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Abstract. Regular variation is an analytic condition on the tails of a probability
distribution which is necessary for an extended central limit theorem to hold, when the
tails are too heavy to allow attraction to a normal limit. The limiting distributions
which can occur are called operator stable. In this paper we show that moving averages
of random vectors with regularly varying tails are in the generalized domain of
attraction of an operator stable law. We also prove that the sample autocovariance
matrix of these moving averages is in the generalized domain of attraction of an
operator stable law on the vector space of symmetric matrices.
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1. INTRODUCTION

In this paper we establish the basic asymptotic theory for moving averages of
random vectors with heavy tails. Heavy tail distributions occur frequently in
applications to finance, geology, physics, chemistry, computer and systems
engineering. The recent books of Samorodnitsky and Taqqu (1994), Janicki and
Weron (1994), Nikias and Shao (1995), and Mittnik and Rachev (1998) review
many of these applications. Scalar time series with heavy tails are discussed in
Anderson and Meerschaert (1997), Bhansali (1993), Brockwell and Davis (1991),
Davis and Resnick (1985a, 1985b, 1986), Jansen and de Vries (1991), Kokoszka
and Taqqu (1994, 1996), Loretan and Phillips (1994), Mikosch, Gadrich,
Kliippenberg and Adler (1995), and Resnick and Starica (1995). Modern
applications of heavy tail distributions were pioneered by Mandelbrot (1963) and
others in connection with problems in finance. When the probability tails of the
random fluctuations in a time series model are sufficiently light, the asymptotics
are normal. But when the tails are sufficiently heavy that the fourth moments fail
to exist, the asymptotics are governed by the extended central limit theorem. For
scalar models the limiting distributions are stable. Stable laws are characterized
by the fact that sums of independent stable random variables are also stable, and
the distribution of the sum can be reduced to that of any summand by an
appropriate affine normalization. The normal laws are a special case of stable
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laws. Stable stochastic processes are interesting because they provide the most
straightforward mechanism for generating random fractals.

For random vectors with heavy tails, the extended central limit theorem
yields operator stable limit laws, so called because the affine normalization
which reduces the distribution of a sum to that of one summand involves a
linear operator. Regular variation is the analytic condition necessary for the
extended central limit theorem to hold for heavy tails. See Feller (1971)
Chapter XVII for the scalar version and Meerschaert (1993) for the vector
version of the extended central limit theorem. In this paper we will show that
moving averages of random vectors with regularly varying tail probabilities are
asymptotically operator stable. The regular variation arguments at the heart of
the proof will appear familiar to any reader who is acquainted with the work of
Feller on regular variation. We will also show, using similar regular variation
methods, that the sample autocovariance matrix formed from these moving
averages is asymptotically operator stable as a random element of the vector
space of d X d symmetric matrices.

2. NOTATION AND PRELIMINARY RESULTS

In this section we present the notion of a regularly varying measure together with
the multivariable theory of regular variation necessary in the proofs of our main
results. The connection of regularly varying measures to generalized domains of
attraction of operator stable laws is also discussed.

Assume that {Z,} are i.i.d. random vectors on RY with common distribution
u. A sequence (4,) of invertible linear operators on R¢ is called regularly
varying with index F, where F is a d X d matrix, if

ApmA,t — A" as n — oo (2.1)

where A7 = exp(F log ) and exp is the exponential mapping for d X d matrices.
We write (4,) € RV(F) if (2.1) holds. We say that u is regularly varying with
exponent £ if there exists a sequence (4,) € RV(—FE) such that

n(Antt) — ¢ (2.2)

where ¢ is some o-finite Borel measure on R?\{0} which cannot be supported
on any lower dimensional subspace. Note that t-¢ = (t¢) follows. Here
(Ap)(dx) = ¢p(A~" dx) denotes the image measure. The convergence in (2.2)
means that nM(AZIS) — ¢(S) for any Borei set S of R? which is bounded away
from the origin, and whose boundary has ¢-measure zero. Note that this is the
vague convergence on the set R?\{0} where R¢ is the one-point compactifica-
tion of RY. For more information on multivariable regular variation see
Meerschaert (1993), Meerschaert and Scheffler (1999) and Scheffler (1998).
Regular variation is an analytic tail condition which is necessary for an
extended central limit theorem to apply. We say that {Z,} belongs to the
generalized domain of attraction of some full-dimensional limit Y if
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AZ1 + -+ Z,—nby)) =Y (2.3)

for some linear operators A, and nonrandom centering vectors b,. If
E||Z,||> < oo then Y is multivariate normal and we can take 4, = n~'/? and
b, = EZ,. Meerschaert (1993) together with Meerschaert (1994) shows that (2.3)
holds with a nonnormal limit if and only if the distribution u is regularly varying
with exponent E, where every eigenvalue of E has real part exceeding %

Sharpe (1969) characterized operator stable laws in terms of transforms. The
characteristic function of any random vector Y whose probability distribution is
infinitely divisible can be written in the form Ee "> = %) where

Y(s) = i(a, s) — %S,MS + J " el — 1 - %qb(dx).

Here a € R?, M is a symmetric d X d matrix, and ¢ is a Lévy measure, i.e. a o-
finite Borel measure on R?\{0} which assigns finite measure to sets bounded
away from the origin and which satisfies [ [|x||>Z(0 <||x|| < 1)¢(dx) <oo. We
say that Y has Lévy representation [a, M, ¢]. If ¢ = 0 then Y is multivariate
normal with covariance matrix M. A nonnormal operator stable law has Lévy
representation [a, 0, ¢] where t¢ = t£¢ for all >0 and every eigenvalue of the
exponent E has real part exceeding % If u varies regularly with exponent E,
where every eigenvalue of E has real part exceeding %, then the limit measure ¢
in (2.2) is also the Lévy measure of Y.

Let u be regularly varying with exponent £ and let A = min{R(a)}, A =
max{R(a)} where a ranges over the eigenvalues of E. Meerschaert (1993)
shows that in this case the moment functions

Us(r, 0) = J (x, 0) ()
[(x,0)|=<r

V(. 6) = L It O)fuca

are uniformly R—O varying whenever 7 <1/A < 1/A<{. A Borel measurable
function R(7) is R—O varying if it is real-valued and positive for » = 4 and if
there exist constants a>1, 0<m <1, M >1 such that m < R(tr)/R(r) < M
whenever 1 < t < a and » = 4. Then R(r, 0) is uniformly R—O varying if it is
an R-O varying function of r» for each 6, and the constants A, a, m, M can be
chosen independent of 6. See Seneta (1976) for more information on R—O
variation.

In particular it is shown in Meerschaert (1993) (see also Scheffler (1998) for
a more general case) that for any 0 > 0 there exist real constants m, M, ry such
that

Vpltr, 0) _  -1/2-0
V??(ra 0)
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Uiltr, 0) _  e-1/ass

Ue(r, 0)
for all ||@|| =1, all z=1 and all » = ry. A uniform version of Feller (1971)
p. 289 (see Scheffler (1998) for a detailed proof) yields that for some positive
real constants A, B, ty we have

C,
_ (. 0) _
U(t, 0)

for all ||6|| =1 and all ¢ = ¢,.

If u is regularly varying with index E then Meerschaert and Scheffler (1997)
show that there exists a unique direct sum decomposition R =V, & --- & V,,
and real numbers 0 <A = a; < --- <a, = A with the following properties: the
subspaces V' - -+ V), are mutually orthogonal; for any nonzero vector 6 € V; the
marginal absolute moment E|(Z,, 0)|° exists for p<1/a; and this moment is
infinite for p>1/a;; Pid, = A,P; and P,E = EP, where P; is orthogonal
projection onto V;; every eigenvalue of P;E has real part equal to «;; for any
nonzero vector x € RY we have log|/Pid,x||/logn — —a; (uniformly on
compact subsets); and log||Pid,||/logn — —a;. This is called the spectral
decomposition.

