also applies. Then

nEhZ1n, At
nxji2 � nEhZ1, At

nxji2 I(kAnZ1k < 1)

< na2
njU2(aÿ1

nj , xnj)

< Caÿånj
:na2�å

nj U2�å(aÿ1
nj , xnj)

� Caÿånj
:nEjhAnZ1, xjij2�å I(jhAnZ1, xjij < 1)

< Caÿånj
:K1

for all n > n0 � n0(t0) and all j. Note also that for all j and all n we have
anj � kAnxjk > minfkAnèk: kèk � 1 in Vig � 1=kPiA

ÿ1
n k so that aÿånj < kPiA

ÿ1
n kå for all

n and all j. Then (5.3) holds in this case with

Kn � [(nÿ1 K1kPiA
ÿ1
n kå)2(kPlAnk2 EkPiZ1k2)2]1=2

� nÿ1 K1kPiA
ÿ1
n kåkPlAnk2 EkPiZ1k2

so that

log nKn

log n
� log(kPiA

ÿ1
n kåkPlAnk2)

log n
! åai ÿ 2al , 0

for all å. 0 suf®ciently small. Note that å. 0 can be chosen independently of x, y, j
and so nKn ! 0 here too. Finally if ai < 1

2
and al < 1

2
with EkPiZ1k2 ,1 and
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EkPlZ1k2 � 1 then (5.3) holds with Kn � nÿ1 K1kPlA
ÿ1
n kåkPiAnk2 EkPiZ1k2 and

log(nKn)=log n! åal ÿ 2ai , 0 for å. 0 suf®ciently small, and again nKn ! 0. This
concludes the proof of Lemma 5.1.

Returning to the proof of Proposition 4.2, we get from Lemma 5.1

var(A) < Kn

Xn

t�1

Xn

t�Ä�1

X1
j�ÿ1

X
k 6� j

(rjr j�Ärk�hrk�h�Ä � rjr j�h�Ärk�h rk�Ä)

< Kn

Xn

t�1

Xnÿ t

Ä�1ÿ t

X1
j�ÿ1

X
k 6� j

(kCjk kC j�Äk kCk�hk kCk�h�Äk

� kCjk kC j�h�Äk kCk�hk kCk�Äk)

< nKn2
X1

j�ÿ1
kCjk

 !4

! 0

and so A! 0 in probability.

Next we have

B �
Xn

t�1

X1
j�ÿ1

X
k 6� j

x9AnCj[Z tÿ j,nì9n � ìn Z9tÿk,n]C t
k�h At

n y

and we will let

B jk
rs � x9AnCj[Zrnì9n � ìn Z9sn]C t

k At
n y

� (Cjx)9An[Zrnì9n � ìn Z9sn]At
n(C t

k y)

� rjrk(At
nxj)9[Zrnì9n � ìn Z9sn](At

n yk)

� rjrk[B (1)
r � B (2)

s ]

where

B (1)
r � (At

nxj)9Zrnì9n At
n yk

B (2)
s � (At

nxj)9ìn Z9sn At
n yk

In the next lemma we derive bounds on the expectation of Blk
rs.

Lemma 5.2. For all unit vectors x 2 Vi and y 2 Vl, for some n0, for all n > n0, for
all j, k, r, s we have

EjB jk
rs j < kCjk kCkkKn (5:4)

where nKn ! 0.

Proof of lemma 5.2. Write

EjB jk
rs j � rjrkEjB (1)

r � B (2)
s j

< kCjk kCkk(EjB (1)
r j � EjB (2)

s j)
where
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EjB (1)
r j � EjhZ1n, At

nxjihìn, At
n ykij

� jhìn, At
n ykijEjhZ1n, At

nxjij:
Since ai , 1 we have EkPiZ1k,1. Then EjhZ1n, At

nxjij < kPiAnkEkPiZ1k as in the
proof of Lemma 5.1. Apply part (iv) of Lemma 2.1 with ç � 1 (so that ç, 1=al). Using
the fact that EhZ1, yki � 0 we have for some n1 . 0 that

