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Abstract A continuous time random walk (CTRW) imposes a random waiting time be-
tween random particle jumps. CTRW limit densities solve a fractional Fokker-Planck equa-
tion, but since the CTRW limit is not Markovian, this is not sufficient to characterize the
process. This paper applies continuum renewal theory to restore the Markov property on an
expanded state space, and compute the joint CTRW limit density at multiple times.

Keywords Continuous time random walk · Fractional derivative · Anomalous diffusion ·
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1 CTRW Limits

Random walk models are widely used for diffusive processes, to model the microscopic
movements of random particles. Random walk limit densities solve a Fokker-Planck equa-
tion that provides a macroscopic model for diffusion. In the simplest case, Jk , k = 1,2, . . .

is a sequence of random jumps on R
d , and each Jk is drawn from the same probability dis-

tribution with mean 0 and standard deviation 1. At each scale τ > 0, the jumps J τ
k are given

by
√

τJk , and the time between jumps is τ . Then the position of the random walker at time t

and scale τ is

Bτ (t) =
�t/τ�∑

k=1

J τ
k , (1)
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where �x� denotes the largest integer not bigger than x. As τ decreases to 0, jumps be-
come smaller and more frequent during the time interval [0, t]. In the limit τ ↓ 0, Donsker’s
theorem [1, Remark 4.17] implies that the distribution of paths Bτ (t) approaches a Brow-
nian motion. An approximation of spatially inhomogeneous diffusions runs along the same
lines, with a sequence of jumps J τ

k+1 whose means and standard deviations only depend on
their current position Bτ (τk) and equal τμ(Bτ (τk)) resp.

√
τσ (Bτ (τk)) for some functions

μ(x) and σ(x).
Continuous Time Random Walks (CTRWs) were introduced by Montroll and Weiss [2]

as generalizations of Random Walks, in which the waiting times τ between jumps are re-
placed by positive random variables Wk . CTRWs are hence semi-Markov processes, as noted
by Scher and Motroll [3]. The CTRW is now widely used to model subdiffusive processes
in physics, hydrology, finance and biology [4–6]. We denote the scale dependence with Wτ

k ,
and for simplicity we assume that the waiting times Wτ

k , k = 1,2, . . . are drawn from the
same distribution, which only depends on τ . The number of steps by time t is then no longer
�t/τ� but given by the renewal process

Nτ(t) = max
{
k: Wτ

1 + · · · + Wτ
k ≤ t

}
, (2)

and the position of the random walker at time t is given by the CTRW

Xτ(t) =
Nτ (t)∑

k=1

J τ
k . (3)

Two cases can occur: The mean of the waiting times at scale τ can be finite or infinite. If it
is finite, then one scales the waiting times according to Wτ

k = τWk , and according to the law
of large numbers τNτ (t) ∼ t/m for large t , where m = 〈Wk〉 denotes the mean of Wk . The
process Xτ(t) will then converge pathwise to a limiting Brownian motion B(t/m). Techni-
cally speaking, this is weak convergence of the associated probability measures on the space
of right-continuous functions with left-hand limits in the Skorokhod J1-topology [7]. If the
waiting times Wτ

k have infinite mean, then the temporal scaling is different. Distributions
with diverging mean are most easily classified by their heavy-tail parameter α ∈ (0,1) [1,
Chapter 4]. Assume for instance that the waiting times are Pareto distributed such that the
tail function satisfies

P(Wk > t) ∼ (1 + t)−α/Γ (1 − α) (4)

for large t , where Γ (x) denotes the Gamma function. We then scale the waiting times via
Wτ

k = τ 1/αWk , and similarly to the sum of jumps, we define the cumulative sum of waiting
times as

Zτ (t) =
�t/τ�∑

k=1

Wτ
k . (5)

This process can be viewed as a random walk in time with only positive jumps. In probability
theory, the jump times Zτ (τn) are called the “epochs” of the associated renewal process [8].
A generalized version of Donsker’s theorem [9] shows that Zτ (t) converges as τ ↓ 0 to a
positively skewed α-stable Lévy process Z(t) whose probability density has Laplace trans-
form exp(−tsα) [1, Theorem 3.41]. This process has stationary independent increments, and
Z(t) has the same distribution as t1/αZ(1). Z(t) is a pure jump process with infinitely many
jumps on finite intervals, and jumps of size > z will occur at a Poisson rate with parameter
ν̄(z) = z−α/Γ (1 − α). We introduce the process inverse to Zτ (t) via
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Fig. 1 A typical particle trace
B(E(t)) for Brownian motion
time changed by an inverse
0.8-stable subordinator