The spectral decomposition implies that the distribution P;u of the random
vector P;Z, on V; varies regularly with exponent P;E. Since every eigenvalue of
the exponent P;E has real part equal to a;, we can also apply the above R—O
variation results whenever 6 € V; and 7 <1/a; <. For a linear operator 4 let
A" denote its transpose.

LEMMA 2.1. Assume that the distribution u of Z is regularly varying with
index E; let R =V, & --- @& V, be the spectral decomposition of R? and let
0<a; <...<a, denote the corresponding real parts of the eigenvalues of E.
Then for any i =1, ..., p, given 0<n <1/a; <C there exists ny and constants
Ky, ..., Ks>0 such that

() nE[{4,Z, 0)|F1(|(4,Z, 0)] < ) <K,

(ii)  nE[A,Z, O)|F1(|4.Z] < 1)< K> o4
(iii) nE\(A,,Z, 0)|’71(|<A,,Z, 0)| >1)<Kj;

(iv)  nE[(4,Z, 0)]"1(||4.Z] > 1) < Ky

for all n = ny and all ||0] =1 in V;.

PROOF. Suppose we are given an arbitrary sequence of unit vectors 6, in V;,
and write r,x, = 4" 0, where r,>0 and ||x,|| = 1. Then we have
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nE|(4,Z, 0,)°I(|{4,Z, 6,)| < 1) = nE|(Z, A10,)|*1(|(Z, A'0,)| < 1)

nE|(Z, r,,x,,>|§[(|<Z, FaXn)| < 1)

nriE|<Z, x,,>|§1(|<Z, Xn)| < ’”;1)

= nri Uc(V;I, Xn)

Since {>1/a; both Ug(r, ) and Vo(r, 6) are uniformly R—O varying on
compact subsets of 6 £ 0 in V;. Then for some m, M, t, we have

¢
- t5Vo(t, 6) -

for all || =1 in V; and all 7= ¢, Since (2.2) holds where ¢ cannot be
supported on any lower dimensional subspace we must have ||4,|| — 0. Then
| 4,6] — O uniformly on compact subsets of R?\{0}, and so for some ny we
have ||4,0| < t;! for all ||0]| = 1 and all n = ny. Then for all n = ny we have

wr Ue(r,', %) < m™ ' nVo(r,', )
= m_lnP(|<Z, Xn)| > r;l)
=m 'nP(|(Z, rpx,)| > 1)
=m 'nP((Z, 410,)|> 1)
= m 'nP(|(4,Z, 0,)| > 1)

< m 'nP(|4,Z|| > 1)
as n — oo, and this upper bound holds independent of our choice of the
sequence 6,. By (2.2) we have nP(||4,Z||>1) = nd,u{z ||z|| > 1} — ¢{z
lz|| > 1} (if {z: ||z]| > 1} is not a continuity set of ¢ then we can use the upper
bound nP(||4,Z| > r) instead, where 0<<r<1). Then the sequence of real

numbers nP(||4,Z]| > 1) is bounded above by some K >0, and assertion (i) of
(2.4) holds with K; = m~'K. Since

nE|(A,Z, )| 1(||4,Z|| < 1) < nE|(A4,Z, 0,)|*1(|{4,Z, 6,)| < 1)

we immediately obtain assertion (ii) with K, = K;. Now write
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nE[(AnZ, 0.)"I([(AnZ, 0,)| > 1) = nE|(Z, 4,0,)"1(|(Z, 4,,0,)] > 1)

nE(Z, raxa)|"I(|{Z, rpxy,)| > 1)

nr’) E[(Z, xa) "1((Z, x)] > 77,1)

= I Vy(r, ', %)
Since n<1/a; we also have V,(r, §) uniformly R—O varying on compact
subsets of @ # 0 in V;. Then for some m', M', t, we have
_ V(1 6)
UC(Za 0)
for all ||@|| = 1 in V; and all ¢ = #,. Choosing f, large enough so that both (2.5)
and (2.6) hold whenever t=1¢ and ||f| =1 in V;, and then choosing

no = no(ty) such that ||4,0| < ¢;' for all ||6]| = 1 whenever n = ng, we have
for all n = ng that

<M (2.6)

r’ Vn(r;I, Xy) < M'nri U;(r;l, Xn)
and so assertion (iii) of (2.4) holds with K3 = M'K,. Finally write
RE|(A,Z, 0,0 (| A,Z]| > 1) = nE|(A,Z, 0,)"I(|(4,Z, 6,)] > 1)
T nE|(4,Z, 0,)"1(|4,Z]|> 1 and |(4,Z, 6,)] < 1)

< nE|(4,Z, 0)|"1(|{4nZ, 0,)| > 1) + nP(||4.Z|| > 1)

so that assertion (iv) of (2.4) holds with K4 = K3 + K. This concludes the proof
of Lemma 2.1.

3. MOVING AVERAGES

Suppose that {Z;}7 j——oo 1s a double sequence of iid. random vectors with
common distribution y varying regularly with index FE, i.e. (2.2) holds. Define
the moving average process

o0

Xo=> Gz (3.1)

f—

where C; are d X d real matrices such that for each j either C; =0 or else C; !
exists and A4,C; = CiA, for all n. The spectrum of the exponent of regular
variation E is connected with the tail behavior of the random vectors Z,. Let
A = max{R(a)} and 4 = min{R(a)} where a ranges over the eigenvalues of E
as before. Lemma 2 of Meerschaert (1993) or Scheffler (1998), Corollary 4.21
implies that E|| Z,||” exists for 0 <p <1/A and is infinite for p > 1/A. Then the
following lemma implies that the moving average (3.1) is well-defined as long as
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> IGH <o (3.2)

j==o

for some & <1/A with 6 < 1. Here ||4|| denotes the operator norm of a linear
operator A4 on R?. For the remainder of the paper we will assume that this is the
case, so that the moving average (3.1) is well-defined.

LEMMA 3.1. Suppose that E||Z,||* <ooVa<ay and that (3.2) holds for
some 0 <agy, O <1. Then (3.1) exists almost surely.

PROOF. First suppose ag>1 so that E|Z,| <oo. Then Y ||Cj||®<oo
implies that > ||Cj|| <oo because ||Cj||® — O since the series converges, so
|Cjl| <1 for all large j, and for such j we have ||Cj|| < | Cj||°.

Then we have X, = [12,GZ, || = YICZ |l = SIGIHIZ| so that
X = ES |G Ze ) = S ENGH 1 Z 1= SIGI Bl Z o | =El | I 6
< oo by monotone convergence and then X exists almost surely. To see this, note
that X = >"||Cj|| || Z,—,|| is a well-defined random variable which is nonnegative
and has a finite mean and so it is almost surely finite, i.e. the sum in (3.1) converges
absolutely with probability one.

If g <1 then Y ||Cj||° <oo for some d<ay and E||Z;||°<oo as well.
Also |x + y|° < [x|° 4+ |y|°Vx, y =0 so

Io)
Elx ) = E|| Y oz, ]
J
i )
<e[(SIclze
J
<F (Z|cj|é||ztj|5>]
J

0 0
=Y IGI°EIZi|° < oo
J

so as before X, converges absolutely almost surely.