njhìn, At
n ykij � njhEZ1n, At

n ykij
� njEhZ1n, At

n ykij
� njEhZ1, At

n ykiI(kAnZ1k < 1)j
� njEhZ1, At

n ykiI(kAnZ1k. 1)j
< nEjhAnZ1, ykijI(kAnZ1k. 1) , K4

for all n > n1 and all k. It follows that

nEjB (1)
r j < K4kPiAnkEkPiZ1k

for all n > n1 and all k. A similar argument (note that al , 1 so that EkPlZ1k,1 and
apply part (iv) of Lemma 2.1 again with ç � 1, so that ç, 1=ai) shows that for some
n2 . 0 we have

nEjB (2)
r j < K4kPlAnkEkPlZ1k

for all n > n2 and all j. Letting n0 � maxfn1, n2g we have that (5.4) holds with

nKn � K4(kPiAnkEkPiZ1k � kPlAnkEkPlZ1k)
for all j, k, r, s and all n > n0. Then nKn ! 0 since kAnk ! 0, which concludes the
proof of Lemma 5.2.

Returning to the proof of Proposition 4.2, Lemma 5.2 yields

EjBj <
Xn

t�1

X1
j�ÿ1

X
k 6� j

kCjk kCk�hkKn

< nKn

X1
j�ÿ1

kCjk
 !2

! 0

and so B! 0 in probability.
Next we write

C jk
rs � x9AnCjZrZ9s I(kAnZrk. 1 or kAnZsk. 1)C t

k At
n y

� rjrkhZr, At
nxjihZs, At

n ykiI(kAnZrk. 1 or kAnZsk. 1)

so that

EjC jk
rs j < kCjk kCkkE(jhZr, At

nxjihZs, At
n ykijI(kAnZrk. 1 or kAnZsk. 1))

< kCjk kCkk(Ejx9j AnZrZ9s At
n yk jI(kAnZrk. 1)� Ejx9j AnZrZ9s At

n yk jI(kAnZsk. 1)):

The next lemma gives bounds on EjC rs
jk j.

Lemma 5.3. For all unit vectors x 2 Vi and y 2 Vl, for some n0, for all n > n0, and
all j, k, r, s we have
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EjC rs
jk j < kCjk kCkkKn (5:5)

where nKn ! 0.

Proof of lemma 5.3. Write

Ejx9j AnZrZ9s At
n yk jI(kAnZrk. 1) � EjhZs, At

n ykijEjhZr, At
nxjijI(kAnZrk. 1)

where

EjhZs, At
n ykij � bnkEjhZs, ynkij

< bnk EkPlZ2k
< kPlAnkEkPlZ2k

and

nEjhZr, At
nxjijI(kAnZrk. 1) < K4

and similarly

nEjx9j AnZrZ9s At
n yk jI(kAnZsk. 1) < kPiAnkEkPiAnkK4

so that (5.5) holds with

nKn � K4(kPiAnkEkPiZ1k � kPlAnkEkPlZ1k)
which is the same Kn as for Lemma 5.2, so nKn ! 0. This concludes the proof of Lemma
5.3.

In the proof of Proposition 4.2 we get using Lemma 5.3

EjCj <
Xn

t�1

X1
j�ÿ1

X
k 6� j

kCjk kCk�hkKn

< nKn

X1
j�ÿ1

kCjk
 !2

! 0

and so C ! 0 in probability.
Finally we can write

Djk � x9AnCjìnì9nC t
k At

n y

� rjrkhìn, At
nxjihìn, At

n yki:
and use the bound proved in

Lemma 5.4. For all unit vectors x 2 Vi and y 2 Vl, for some n0, for all n > n0, and
all j, k, we have

jDjk j < kCjk kCkkKn

where nKn ! 0.