Eτ (t) = inf
{
s ≥ 0: Zτ (s) > t

}
. (6)

Then one verifies that Eτ (t) = τ(Nτ (t)+ 1), and hence the CTRW at scale τ can be written
as

Xτ(t) = Bτ
(
Eτ (t) − τ

)
. (7)

In the scaling limit τ ↓ 0, Eτ (t) converges to E(t) = inf{u > 0: Z(u) > t}, the process
inverse to Z(t) [10, Theorem 3.2]. Moreover, the composition of paths also converges in the
scaling limit, and the CTRWs Xτ(t) converge to the CTRW limit process

X(t) = B
(
E(t)

)
(8)

[10, Theorem 4.2], see also [11]. Replacing clock time t in the parent process B(t) by the
operational time E(t) accounts for particle resting times between movements. Since E(t)

grows at the rate tα , this time change results in a sub-diffusion, where a plume of particles
spreads more slowly than a traditional diffusion. Figure 1 shows a typical sample path.

2 Fractional Dynamics

CTRW limit densities solve a time-fractional governing equation that provides a macro-
scopic model for sub-diffusion processes. We write ht (x) for the probability density of the
operational time E(t), that is P[E(t) ∈ dx] = ht (x) dx, and similarly we write qt (x) for the
probability density of the diffusion process B(t). Then by conditioning on E(t), it follows
that the probability density of the CTRW limit process X(t) = B(E(t)) is

pt(x) =
∫ ∞

0
qs(x)ht (s) ds. (9)

The time change of B(t) by E(t) has an analogue in terms of governing differential
equations: Assume that qt (x) satisfies the Fokker-Planck equation (FPE)

∂tqt (x) = ∇2
x

[
a(x)qt (x)

] − ∇x

[
b(x)qt (x)

] + q0(x)δ(t), (10)

with diffusivity a(x), drift b(x), and initial particle density q0(x). Then pt(x) solves the
fractional Fokker-Planck equation (FFPE)
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∂α
t pt (x) = ∇2

x

[
a(x)pt (x)

] − ∇x

[
b(x)pt (x)

] + p0(x)
t−α

Γ (1 − α)
, (11)

where ∂α
t denotes the Riemann-Liouville derivative of order α and p0(x) = q0(x) [12–14].

If the coefficients a(x) and b(x) depend on space x and time t , a different FFPE holds [15].
The (non-fractional) FPE (10) completely determines the evolution of the diffusion B(t):

Given any particle distribution qt1(x) at time t1, one can calculate the distribution qt2(x)

at time t2, update the starting condition to qt2(x), calculate qt3(x), and so forth. This is a
simple consequence of the Markov property. Since E(t) lacks the Markov property, X(t) =
B(E(t)) is also non-Markov, and hence this formalism breaks down for the FFPE. This
problem has been discussed in the physics literature [16], where the joint governing equation
of X(t) at multiple times was recorded. In the next section, we show how to solve those
equations, by computing the joint density of X(t) at multiple times.

3 Continuum renewals

CTRW renewal theory is very general, allowing for space- and time-dependent jumps and
waiting times, jump lengths that depend on the associated waiting time (the coupled case),
and scale dependent CTRW as in [20]. To simplify the presentation, we restrict attention
to the “operational time” E(t) and “forward recurrence time” R(t). See [17] for complete
mathematical details.

3.1 The Discrete Setting

We now study the renewal property of CTRWs and their limit processes. CTRWs are also
called Markov renewal processes, due to the following property: after each jump, the walker
forgets the past, and the future trajectory only depends on the current position in space.
Renewals occur at the random set of jump times

Mτ = {
Zτ (t): t ≥ 0

}
. (12)

The (random) time of the first renewal after a fixed time t is

Hτ(t) = inf
{
Mτ ∩ (t,∞)

}
, (13)

that is, the first point in Mτ to the right of t . By definition of Eτ (t),

Hτ(t) = Zτ
(
Eτ (t)

)
. (14)

The forward recurrence time or remaining lifetime is defined as Rτ (t) = Hτ(t)− t . The joint
dynamics of (Xτ (t),Rτ (t)) now runs as follows: Xτ(t) remains fixed as Rτ (t) decreases to
0 with speed 1. When it reaches 0, Xτ(t) jumps and Rτ (t) is reset to take the value of the
next waiting time. Since at every time t the future evolution depends solely on the current
state (Xτ (t),Rτ (t)), the process is Markov. See Fig. 2 for an illustration.