THEOREM 3.2. Suppose that X, is a moving average defined by (3.1) where
{Z,} are iid. with common distribution u on R?. Suppose that u varies
regularly with exponent E, where every eigenvalue of E has real part exceeding
%. Then for the norming operators A, in (2.2) we have

Au(Xy 4+ Xy —nay) = U (3.3)

where a, € R? and U is full-dimensional and operator stable.
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REMARK 3.3. In the proof of Theorem 3.2 we show that we can take the
centering constants a, =y ;C;b, in (3.3) where b, are the centering constants
from (2.3) above. The operator stable limit U =Y ;C;Y in (3.3) is nonnormal
with Lévy measure ) ;C;¢p.

Before we proof Theorem 3.2 we need an additional result that shows that
under the general assumptions on the moving averages parameter matrices C;
the spectral decomposition remains invariant under C;.

LEMMA 3.4. Suppose the u is regularly varying with index E and spectral
decomposition R = V| & ... ® V, and norming operators A, as in (2.2). If
C; is invertible and C;A, = A,C; for all n then C;V;=V; forall i=1---p

PrOOF. Let L=V, ®---® V, and Li=V,®---@ V;. Meerschaert and
Scheffler (1998) show that for any x € L;\L;;; we have log|/4,x|/logn —
—a;. This convergence is uniform on compact subsets of x € L;\L; ;. For any
x € L\L;i—; we have log|(4!)"'x||/logn — a; (uniformly on compact sets).
Since C; is invertible there exist ¢;>0 and b;<oo such that ¢|x| <
|Cix|| < bj||x|| for all x. Then log|Cid,x|/logn — —a; if and only if
xe L\L,H, and log||4,Cjx||/log n i if and only if Cjx € L;\L;4. Since
4,C; = Cj4, this implies that C; WL \L,H)— L\Li.1, and so Ci(L\Lit1)
= L\L,H Similarly we have 10g||(A )" 'x||/logn — a; if and only 1f
x € L\L;i_; as well as 10g||(A )~ 1(C) x||/logn — a; if and only if (C) x
€ L)\L;_1. Then (C) WLA\Li ) = ,\L, 1 and since the subspaces V, are
mutually orthogonal it follows that C(Ll\L, 1) = l\L, 1. Then Ci(L; N L)
= L;NL; and L; N L; = V;. This concludes the proof of Lemma 3.4.

PROOF OF THEOREM 3.2. Suppose that (2.3) holds and define

xim = Z CiZ:;

ljl<m
a(nm) = Z C;by,

ljlsm
v =3 Gy

ljlsm

for m = 1, where Y is the limit in (2.3). From (2.3) it follows that

(An Z(Zt_j —by): |j] < m> =(Y,...,7)
=1

since we know that the convergence holds for the j = 0 component, and since
the difference between this component and any other component (at most 2m
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terms) tends to zero in probability. Now by the continuous mapping theorem we
obtain

A X 4+ X — naMy = U™

and since U™ — U =3 ,C;Y almost surely it suffices to show (e.g. by
Billingsley (1968) Theorem 4.2) that

lim limsup P(||T||>¢)=0

n—oo

where

T=73 > AC(Zij— b

[j|>m t=1
For this it suffices to show that

lim limsup P(|(T, x)| >¢&) =0 (3.4)

m—oo  u_ 50

for any unit vector x € V; where 1 < i < p. Decompose 7 = 4 + B — C where

A= ACZ (| 4nZ, 5| < 1)

lj|l>m t=1

B=Y Y 4,GZ jI(|4Zijl| > 1)

[/|>m =1

C= > n4,Cpb,.

/1> m

First suppose that a; > 1, so that assertion (ii) of Lemma 2.1 holds with & = 1.
Write Cx = rx; where 7;>0 and ||x;|| = 1. Note that x; € ¥; by Lemma 3.4.
Then
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P[|{4, x)| >¢&/3] < 3¢ 'E|(4, x)|

<3e' ) nE({4,CZ1, (421 < 1)

[/1>m

=37 Y nE|(CiduZy, )| I(| 4nZ0]| < 1)

|j1>m

=3¢ Y nE[(4,21, CO)I(|4.Z1] < 1)

/1> m

=3¢ Y nnEl(4aZy, ) |1(|4:Z1]) < 1)

/1> m

<3e'K; ) |Gl

|j1>m

which tends to zero as m — oo in view of the fact that (3.2) holds with
0<l1/a, <1/a;<1. Choosing 0<0<1/a, so that (3.2) holds, we have
that assertion (iv) of Lemma 2.1 holds with # =0. Note also that
|x + y|® < |x]° + |y|° since 6 <1/a; <1. Then

P[|(B, x)|>¢/3] < 3¢ °E|(B, x)|°

<3e° > nE|(4,C;Zy, x)|°1(| 4221 | > 1)

|j|I>m

=3¢ Y nE|(CAZ1, X)°1(| 4, Z1]| > 1)

|j1>m

=360 )" nE|(4,Z1, Cx)°1(|| a2 | > 1)

L[> m

=370 PnE[(4,Zy, ) 1(| 4 Z0 ]| > 1)

|j1>m

<3:79%, 3 |G

/1> m

which tends to zero as m — oo in view of the fact that (3.2) holds. The standard
convergence criteria for triangular arrays (e.g. Araujo and Giné (1980)) shows
that we can take b, = EZ1(||4,Z|| < 1) in (2.3). Then for all n = ny we have
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(Cox)| < D al{4,Ciba, )|

[j|>m

= 3" n{ACEZ (|4, 21| < 1), x)|

|j1>m

< Y nE|(4,Cizy, )| I([| 4nZ1]| < 1)

|j>m

<K ) gl

[jl>m
which tends to zero as m — oo as in the argument for 4. Since
P((T, x)| >¢) < P(|{4, x)| > ¢/3)+ P(|{B, x)| >¢/3) + P(|{C, x)| > ¢/3)

it follows that (3.4) holds when x is a unit vector in V; and a; > 1.
Suppose then that %< a; < 1 and note that (2.4) part (ii) holds with & = 2.
Since C = EA we have by Chebyshev’s inequality that

P[|{4 — C, x)| > &/2] < 2& 2 var({4, x))

=2¢72 ) nvar[(4,CiZy, x)I(|| 4uZ4|| < 1)]

|j1>m

<2677 nE[(4,CiZ1, x)I(| 4nZ4 || < 1]

[j|>m

=2e72 Y i E[(AnZ1, 50 1(| 4 Z0|| < 1)]

|i>m

<2:7Ky Y |IGIP

|j1>m

which tends to zero as m — oo in view of the fact that (3.2) holds with 6 < 1. If
1<a; <1 then (2.4) part (iv) holds with » =1 and so
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P[|(B, x)|>¢/2] < 2¢'E|(B, x)|

<2 Y nE|(4,CiZy, ) I([| 4 Z0]| > 1)

/1> m

=21 mnE[(AuZy, )| 1([| 4,21 | > 1)

|j[>m

S e

/1> m

which tends to zero as m — oo in view of the fact that (3.2) holds with 6 < 1.
Finally if @; = 1 then (2.4) part (iv) holds with # = 0 where we choose 6 <1
such that (3.2) holds. Then argue as before that

P[|(B, x)| >¢/2] < 2¢°E|(B, x)|°

<270 nE|(4,CiZy, x)|°1(|4aZ1| > 1)

|j1>m

=270 PnE[(A,Zy, ) 1(| 4 Z1 ]| > 1)

|j>m

<2:79%, 3 |G

[j1>m
which tends to zero as m — oo in view of the fact that (3.2) holds. Since
P((T, x)| > &) < P(|(4 — C, x)| > ¢/2) + P(|(B, x)| > £/2)

it follows that (3.4) holds when x is a unit vector in V; and a; =< 1, which
concludes the proof of Theorem 3.2.