Proof of lemma 5.4. Recall that for all large n we have jhìn, At
nxjij, K4=n from

the proof of Lemma 5.2 above. Likewise jhìn, At
n ykij < K4=n so we can take

Kn � (K4=n)2, which concludes the proof of Lemma 5.4.
Now we have from Lemma 5.4
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jDj <
Xn

t�1

X1
j�ÿ1

X
k 6� j

kCjk kCk�hkKn

< nKn

X1
j�ÿ1

kCjk
 !2

! 0

which completes the proof of Proposition 4.2.
We now prove Proposition 4.3.

Proof of proposition 4.3. De®ne

S (m)
n �

X
j jj<m

Cj

Xn

t�1

Z tÿ j Z9tÿ j

 !
C t

j�h

d (m)
n � n

X
j jj<m

CjBnC t
j�h

W (m) �
X
j jj<m

CjWC t
j�h

for m > 1. We will now apply (4.2) to show that

An

Xn

t�1

Z tÿ j Z9tÿ j ÿ Bn

 !
At

n: j jj < m

 !
) (W , . . ., W ): (5:6)

Since we know that the convergence holds for the j � 0 component, it suf®ces to show
that the difference between this component and any other component tends to zero in
probability. This difference consists of at most 2m identically distributed terms, any one
of which must tend to zero in probability in view of the convergence (4.2) above, and so
(5.6) holds. Now by the continuous mapping theorem we obtain from (5.6) that

An(S (m)
n ÿ d (m)

n )At
n ) W (m)

and since X
j jj. m

kCjWC t
j�h
k < kWk

X
j jj. m

kCjk kC j�hk

< kWk
X
j jj. m

kCjk2

 !1=2 X
j jj. m

kC j�hk2

 !1=2

! 0

as m!1 we also have

W (m) !
X1

j�ÿ1
CjWC t

j�h

almost surely. Then in order to establish (4.5) it suf®ces to show (e.g. by Billingsley
(1968) Theorem 4.2) that

lim
m!1 lim sup

n!1
P(kTk. å) � 0 (5:7)

where
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T �
X
j jj. m

Xn

t�1

AnCj(Z tÿ j Z9tÿ j ÿ Bn)C t
j�h At

n:

Note that kTk2 �Pi, jje9iTejj2 where e1, . . ., ed is the standard basis for Rd. Then in order
to show that (5.7) holds it suf®ces to show that

lim
m!1 lim sup

n!1
P(jx9Tyj. å) � 0 (5:8)

for x 2 Vi and y 2 Vl where 1 < i, l < p. Write T � A� Bÿ C where

A �
X
j jj. m

Xn

t�1

AnCjZ tÿ j Z9tÿ jC
t
j�h At

n I(kAnZ tÿ jk < 1)

B �
X
j jj. m

Xn

t�1

AnCjZ tÿ j Z9tÿ jC
t
j�h At

n I(kAnZ tÿ jk. 1)

C �
X
j jj. m

Xn

t�1

AnCjBnC t
j�h At

n:

Since T � A� Bÿ C it suf®ces to show that (5.8) holds with T replaced by A, B, or C.
We begin with B. Choose ä. 0 with ä, 1=ap and ä < 1 and let ä1 � ä=2 , 1. Use the
Markov inequality along with the fact that jx� yjä1 < jxjä1 � jyjä1 to obtain

P(jx9Byj. å) < åÿä1 Ejx9Byjä1

< åÿä1

X
j jj. m

nEjx9CjAnZ1 Z91 At
nC t

j�h yjä1 I(kAnZ1k. 1)

< åÿä1

X
j jj. m

kCjkä1kC j�hkä1 nEjx9j AnZ1 Z91 At
n yj�hjä1 I(kAnZ1k. 1)