3.2 The Scaling Limit

In the scaling limit τ ↓ 0, the discrete process Zτ (t) converges to a strictly increasing α-
stable Lévy process Z(t). The random set Mτ converges in distribution to the set M =
{Z(t): t ≥ 0} constructed by deleting the intervals [Z(t−),Z(t)) from the positive real
line. Since there are infinitely many jumps on finite time intervals, M has a Cantor-set like
structure; in fact, M is a fractal of dimension α [18].
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Fig. 2 Operational time (E(t),
solid line, discontinuous) and
remaining lifetime (R(t), dashed
line) vs. physical time t at the
scale τ = 1/7. The regenerative
set M is shaded in grey on the
t -axis

Fig. 3 The same quantities as in
Fig. 2, at the scaling limit τ = 0.
E(t) is now continuous. The
underlying subordinator Z(t) is
0.7-stable, and the regenerative
set (grey) is a fractal of
dimension 0.7

The forward recurrence time is H(t) = Z(E(t)), and the remaining lifetime R(t) =
H(t) − t counts down the time until the next renewal (see Fig. 3). When R(t) reaches 0, the
CTRW limit process X(t) is renewed, and behaves as if started from the current position in
space at time 0. Since the parent process B(t) is a continuous diffusion, the limit process
X(t) does not jump at a renewal. The Markov property of the joint process (X(t),R(t)) still
holds in the limit.

4 The Joint Density of Operational and Recurrence Time

In this section we calculate the joint distribution of Eτ (t) and Rτ (t). We consider the event
that Eτ (t) ≤ x and simultaneously Rτ (t) > r for arbitrary positive numbers x and r . We first
introduce the measure on [0,∞)×[0,∞) defined for arbitrary closed sets I, J ⊂ [0,∞) by

Uτ (I × J ) =
〈
τ

∞∑

k=1

δτk(I )δZτ (τk)(J )

〉
, (15)

where δx denotes the Dirac measure concentrated at x, and where 〈·〉 denotes expectation or
the ensemble average taken over all paths of Zτ (t). It measures τ times the mean amount of
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Fig. 4 Sections x �→ ht (x, r) of
the joint probability density
function (21) with index α = 0.6
for operational time x = E(t) and
remaining lifetime r = R(t) at
clock time t = 1 for r = 0 (solid),
0.1 (dashed), and 0.5 (dotted)

values k such that τk lies in the set I and simultaneously Zτ
τk lies in the set J . If I = {τk},

then Uτ (I × J )/τ is the probability that Zτ
τk lies in J . We now observe that the event

Eτ (t) = τk,Rτ
t > r can be written as

Zτ
(
τ(k − 1)

) ≤ t, Zτ (τk) > t + r, (16)

and that this is equivalent to

Zτ
(
τ(k − 1)

) ≤ t, Wτ
k > t + r − Zτ

(
τ(k − 1)

)
. (17)

The probability of the latter event can now be written as
∫ t

0

∫

{τk}

Uτ (y, s)

τ
ν̄τ (t + r − s) dy ds, (18)

where ν̄τ (t) denotes the tail probability P(Wτ
k > t). Integrating over y ∈ [0, x] instead of

y = τk we have the probability of the event Eτ ≤ x,Rτ
t > r . If we now let the scale param-

eter τ ↓ 0, we find

τ−1ν̄τ (t) → t−α/Γ (1 − α) = ν̄(t). (19)

Moreover, the measures Uτ converge to a continuous measure U whose density is u(x, s),
and where for fixed x > 0 the function s �→ u(x, s) is the probability density of Z(x). Hence
the probability of the event E(t) ≤ x,R(t) > r is

∫ t

0

∫ x

0
u(y, s)ν̄(t + r − s) dy ds, (20)

and we have derived the joint density P(E(t) ∈ dx,R(t) ∈ dr) = ht (x, r) dx dr of the lim-
iting operational time and remaining lifetime:

ht (x, r) =
∫ t

0
u(x, s)ν(t + r − s) ds, (21)

valid for positive x and r , and where ν(z) = −∂zν̄(z) is the density of the jump measure
of Z(t). The probability density of E(t) computed in [20, (3.11)] can be recovered by inte-
grating (21) over r > 0. The symbol h should not be confused with the probability density
function of the first waiting time in an aging CTRW, as introduced in [19].