REMARK 3.5. The assumption that 4,C; = C;4, is somewhat restrictive, but
necessary for our method of proof. It may be possible to relax this restriction.
For example, it is not hard to check that for finite moving averages X, =
CoZ; + -+ CyZ;—, we have

(CA,CNYX| + -+ X, — na,) = CY
where C = Cp + --- + C,. We conjecture that the same is true in general, i.e.

that (3.3) holds even with 4,C; # Cjd, if we replace 4, by CA4,C~!, but we
have not been able to prove this.
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4. SAMPLE AUTOCOVARIANCE MATRIX FOR MOVING AVERAGES

In the previous section we proved that moving averages of random variables with
regularly varying tail probabilities are asymptotically operator stable. In this
section we prove that the sample autocovariance matrix formed from these
moving averages is also asymptotically operator stable as a random element of
the vector space of d X d symmetric matrices. The sample covariance matrix at
lag % of the moving average X, is defined by

. 1 <&
L) == XiXin (4.1)
t=1

Meerschaert and Scheffler (1999) consider the asymptotic behavior of the sample
covariance matrix of an i.i.d. sequence of random vectors with regularly varying
tails. Suppose that {Z,} are iid. random vectors on R? with common
distribution u, where u varies regularly with exponent E, i.e. (2.2) holds and
every eigenvalue of E has real part exceeding %, Then

A, (Z ZiZ, — Bn> A= w (4.2)
i=1

where 4, is taken from the definition (2.2) above, B, = EZ, Z{I(||A.Z:|| < 1),
and W is a nonnormal operator stable random element of the vector space .7
of symmetric d X d matrices with real entries.

THEOREM 4.1. Suppose that T,(h) is the sample covariance matrix defined
by (4.1) where X, is the moving average (3.1) and {Z,} are i.i.d. with common
distribution u on RY. Suppose that u varies regularly with exponent E, where
every eigenvalue of E has real part exceeding ﬁ and (2.2) holds. Assume that
Ex'Z, =0 for all x € R? such that E|x' Z,|<oo. Then for all h we have

o0

nd, |Tu(h) = > CiB,C!

Jt+h
f— .

where A,, B, and W are as in (4.2).

A4, = Y gwcl,, (4.3)

The method of proof is similar to that of Theorem 3.2 above but much more
involved. The assertion of Theorem 4.1 follows easily from the following two
main propositions whose proofs are included in the appendix. The first key
proposition asserts that the quadratic terms of I',(%#) dominate.

PROPOSITION 4.2. Under the assumptions of Theorem 4.2 we have

. n [0 0] ) P
An |nEu() =Y > CZy 21 ;Ch | 4 =0 (4.4)

t=1 j=-00
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as n — oQ.

The next proposition establishes the convergence of the quadratic terms of
the sample autocovariance matrix to the limit in (4.3).

PROPOSITION 4.3. Under the assumptions of Theorem 4.1 we have

[Z N CHZijZi_;— B)CY,, |4

o0

= > qwcl,, (4.5)

t=1 j=—00 Jj=—00

as n — oQ.

PROOF OF THEOREM 4.1. Combining Propositions 4.2 and 4.3 we have

f= A, | nlu(h) — ZZCB "

t=1 j=—00

o)

nd, [f,,(h)— > CB.Cl,, 14

=00

=4, nf,,(h)—z Z GZi—Zi—;Cl. | 4,

t=1 j=—00

Z Z C{Z, ;Zi ;,— B )cﬁh Al

t=1 j=—00

=0+ Z e,

Jj=—00

which concludes the proof.

REMARK 4.4. If ap<% then EZ;Z] exists and consequently the auto-
covariance set as % matrix I'(h) = EXX},, is well-defined. In this case
Meerschaert and Scheffler (1999) show that we can take B, = EZ;Z{ in (4.2)

and then (4.3) becomes

A, [C,(h) — T(h)]4! = Z GWC, . (4.6)

‘]7*00

Since 4, — 0 slower than n ~1/2 \when a, <l 2 we also have in this case that
r «(h) — T'(h) in probability, and (4.6) prov1des the rate of convergence. If a; > 5
then Meerschaert and Scheffler (1999) show that we can take B, = 0 in (4.2) and
then (4.3) becomes

nA, LA, = > GWel . (4.7)

=
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Since 4, — 0 faster than n~ /2 when a; > 1, we also have in this case that L,.(h)
is not bounded in probability, and (4.7) provides the rate at which it blows up.

An application of Proposition 3.1 in Resnick (1986) shows that the regular
variation (2.2) implies weak convergence of the associated point processes. All
of the results in this paper can also be established using point process methods.
In the special case of scalar norming (where (2.3) holds with 4, = a,' for all
n) we say that {Z,} belongs to the domain of attraction of Y. In this special
case a result equivalent to Theorem 4.1 was obtained by Davis, Marengo, and
Resnick (1985) and Davis and Marengo (1990) using point process methods. In
this case the random matrix W is multivariate stable. Since we are norming by
constants in this case, one immediately obtains the asymptotic distribution of
the sample autocorrelations using the continuous mapping theorem. It is not
possible to extend this argument to the general case considered in this paper
(with norming by linear operators).

In Theorem 4.1, the assumption that £x’Z, = 0 when the mean exists can be
removed if we use the centered version of the sample covariance matrix defined
by

A 1< — —
Gu(h) =~ (X; = X)X = X (4.8)
=1
where X = 1/n)_7_| X, is the sample mean.

THEOREM 4.5. Suppose that G,(h) is the sample autocovariance matrix
defined by (4.8) where X, is the moving average (3.1) and {Z,} are i.i.d. with
common distribution u on RY. Suppose that u varies regularly with exponent
E, where every eigenvalue of E has real part exceeding ﬁ. Then for all h we
have

nd, |Gu(h) = Y CB,Cl |4, = > CwCl,, (4.9)
J=— J==0

where A,, B, and W are as in (4.2).

PrOOF. Note that the difference between the two formulas (4.1) and (4.8)
can be written in the form
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1 <& — — 1 <&
N X=X = X) ==Y XX,
= L

n

[ 1 | nth ! L
=-XX -X X——ZX,+— Z X, | +xXX'
=1 t=n+1

XX + op(X X

and so it suffices to show that n4,X X'A! — 0 in probability. For this it suffices
to show that for all unit vectors x € V; and y € V; we have

nx' A, X X' ALy = /nx' A, X \/ny' 4, X — 0

and so it suffices to show that \/nx'4,X — 0 in probability for any unit vector
xeV foranyi=1,... p

If a; <1 then EP;Z, exists. Note that (4.8) is not changed if we replace Z, by
Z: — EPZ, so that without loss of generality EP,Z, =0. Let S, =X, +

-+ X, so that X = S, /n. In the case a; <1, Meerschaert (1993), along with
the spectral decomposition shows that we can take Pb, = EP;,Z; =0 in (2.3)
and then we have from (3.3) that A4,PS,=nd4,PX = U and so
n'?4,P. X — 0 in probability. It follows that n'/2x’4,X — 0 in probability.
If a; > 1 then Meerschaert (1993) along with the spectral decomposition shows
that we can also take P, =0 in (2.3) and it follows as before that
n'2x'4,X — 0 in probability.