< åÿä1

X
j jj. m

kC j�hkä
" #1=2

:
X
j jj. m

kCjkä(nEjx9j AnZ1 Z91 At
n yj�hjä1 I(kAnZ1k. 1))2

" #1=2

by the Schwartz inequality. Then in order to show that (5.8) holds with T replaced by B it
will suf®ce to show that for some K4 . 0 we have

nEjx9j AnZ1 Z91 At
n yj�hjä1 I(kAnZ1k. 1) < K4 (5:9)

for all j, h and all n large. Apply the Schwartz inequality again to see that

nEjx9j AnZ1 Z91 At
n yj�hjä1 I(kAnZ1k. 1)

� nEjhAnZ1, xjihAnZ1, yj�hijä1 I(kAnZ1k. 1)

<
�����������������������������������������������������������������������������������������������������������������������������
nEjhAnZ1, xjijä I(kAnZ1k. 1):nEjhAnZ1, yj�hijä I(kAnZ1k. 1)

q
where nEjhAnZ1, xjijä I(kAnZ1k. 1) , K4 for all n large and all j by an application of
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Lemma 2.1 part (iv) with ç � ä, 1=ai. A similar argument holds for the remaining term,
which establishes (5.9), and so (5.8) holds with T replaced by B.

Next we look at A and C which requires us to consider different cases. First suppose
that ai . 1

2
and al . 1

2
. As in the proof of Proposition 4.2 we write C t

jx � rjxj,
At

nxj � anjxnj, C t
j y � rjyj and At

n yj � bnjynj where xj, xnj, yj, ynj are unit vectors and rj,
anj, r j, bnj are positive reals. By the Markov inequality we get

P (jx9Ayj. å) < åÿ1 Ejx9Ayj

< åÿ1
X
j jj. m

nEjx9CjAnZ1 Z91 At
nC t

j�h yjI(kAnZ1k < 1)

< åÿ1
X
j jj. m

kCjk kC j�hknEjhZ1, At
nxjihZ1, At

n yj�hijI(kAnZ1k < 1):

Next we will show that for some K2 . 0 we have

nEjhZ1, At
nxjihZ1, At

n yj�hijI(kAnZ1k < 1) < K2 (5:10)

for all j, h and all n large. By the Schwartz inequality we have that the left hand side of
(5.10) is bounded above by���������������������������������������������������������������������������������������������������������������������������

nEhZ1, At
nxji2 I(kAnZ1k < 1)nEjhZ1, At

n yj�hi2 I(kAnZ1k < 1)

q
where we have nEhZ1, At

nxji2 I(kAnZ1k < 1) , K2 independent of j and n large as in the
proof of Lemma 5.1 above, since ai . 1

2
(so that æ � 2 . 1=ai in Lemma 2.1 part (ii)).

Similarly nEhZ1, At
n yj�hi2 I(kAnZ1k < 1) , K2 independent of j and n large by another

application of Lemma 2.1 part (ii) (note that al . 1
2

so that æ � 2 . 1=al). Hence (5.10)
holds for all j, h and all n large, and so for n large we have

P(jx9Ayj. å) < åÿ1 K2

X
j jj. m

kCjk kC j�hk

< åÿ1 K2

X
j jj. m

kCjk2

 !1=2 X
j jj. m

kC j�hk2

 !1=2

which tends to zero as m!1, and so (5.8) holds with T replaced by A in this case.
Since jx9Cyj � jEx9Ayj we also have that (5.8) holds with T replaced by C in this case.
Finally suppose that either ai < 1

2
or al < 1

2
(or both). As in the proof of Proposition 4.2

de®ne Zin � ZiI(kAnZik < 1) and let Qin � ZinZ9in ÿ EZinZ9in � ZinZ9in ÿ Bn. By the
Markov inequality we get

P(jx9(Aÿ C)yj. å) < åÿ2 E[(x9(Aÿ C)y)2]

� åÿ2 E
X
j jj. m

Xn

t�1

x9AnCjQtÿ j,nC t
j�h At

n y

 !2

� åÿ2
X
j jj. m

Xn

t�1

X
j j9j. m

Xn

t9�1

E(x9AnCjQtÿ j,nC t
j�h At

n y:x9AnC j9Qt9ÿ j9,nC t
j9�h At

n y):