Figure 4 shows sections x �→ ht (x, r) of the joint probability density function (21) for
several different values of the remaining lifetime r . The computation used the dstable
command in the R package fbasics to compute the stable density u(x, s) in (21). The R
code that produce this graph is available from the authors upon request.

Author's personal copy
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Equation (21) applies to any CTRW limit, assuming that (B(t),Z(t)) is a Markov pro-
cess, with Z(t) strictly increasing [17]. For example, if Z(t) is tempered α-stable [21–23],
it holds with a tempered stable density s �→ u(x, s) of index 0 < α < 1 and jump inten-
sity ν(t) = αt−α−1 exp(−λt)/Γ (1 − α), where λ > 0 is a tempering parameter. For coupled
Continuous Time Random Walks, the argument extends, using a space-time jump intensity
ν(x, t) to model simultaneous increments of B(t) and Z(t), see [17]. It is not straightfor-
ward to apply our formalism to a CTRW with correlated waiting times [24–26], since Z(t)

is not Markovian in that case.

5 Probability Densities at Multiple Times

Using the joint density ht (x, r) of operational and recurrence time in (21), we can calcu-
late the distribution of the operational time E(tk) at two or more consecutive times. Laplace
transforms of the joint distributions of E(tk) at two times were calculated in [27, 28], and
double-fractional differential equations were derived in [16]. When B(t) is a Poisson pro-
cess, joint distributions of the fractional Poisson process B(Et) were calculated in [29].

With the theory set up as described, we calculate the distribution of the operational time
at two consecutive times t1, t2 as follows: Given that the operational time E(t) equals x at
the physical time t = 0 and given that there will be an initial lag R(0) = 
 ≥ 0 until the
next progression of the operational time, we let ht (x, 
;y, r) be the probability density of
E(t) = y and R(t) = r . This density then equals

ht (x, 
;y, r) =
{

ht−
(y − x, r), t > 


δ(y − x)δ(r − (
 − t)), t ≤ 
.
(22)

For 0 ≤ t1 ≤ t2, the joint density of E(t1) = x1 and E(t2) = x2 then equals

ht1,t2(x1, x2) =
∫ ∞

0
ht1(0,0;x1, r1)

∫ ∞

0
ht2−t1(x1, r1;x2, r2) dr2 dr1, (23)

and similar formulas hold for an arbitrary number of times tk . Now suppose that qt (x, y) is
the transition probability density of the time-homogeneous Markov process y = B(t + s)

given x = B(s). Then the Chapman-Kolmogorov equation implies that q(x, y, s, t) =
qt−s(x, y)qs(x0, x) is the joint probability density of (x, y) = (B(s),B(t)) given initial
particle location B(0) = x0, and so the joint density of the fractional diffusion process
X(t) = B(E(t)) at times t1, t2 is

pt1,t2(x, y) =
∫ ∞

0

∫ ∞

0
q(x, y,u, v)ht1,t2(u, v) dv du. (24)

In a similar manner, one can calculate the joint probability density of the fractional diffusion
process X(t) = B(E(t)) at times t1, . . . , tn.

For any time s > 0, the particle displacement X(t + s) − X(s) is conditionally indepen-
dent of X(t) given the remaining lifetime R(s). If R(s) ≥ t , then the particle remains at rest,
and X(t +s)−X(s) = 0. Otherwise, if 0 ≤ R(s) < t , then the distribution of X(t +s)−X(s)

given R(s) = r is the same as that of X(t − r), since X(t) has a renewal point at time s + r .
Figure 5 illustrates the effect of the remaining lifetime on particle displacement, showing the
distribution of the displacement X(t + s)−X(s) for different values of r = R(s) < t , in the
case where X(t) is governed by the fractional Fokker-Planck equation (11) with a(x) ≡ 1
and b(x) ≡ 0. These curves are similar in shape to a normal density, but with a sharper peak,
and heavier tails. Note that, for example, the curve for t = 3 and R(s) = 2.9 is identical
to the probability density function (9) with t = 0.1, and was computed using the R code in
[1, Example 5.13].
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Fig. 5 Conditional probability
density function of particle
displacement X(t + s)−X(s) for
t = 3 given remaining lifetime
R(s) = 0 (widest curve), 2, 2.7,
and 2.9 (narrowest curve). Here
X(t) has governing equation (11)
with a(x) ≡ 1 and b(x) ≡ 0