If a; =1 we can apply Lemma 2.1 part (i) with { =1+ &> 1/a; for any
£>0. By (3.3) we have 4,(S, — na,) = U, and so we have nd,(X — a,) = U,
and then nx'4,(X — a,) = x'U by continuous mapping. Then /nx'4,(X — a,)
— 0 in probability and so it suffices to show that /nx'd,a, — 0, where
without loss of generality a, = Y ;C;b, and b, = EZ,I(||4,Z:|| < 1). Argue as
in the proof of lemma 5.1 that U(r, 0) < CU (7, 0) for all r large and all 0
unit vectors in V;. Then as in the proof of Lemma 5.1 we have (letting
A'x = 1,0, with r,>0 and ||6,]| = 1) that

|nx' A,b,| < nE|(A,Zy, x)|I(||4,Z:1]|| < 1)
< C||PA, " |*nE|(A,Z1, x)|" T I(|{4,Z1, x)| < 1)
< C||Pd; Ky

for all n large, and so for all large n we have
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i nx'A4,Cib,

j=—00

|n1/2x’Anan| =n 12

A

n'? Z Gill |nx" A,y

J=—00

N

w2 PA K Y IIG

fm—

where the series converges. Since log(n~'/?||P.A;"||¥)/log n — —1+ a;e <0 for
small ¢ >0 we obtain n'/2x'A,a, — 0, which concludes the proof.

REMARK 4.6. Davis, Marengo, and Resnick (1985) and Davis and Marengo
(1990) also establish the joint convergence of the sample autocovariance
matrices over all lags |h| < ho, in the special case of scalar norming. It is
straightforward to extend the results in this paper to establish joint convergence
as well. In Meerschart and Scheffler (1998) we apply this joint convergence to
compute the asymptotic distribution of the sample cross-correlations for a
bivariate moving average. This extends the results of Davis et al. to the case
where the norming operator 4, and C; are diagonal. The general case, where
both 4, and C; are arbitrary linear operators, remains open.

5. APPENDIX

In this section we prove Proposition 4.2 and Proposition 4.3 above and hence complete the
proof of Theorem 4.1. Throughout this section we assume that the assumptions of
Theorem 4.1 hold. That is, we assume that {Z,} are i.i.d. with common distribution # on
R4, and that u varies regularly with index E, where every eigenvalue of E has real part
exceeding 4_1‘ and (2.2) holds. Assume further that Ex'Z, =0 for all x € R? such that
E|x'Z,| < oc.

Recall from section 2 that in view of the spectral decomposition we can (and hence
will) assume without loss of §enerality that A4, is block diagonal with respect to the
direct sum decomposition R =7V, & ... ® V,, where the V;-spaces are mutually
orthogonal and form the spectral decomposition relative to E. Let ;<a; <...<a,
denote the real parts of the eigenvalues of E.

Since the proofs of the two propositions are quite long we split them into several
lemmas.

PROOF OF PROPOSITION 4.2. Let Vi, ..., V, be the spectral decomposition of £ and
a; < --- <a, the associated real spectrum (see section two above). Recall that V; L V;
and that P; is the orthogonal projection onto V;. We also assume as before that (3.2)
holds for some 6 <1/a, with d < 1. Tt will suffice to show that

n

0
' I ' 3
XAy |l =3 Gz zi i, | by o (5.1)

t=1 j=-o00

for all unit vectors x € V; and y € V;. Note that
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Wb = > XX = Z( > Gz ,) ( Y CoZun- q)
t=1

t=1 \ j=—00 g=—
= ( Z Qth> ( Z Ck+thk) (set k=q—h)
t=1 \ j=—00 =—00

.
-y (q—zf_jz;_jc;%+zq—zf_,-z;_kc;+h>

=1 j=—00 k#j
n 00

S DD STACIINED 35 DD LRI
t=1 j=—0o0 t=1 j=—00 k#j

so that (5.1) is equivalent to

n o0
’ ! P
xX'd, P > > Gz 21k Chyy | ALy — 0. (5.2)

t=1 j=—00 k#j

We now have to consider several cases separately.

CASE I: Suppose that x € V; and y € V; are unit vectors with a; +a;>1 Choose
0 >0 such that 0 >1/(a; + a;), 6 < l/a,, o< l/al and 0 < 1. Write C ‘Al x = r0 where
r>0 and ||0] = 1. Then r = HC Ax| = [|CiA, Px|| = ||C PA'x|| = HC|| |P:A4,] and

SO
E|x'4,CiZ,|° = E|(CiA}x) Z,[°
= E|r6' Z,|°
< |PAICICIEKZ), O)1°
= 1PN EN(Z1, PO))°
= 1P|’ IIG P E(PiZ1, 6)]°
< 1P|’ GI° Ell Piza |°
and likewise

E|Z2Ck+hA J’|6 HPIAnHé||ck+h||éEHPIZZH6‘

Then
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A, {z S Y ozozic,

=1 j=—o0 ktj

0

A,y

n o8]

I}
YD D NAGZ 2k Cl Ay

=1 j=—o0 k£j

i n o0 6
<z ( 3 z|fonc_fz,,,z;kc;+hA;y|>

t=1 j=—00 k#j

=F

o0
<E Z |xA CiZ, Qka{+hyA;y‘3}

—E > |xA CiZij°| Zi-kCly v AL Y| }
-3y B 4, G2 | 21y Al )

=> > EWA4,GZ, HICE|Zi i CL Al y)

by independence of Z,_;, Z;_;

n 00
o] o o] 4] o o]
<> > Y IRAICIGICENPZ 1Pl Crsnl EN PiZs |

=1 j=—00 k#j

= || P || PP ENPZPENPZo] D D IGIN Cronnll®
== K

where E| P,Z,||° < oo because 0 < 1/a;, E||PiZ;||° < oo because 6 < 1/a;, and

i DG NChenll® < (i |cj||6> ( i |Ck+h||6)

=00 K] == =00
o 2
_ B
= [ D IGl° ) <o
j=0
and furthermore since

log|| P4 || _
log n

1
—a; and 7OgHPZAnH—>—
log n

we have

log(n|| Pty || iy |)

1—(3a,-—6a;<0
logn
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since 0 > 1/(a; + a;). Then n||Pi4,||°||Pid,||°> — 0 and it follows that (5.2) holds in this
case.

CASE 11: Suppose that x € V; and y € V; are unit vectors with a; +a; < 1. Then
;<1 and ;<1 so E||PZi||<oo and E||P,Z,|| <oo. Then by assumption Ex'Z; =0
and EZ3y = 0. Define Z;, = ZJ(||4,Z:|| < 1) and u, = EZ;, and let

Aijn = Zin — ) Zj — n)'
Bijn = Zintn — nZn
Cijn = ZZ;I(||4,Zi]| > 1 or ||4,Z;|| > 1)

Djjn = —pnlty
so that £4;;, =0 and Z;Zj = A, + Bij, + Cijn+ Dj;,. Then let
A= 3 D X 4G Ak ChnsAny
t=1 j=—00 k#j
and similarly for B, C, D to obtain

x'A, {Z i > Gz ;ZikChy,,

t=1 j=—00 k#j

Ay,y=A+B+C+D

and so in order to establish (5.2) it suffices to show that each of 4, B, C, D tends to zero

in probability. Let Z; = Zj —u, so that A, = Zy,Zj,. Since Z; and Z; are
independent with mean zero for i # j it is easy to check that £4 = 0. Then

n o0 2
var(4) = E<Z oS XA CZi jnZiknChyp Al y>

=1 j=—o00 kAj

n=l1ji=—00 ki#j

—r (z 3 zx'Ancﬁzh,-l,nz;lkl,ncz,MA;y)

B

o0
( Z x,A”Cjz lejz,nzézlfzq”C%#»hA:zy)

=1 jp=—00 ky#ja

=

n

s s .
=20 D 2 D> ElZu G
f=1 =1 j1=—00 p=—00 k1#ji ka#ja
'<7t1*k|,n’ C;c|+hA;y><7t2*jz,n’ C}2A2x><7t2*kz,n’ C22+hA:1y>]

If any one of #; — ji, t; — ki, ty — ja, or tp — ky is distinct then this term vanishes since
EZ;, = 0, using the independence to write the mean of the product as the product of the
means. The only nonvanishing terms for a given ¢, j;, k; occur when either

th— j2 and t; — ki =t — k»
ty—kyand t) — k1 =t — j».