Since Qin are independent with mean zero the only terms that contribute to the sum
above are those for which t ÿ j � t9ÿ j9. Then the sum above equals
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X
j jj. m

Xn

t�1

Xnÿ t� j

j9�1ÿ t� j

rjr j�h r j9r j9�h E(x9j AnQtÿ j,n At
n yj�hx9j9 AnQtÿ j,n At

n yj9�h):

Next we will show that for some K2 . 0 we have

nE(x9j AnQ1n At
n yj�hx9j9 AnQ1n At

n yj9�h) < K2 (5:11)

for all j, j9, h and all n large. Write

x9j AnQ1n At
n yk � x9j An Z1n Z91n At

n yk ÿ Ex9j An Z1n Z91n At
n yk

� hAn Z1n, xjihAn Z1n, yki ÿ EhAn Z1n, xjihAn Z1n, yki,
� înjânk ÿ Eînjânk

where

înj � hAn Z1n, xji:
ânk � hAn Z1n, yki

Then

E(x9j AnQ1n At
n yj�hx9j9 AnQ1n At

n yj9�h)

� E(înjân, j�h ÿ Eînjân, j�h)(înj9ân, j9�h ÿ Eînj9ân, j9�h)

� Eînjân, j�hînj9ân, j9�h ÿ Eînjân, j�h Eînj9ân, j9�h

ÿ Eînjân, j�h Eînj9ân, j9�h � Eînjân, j�h Eînj9ân, j9�h

� Eînjân, j�hînj9ân, j9�h ÿ Eînjân, j�h Eînj9ân, j9�h

where

Ejînjân, j�hînj9ân, j9�hj < (E(înjân, j�h)2)1=2(E(înj9ân, j9�h)2)1=2

< (Eî4
nj)

1=4(Eâ4
n, j�h)1=4(Eî4

nj9)
1=4(Eâ4

n, j9�h)1=4

� (Eî4
nj Eâ

4
n, j�h Eî4

nj9 Eâ 4
n, j9�h)1=4

by the Schwartz inequality, and similarly

Ejînjân, j�hj < (Eî4
nj Eâ

4
n, j�h)1=4

Ejînj9ân, j9�hj < (Eî4
nj9 Eâ 4

n, j9�h)1=4

so that together we have

E(x9j AnQtÿ j,n At
n yj�hx9j9 AnQtÿ j,n At

n yj9�h) < 2(Eî4
nj Eâ

4
n, j�h Eî4

nj9 Eâ
4
n, j9�h)1=4

where

nEî4
nj � nEhAn Z1n, xji4 � nEhAn Z1, xji4 I(kAnZ1k < 1)

which is bounded above by some K2 ,1, for all n > n0 and all j by an application of
part (ii) of Lemma 2.1 with 4 � æ. 1=ai. A similar argument shows that nEâ4

nk , K2 for
all k and all n large (apply part (ii) of Lemma 2.1 again with 4 � æ. 1=al). Then (5.11)
holds for j, j9, h and all n large, and so for all large n we have
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P(jx9(Aÿ C)yj. å) < åÿ22K2 nÿ1
X
j jj. m

Xn

t�1

Xnÿ t� j

j9�1ÿ t� j

kCjk kC j�hk kC j9k kC j9�hk

� åÿ22K2

X
j jj. m

kCjk kC j�hknÿ1
Xn

t�1

Xnÿ t� j

j9�1ÿ t� j

kC j9k kC j9�hk

< åÿ22K2

X
j jj. m

kCjk2

 !1=2 X
j jj. m

kC j�hk2

 !1=2

:
X1

j9�ÿ1
kC j9k2

 !1=2 X1
j9�ÿ1

kC j9�hk2

 !1=2

which tends to zero as m!1, and so (5.8) holds with T replaced by Aÿ C in this case,
which concludes the proof of Proposition 4.3.
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