6 Joint Governing Equation

In this section, we derive the governing equation of the probability density ht (x, r) in (21).
Pseudo-differential operators on R

n are of the form ψ(i∇x), where for our purposes −ψ(k)

is a negative definite function on R
n and

ψ(i∇x)f (x) = (2π)−n

∫
e−ik·xψ(k)f̂ (k) dk, (25)

where f̂ (k) = ∫
eik·xf (x) dx denotes the Fourier transform of a function f . An instructive

example is the negative Laplacian −∇2
x , whose action corresponds to a multiplication with

ψ(k) = ‖k‖2 in Fourier-space. Jurlewicz et al. [30] have shown that if (B(t),Z(t)) is a Lévy
process in R

d × R
+ (e.g. if B(t) is Brownian motion and Z(t) an α-stable increasing Lévy

process) whose double Fourier-transform is

exp
(−tψ(k, s)

) = 〈
exp

(
ik · B(t) + isZ(t)

)〉
, (26)

then the probability density ρt (x) of X(t) = B(E(t)) satisfies

ψ(i∇x, i∂t )ρt (x) = δ(x)

∫ ∞

t

φ(z) dz. (27)

Here E(t) is again inverse to Z(t), and φ(z) denotes the density of the jump measure
of Z(t). For example, if B(t) is Brownian motion with covariance matrix 2tI and Z(t)

is an independent α-stable subordinator, then ψ(i∇x, i∂t ) = ∂α
t −∇2

x and (27) reduces to the
fractional Fokker-Planck equation (11) with a ≡ 1 and b ≡ 0.

Now write (E(t),H(t)) = B(E(t)), where B(t) := (t,Z(t)), and note that the Lévy pro-
cess (B(t),Z(t)) has Fourier symbol

ψ(k1, k2, s) = −ik1 + (−i(k2 + s)
)α

. (28)

The joint probability density ρt (x, y) of E(t) = x and H(t) = y hence satisfies the pseudo-
differential equation (27), and since R(t) + t = H(t), it follows that ht (x, y + t) = ρt (x, y)

solves the same equation:

[
∂x + (∂t + ∂y)

α
]
ht (x, y + t) = δ(x)δ(y)

t−α

Γ (1 − α)
. (29)
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21. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 677–707 (2007)
22. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusions in heterogeneous systems.

Geophys. Res. Lett. 35, L17403–L17407 (2008)
23. Stanislavsky, A., Weron, K., Weron, A.: Diffusion and relaxation controlled by tempered α-stable pro-

cesses. Phys. Rev. E 78(5), 6–11 (2008)
24. Chechkin, A.V., Hofmann, M., Sokolov, I.M.: Continuous-time random walk with correlated waiting

times. Phys. Rev. E 80(3), 031112 (2009)
25. Magdziarz, M., Metzler, R., Szczotka, W., Zebrowski, P.: Correlated continuous-time random walks—

scaling limits and Langevin picture. J. Stat. Mech. 2012, P04010 (2012)
26. Tejedor, V., Metzler, R.: Anomalous diffusion in correlated continuous time random walks. J. Phys. A,

Math. Theor. 43, 082002 (2010)
27. Barkai, E., Sokolov, I.M.: Multi-point distribution function for the continuous time random walk. J. Stat.

Mech. 2007(08), P08001 (2007)
28. Zaburdaev, V.Y.: Microscopic approach to random walks. J. Stat. Phys. 133(1), 159–167 (2008)
29. Politi, M., Kaizoji, T., Scalas, E.: Full characterization of the fractional Poisson process. Europhys. Lett.

96(2), 20004 (2011)
30. Jurlewicz, A., Kern, P., Meerschaert, M.M., Scheffler, H.-P.: Fractional governing equations for coupled

random walks. Comput. Math. Appl. 64(10), 3021–3036 (2012)

Author's personal copy

http://arxiv.org/abs/arXiv:1206.1960

	Fractional Dynamics at Multiple Times
	Abstract
	CTRW Limits
	Fractional Dynamics
	Continuum renewals
	The Discrete Setting
	The Scaling Limit

	The Joint Density of Operational and Recurrence Time
	Probability Densities at Multiple Times
	Joint Governing Equation
	References