@ t —ji

®) i —h
Given 1, ji, k; for every t, = 1, ..., n there exists a unique j,, k, satisfying (a) or (b).
Indeed we have
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@ jp=(2—t)+j1and ky = (2 — t1) + k1
(b) jo=(t2—t1))+ ki and ky = (1 — 1) + /i

so that j, # k, is guaranteed. Now let p=1t, —j1, g=t, — ki, j=J1, t =t, k= ki,
and A = t, — t; so that in case

(a) tzszzp,tszzzq,jz A+],andk2 A+ k
® h—pp=¢q, b—ka=p, p=A+k and by =A+ .

Then in case (a) the only nonvanishing terms for a given ¢, j, k are of the form
E[<an> C A x><an, C[+hA;y><an, CtA+] ><an’ CA+k+hA >]
= E[(Z pn, C AL XN (Z pns CAﬂA XN Zgny Coop AV Zgny ChsrinALy)
= E[x’A,,ijp,j}mC’AHA;x]E[y’A”CHh?q,,?;,,C’AMMALy]
= (x’A,,CjM,,C’AHA;x)(y’Aan+thC[A+k+hA§,y)
where M, = EZ;,Z},. In case (b) the only nonvanishing terms are of the form
E[<7pna C;A;x)(?,p,, C;H—hA;y) <7qn> CtA+kA;x><7pns CtA+j+hA:,J’>]
= E[<7pna C;Ai,x><7pna CtA+j+hAZJ’><7qn’ C2+hA;y><7qn’ CtA+kA;zx>]
= (x'4,C;M,, CtA+/+h ;y)(y/AanJrthCtAJrkA;x)
so that
n n o0
var(d) = > Y Y N (W ACGM,Ch AL A CroinMaCh gy A3 Y)
t=1 t+A=1 j=—00 k#j
+ (CACGM,Cl AL A CrinMaChy  AL)].

Now we need to bound the terms in this sum. Write Cix = rx;, ALx = ayx,,
Ct V=0 and Any, bpjynj Where x;, x,;, y;, s are unit vectors and r;, ay;, p;, by are
posmve reals. Then for example we have

Atx—xCAMA C!

xX'4,C;M,C! [

A+j
= (C_;.x)’A,,MnA;C’Aﬂ.x
= rjrAij’-A,,MnAZxAH

where

xj’-A,,M,,A;xAH = x}A,,E?l,,?{,,A;xAH
= Ex}An7ln7inA£,xA+j

= E(Zin, A,5)(Z1ny AyXas)

<\ E(Zin. ') E(Z1, Alias )2

Since Zy, = Zy, — u, where u, = EZ;, we have for example that
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E(Zin, Abx)* = E(Z1n — ton, Axy)*
= E((Zyn, ALx;) — E{(Z1,, A;’?ﬁ)z
= var((Zy,, A5x))

< E[(Zin, A1)

so that, calculating in a similar manner for the remaining terms, we have for example

x'4,C;M, C’AﬂAnx < r,r,+A\/E (Zyny ALV E(Zyy, Al XA ;)2

and then

var(A) <Y > > D (el E(Zun, A4) E(Zus Axgea)’]'

=1 t+A=1 j=—00 k#j
P hPrrhi Al EZ1ny ALy )2 E(Z1ny A yiinia)’1?
+ 130 n AL E(Z1n, ALy E(Zyn, Abyjenea)’]?

P ki ALE( Z1ns A yis )2 E(Z1n, A x310)%1"%).

To bound the expectations on the right hand side of the inequality above we need

LEMMA 5.1. For all unit vectors x € Vi, y € V), for some ny, for all n = ng and all j,
k h, A, for some K,>0 satisfying nK, — 0 we have
LE(Zyns A E(Zyns A a)> E(Zuns Abyiin)* E(Z1ns Ayyiinia)’1?
+ [E(Zun, AL E(Ziny Ayyjsnin)® E(Zin Apyicen)’ E(Zun, Apxiia)’1'? (5.3)

<K,

PROOF OF LEMMA 5.1. Suppose that a;>% Then a;<} so E||PZ||* = oo while
E|PZ,|*> <oo. Recall that P = P, = P} for this orthogonal projection operator,
AyPr = PiA, and that |(x, 0) < ||x|| when § is a unit vector. Then for all unit vectors
0 € V; we have

E<Zlna A£,9>2 E(AnZy, > I(HA Zl”

(
(4,21, 6)?

<E
E(4,Z:, P,6)*
= E(PA,PZ,, 6)*
< E|PA,P.Z; |

< |PAIPEIIPZ: .
Since 1/a; <2 we can apply part (ii) of Lemma 2.1 with { =2 to get
nE(Zyn, AL0)Y = nE(4,Z1, 0)°1(|4,Z:] < )< K,
for all n = ny and all ||@]] =1 in V;. Then (5.3) holds in this case with
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Ky = 2[(Ky/ Y’ (|| Pidn | E|| P20 |12

= 2(Ka/ )| PAw | E|| PiZy |

so that nK, — 0 since ||PA,| — 0. If a¢;>1 so that a; < 5 then a similar argument
establishes . 3) with Ky = = 2(Ky/n)|| PA, HZE\fPZlHZ and again nK, — 0. Otherwise we
have a; <% and a; <1 If both E||P,Z||* and E|PZ;||* exist then (5.3) holds with
K, = 2|| P4, |*|| P4, |\2E||P21||2EHP,ZI||2 and then
lognKyy _ log(nl| Pidu|*[| PA|*)

log n logn

1 —2(a; +a;))<0

since a, > and aq; >1 3 by assumption, so again nK, — 0. Otherw1$e suppose that a; < %

and a; <3 Wwith EHPZl |* = oo and E||PZ;[]* < oco. Then a; = 3 and so we can apply part
(ii) of Lemma 2.1 with £ =2 + ¢ for any & > 0. Observe that for all ¢ and all & we have

Us(t, 0) = J (2 0)Pu(d2)

[(z,0)|<t

— J |(z, 0)*u(dz) +J (2, 0)u(dz)
0<|(z,0)| < 1 I<|(z.0)|<t

< [ (2. 6)Pucds) +J (2. 6)* u(ds)
0=<|(z,0)| <1 1=<|(z,0)|<t

<1+ U2+€(ts 9)

and since U, .(t, 6) — oo uniformly on ||6]] =1 in V;, for some #, and C >0 we have
for all =ty and all ||0]| =1 in V; that U,(t, 0) < CUp((t, 0). As in the proof of
Lemma 2.1 we can choose ng such that ||4,0] < #;! for all ||§]| =1 and all n = n.
Enlarge ng if necessary so that Lemma 2.1 also applies. Then

nE(Zi,, A'x)* = nE(Zy, A'x)*1(|4,Z1|| < 1)
= naijUz(a;jl, Xpj)

—& 2+¢ -1
< Ca,;-nay " Usre(a,;, Xy)

= Caif-nEKAnZl, ) PI((AnZy, )| < 1)

<Ca K,

for all n=ny=ne(tp) and all j. Note also that for all j and all » we have
ayj = HA,,x]H = min{||4,0]: ||0]| = 1 in V;} = 1/||P4,"| so that a,’ < P4, Y€ for all
n and all j. Then (5.3) holds in this case with

K, = [(n7 K\ || P, || P P E || P21 |1P)P]?
= n"'Ki||PA, | PP EN| B2y |
so that

lognK, _log(||PA, " |l Pidal*)
~ —
logn logn

a; —2a;<0

for all £ >0 sufficiently small. Note that ¢ >0 can be chosen independently of x, y, j
and so nK, — 0 here too. Finally if aiS% and a;s% with E||P.Zi|?> <oco and
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E|PZi||> =0 then (5.3) holds with K, =n"'K||PA4,"|¢||PA,|?E| PiZ:||> and
log(nK,)/logn — ea; — 2a; <0 for ¢>0 sufficiently small, and again nK, — 0. This
concludes the proof of Lemma 5.1.

Returning to the proof of Proposition 4.2, we get from Lemma 5.1

n n 00
var(A) < Ko D > D N (5 aphePrihia + 1P ht APk ATkEA)
t=1 t+A=1 j=—00 k#j

n n—t 00
<K Do > > MGHICHAlIChrnll I Curneall

t=1 A=1—1t j=—00 k#j

FIGICjenrall 1 Cosnll 1 CrralD

00 4
< nK,,Z(Z |cj||> -0

i

and so 4 — 0 in probability.

Next we have

n

o0
B=>"> "N XAClZ jutth + ttnZi ] Chy ALy
k#j

t=1 j=—00
and we will let

BY = X' 4,Cl Zpnty + un Zin]CL ALy
= (ij),An[Zrn/";t + //LnZ;n]A;(C;{y)

= rjrk(quxj)/[Zrn/u;: + Un Z;n](A;yk)

B + B
where

BY = (44x) Zunith Al i
B = (A!\x) unZin Al i

In the next lemma we derive bounds on the expectation of B.

LEMMA 5.2. For all unit vectors x € V; and y € V), for some ny, for all n = ny, for
all j, k r, s we have

E|Bl| < |G|l |ICk]| K (5.4)

where nK, — 0.

PROOF OF LEMMA 5.2. Write
E|BJ| = rinE|BY + BY)|

< IGIICI(EIBS | + EIBE)

where
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E|BYV| = E[(Z1n, A3x)(ttns 43,76)]

= [(uns ALY E(Z1ns A7)

Since @; <1 we have E||PZi| <oco. Then E|(Zi,, A'x;)| < || P4 E|P:Z1] as in the
proof of Lemma 5.1. Apply part (iv) of Lemma 2.1 with 7 = 1 (so that  <1/q,). Using
the fact that E(Z;, y;) = 0 we have for some n; >0 that

n[(EZyn, 4},30)]

= n|E(Zin, 4,31

n|(ten, 45, 3%)]

(
= n|E(Zy, 4,y )1(|4:Z, ]| < D)
(
(

I
=
=

Zy, Ayyi)1(| 4,21 > 1))

Al

nE|(AnZ1, yi)l1(||4nZ1]] > 1) < K4
for all » = n; and all £. It follows that
nE|B\V| < Kyl| PA,|| E|| PZi |

for all » = n; and all k. A similar argument (note that a; <1 so that E||P,Z;|| < oo and
apply part (iv) of Lemma 2.1 again with # = 1, so that 7 <<1/a;) shows that for some
ny >0 we have

nE|BY| < Ki|| Pt || EI| P2 |
for all n = n, and all j. Letting ny = max{n;, n,} we have that (5.4) holds with
Ky = Kal PAJIEI P24 + | PA E P24 )

for all j, k, r, s and all n = ny. Then nK, — 0 since ||4,| — 0, which concludes the
proof of Lemma 5.2.
Returning to the proof of Proposition 4.2, Lemma 5.2 yields

EIBI<Y > > IGIIChrall K

=1 j=——o0 kij
o 2
<nk,[ Y IGI| —0
j==o0

and so B — 0 in probability.
Next we write

Cls = X'A,GZ,Z(| 4Z,|| > 1 or || 4,Z,|| > DT Ay
1 Zy, A3G)(Zs, A, yi) 1| 4nZ,]| > 1 or [|4,Z4]| > 1)
so that
E|CE| < IGINCKIE(Zy, A3)(Zs, Ay ) (|40Z0]| > 1 or | 4,2, > 1))
< | GIICrlI(Elx;AnZ, Z5 Ay v I(| AnZy || > 1) + ElxjAnZ, Z5 Ay vil 1| AnZs|| > 1)).

The next lemma gives bounds on E[CJ].

LEMMA 5.3. For all unit vectors x € V; and y € V), for some ny, for all n = ny, and
all j, k, r, s we have
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E|CR < G [|Cel[ K (5.5)

where nK, — 0.

PROOF OF LEMMA 5.3. Write
E|xjAnZ, Z Ayl AnZy | > 1) = E[(Zs, Ay E[(Z, L) (|| AnZ, || > 1)
where
ENZ;, AL,y = bucE[(Zs, yui)
< by E|| P2,

< | PA.|| E| PiZa||
and
nE|(Z,, Al [1(1 4,2, > 1) < Kq
and similarly
nEXjAnZ ZAL Y| 1(|AnZs|| > 1) < || Pidu|| E|| Piddy || Ks
so that (5.5) holds with
nKy = Ka(|| AN E|| PiZ: || + || Pdn || E|| PiZ: |])

which is the same K, as for Lemma 5.2, so nK,, — 0. This concludes the proof of Lemma
5.3.
In the proof of Proposition 4.2 we get using Lemma 5.3

n 00
EICI<Y > D IGHICkHIK,

=1 j=—00 k#j

00 2
sm(z |cj|) ~o
i

and so C — 0 in probability.
Finally we can write

Dy = x'4yCittnpt C A}y

rjr](<1un> A£1xj><1u’l> Ai,)ﬁc)

and use the bound proved in

LeEMMA 5.4. For all unit vectors x € V; and y € V), for some ny, for all n = ny, and
all j, k, we have

| Die| < (G Cil [ K

where nK, — 0.

PROOF OF LEMMA 5.4. Recall that for all large n we have |(u,, 4}x;)| <Ks/n from
the proof of Lemma 5.2 above. Likewise |[{un, A\y)| < Ka/n so we can take
K, = (K4/n)?, which concludes the proof of Lemma 5.4.

Now we have from Lemma 5.4
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n 00
IDI<) > D IGHICklK,

=1 j=—co kzj

00 2
< nK< > |c,||> 0

j==

which completes the proof of Proposition 4.2.
We now prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. Define

5= S o )
t=1

|jl=m

" =nd" CB,C'.,

ljl=m

wm — Z CJ'WC;'+h

[j|<m

for m = 1. We will now apply (4.2) to show that

(A,, (Z 7, ;,B,,)A;: lj| < m) = (W,...,W). (5.6)
t=1

Since we know that the convergence holds for the j = 0 component, it suffices to show
that the difference between this component and any other component tends to zero in
probability. This difference consists of at most 2m identically distributed terms, any one
of which must tend to zero in probability in view of the convergence (4.2) above, and so
(5.6) holds. Now by the continuous mapping theorem we obtain from (5.6) that

A (S —dM™y4l = wm

and since

Yo IGwes <1 IGHIC 4l

|j1>m |j1>m
1/2 1/2
<> lIcl S ClP) —o0
|/1>m |j1>m
as m — oo we also have
wm— N owel,,

=00

almost surely. Then in order to establish (4.5) it suffices to show (e.g. by Billingsley
(1968) Theorem 4.2) that

lim limsup P(||T||>¢) =0 (5.7)

where
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n
T=> > 4,C(Z ;Zi ;- B)CS, AL

j=m =1

Note that || T||> = 3" ;|e/Te;|* where ey, ..., 4 is the standard basis for RY. Then in order
to show that (5.7) holds it suffices to show that

lim lim sup P(x'Ty|>e)=0 (5.8)

for x€ V;and y € V; where 1 < i, I < p. Write T = 4+ B — C where

4= ZA CiZij Zi-iCl AL I(| AnZ,—j| < 1

lj|>m t=

B=Y" ZA CiZijZi—jCl AL I(| 4nZ,— ] > 1)

[j|>m t=

c=> ZA CjB,CL A,

[j|>m t=

Since T = 4+ B — C it suffices to show that (5.8) holds with T replaced by 4, B, or C.
We begin with B. Choose 6 >0 with 6 <1/a, and § <1 and let 0, = /2 <1. Use the
Markov inequality along with the fact that |x + y|*' < |x|®" 4 |y|*' to obtain

P(|x'By| >¢) < £ % E|x' By|*"

e > nE|x' CAnZi ZiALCY L 1° (| 20| > 1)

j1>m

e N NG ICrinll® nEIx; 4,20 Zi ALy sl I A Z1 | > 1)

/1> m

1/2
- {Z 1Crnl®

lj|>m

1/2
- {Z |G I REN) 4,20 ZL ALyl E(| AnZ0 | > 1)

/1> m

by the Schwartz inequality. Then in order to show that (5.8) holds with T replaced by B it
will suffice to show that for some K4 >0 we have

nE|xjdnZ1 Z3 ALyl 1| 4,20 ]| > 1) < Kq (5.9)
for all j, 4 and all n large. Apply the Schwartz inequality again to see that
nE|x;A,Zy ZV Al yin | 1| 40 Z1 | > 1)
= nE|(4,21, %) (A Z1, yyon) " 1(1| 4021 ]| > 1)

< \/"E|<An21» G 1| 4nZ1 || > 1)-nE[(AnZy, yjin)°1([4nZ0]| > 1)

where nE|(4,Z1, x,)[°I(||4,Z1]| > 1) < K4 for all n large and all j by an application of
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Lemma 2.1 part (iv) with 7 = 0 <1/a;. A similar argument holds for the remaining term,
which establishes (5.9), and so (5.8) holds with T replaced by B.

Next we look at 4 and C which requires us to consider different cases. First suppose
that a; >1 and « >—. As in the proof of Proposition 4.2 we write C X = rpxj,
Al W= an]x,,j, C: = p]yj and Any, = by vy Where x;, X4, yj, vy are unit vectors and r;,
anj, pj, by are posmve reals. By the Markov inequality we get

P(|x'dy| > &) < e ' E|x'4y|

e Y nEX CidnZy Zi AL Clyy (| a2y || < 1

|j|>m
<e ' Y NGIICHllnENZ1, 4,x)(Z1, Apym| I([4nZ0]| < 1)
[j1>m
Next we will show that for some K, >0 we have
nE[(Zy, 4,5)(Z1, Ay ([ 4:Z1]| < 1) < K, (5.10)

for all j, h and all n large. By the Schwartz inequality we have that the left hand side of
(5.10) is bounded above by

VE(Zy, Al 1| 4,20 < DnE|(Zy, Ay 1| 4,20 < 1

where we have nE(Z;, A x;)* 1(||4xZ1 || < 1) < K, independent of j and n large as in the
proof of Lemma 5.1 above, since a; >1 (so that { =2>1/a; in Lemma 2.1 part (ii)).
Similarly nE(Zy, A\ y;in)? I(||A,,Zl|| < 1)< K mdependent of j and n large by another
application of Lemma 2.1 part (ii) (note that a; >— so that £ =2>1/a;). Hence (5.10)
holds for all j, 4 and all n large, and so for n 1arge we have

P(x'dy|>e) < e Ky > |G| Crall

|/1>m
1/2 1/2
<e 'K DG DGl
|j1>m |j1>m

which tends to zero as m — oo, and so (5.8) holds with T replaced by A in this case.
Since |x'Cy| = |Ex'dy| we also have that (5 8) holds with T replaced by C in this case.
Finally suppose that either a; < j or a; < (or both). As in the proof of Proposition 4.2
define Z;, = Zi(||4,Z;]| < 1) and let Q,,, =Ziwlly — EZiyZ}, = ZinZ}, — B,. By the
Markov inequality we get

P(x'(4 = C)y| > ) < e E[(x'(4 = O)y)’]

n 2

>m =1
n n
=e2 > >N N E@A,Ci0s jnChy ALy x4 CrQpjnCliyALY).
[j|>m =1 |j'|>m t'=1

Since Q;, are independent with mean zero the only terms that contribute to the sum
above are those for which ¢ — j = ¢' — j'. Then the sum above equals
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n n—t+j

’ t ’ t
E E E 1P n? P+ hEXG AR Qi jn Ay Y i n Xy An Qi jn Ay Vi h)-
T =

Next we will show that for some K, >0 we have
nE(XjAnQ1n A,y nXj AnQindyyien) < Ko (5.11)
for all j, j', h and all n large. Write
XjAn O, vk = XjAnZin Zin Ay v — EXjAn Z1n Zin A, v
= AnZ1n> X){AnZ1n> Yi) — E(AnZ1ns %) (AnZ1ns Vi)s
= &iBuk — E&niuk

where
gnj = <Anzlna x]>

ﬂnk = <Anzlna yk>
Then

E(xXjAnQinAyyjcnXy AnQindyyi i)
= E(&iBujrn — EEniBujrn)EniBuj+n — EEnyBuj+i)
= E&uiBn jrnbniBuj+n — EEwiBujsnEEny Buj+n
— E&wiBnjt hEEwi Brjvn + EEniBujrnESnj By
= E&wiBn jrn&niBuj+n — EEwiBujsnEEny Buj+n

where
E\EiBrjinEnyBrjiin| < (ECuiBoujs V) HEE By i)
< (EES)HEBY 1 ) EEL) A EBS )

= (E‘S‘r‘tjEﬁi,jnLhEgij’Eﬂi,jurh)l/“

by the Schwartz inequality, and similarly

E|§njﬂn,j+h‘ = (Egjleﬁ:,ﬂ»h)lM

El&w By onl < (B BBy )
so that together we have

E(jAn Q- Al yisnXy An Qi jnAlyyn) < 2EEWEB Y 4 EEV EBs i )
where
REE(; = nE(AyZin, %)* = nE(Ay Z1, %) 1 4,21]| < 1)

which is bounded above by some K; < oo, for all n = ny and all j by an application of
part (i) of Lemma 2.1 with 4 = {>1/a,. A similar argument shows that nEf%, < K, for
all & and all » large (apply part (ii) of Lemma 2.1 again with 4 = { > 1/a). Then (5.11)
holds for j, j', h and all n large, and so for all large n we have
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n n—t+j

P(x'(A-Opyl>e)<e2Kn7 " > > Y GIICalllICHIICall

om =1 ST

n—it+j

n
=e22K ) IGIICHln" Y- > IC/IHIC el

i=m =

1/2 1/2
< 822K2<Z |cj||2> (Z |cj+h||2>

|j1>m |j1>m

0 1/2 s 1/2
( > |er||2) <Z |Cj'+h|2>
J' J'

=—00 =—00

which tends to zero as m — oo, and so (5.8) holds with T replaced by 4 — C in this case,
which concludes the proof of Proposition 4.3.
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