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Abstract A new approach to extreme value theory is presented for vector data with
heavy tails. The tail index is allowed to vary with direction, where the directions
are not necessarily along the coordinate axes. Basic asymptotic theory is developed,
using operator regular variation and extremal integrals. A test is proposed to judge
whether the tail index varies with direction in any given data set.
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1 Introduction

This paper develops a new approach to extreme value theory for vector data with
heavy tails. The primary goal is to allow the tail index to vary with direction,
in a coordinate-free setting. The main technical tools are vector regular variation
with norming by linear operators (Balkema 1973; Meerschaert and Scheffler 2001;
Meerschaert 1988; Resnick 1987), and extremal integrals (de Haan 1984; Stoev and
Taqqu 2005; Kabluchko 2009). Taking the point of view of directional extremes,
data are projected onto each radial direction, and the maximum in each direction is
considered. This leads to an extremal limit process indexed by the direction. The
extremal limit theory employs operator norming, allowing the tail index to vary with
the direction. Continuous mapping arguments yield a useful comparison of extreme
behavior in different directions, leading to a useful test for variations in the tail index
i.e., hetero-ouracity. Distributions with different tail exponents in different directions
will be said to have hetero-ouracity (from the greek word for tail – oυρά). This paper
was motivated by the observation that vector data with heavy tails need not have the
same tail index in every direction (Meerschaert and Scalas 2006; Mittnik and Rachev
1999; Reeves et al. 2008), and that it can be necessary to consider rotated coordi-
nate systems (which need not be orthogonal) to detect variations in tail behavior
(Meerschaert and Scheffler 2003; Painter et al. 2002).

A simple example illustrates our general approach. Suppose that X, X1, X2,

X3, . . . are independent and identically distributed (iid) random variables whose tail
distribution F̄ (x) = P(X > x) varies regularly at infinity with index −α for some
α > 0. Then nF̄ (c−1

n x) → Cx−α, as x → ∞, for some C > 0 and some regularly
varying sequence (cn) with index −1/α. Let Mn = max{X1, . . . , Xn} and note that
for x > 0

P(cnMn ≤ x) =
(

1 − nF̄ (c−1
n x)

n

)n

→ exp(−Cx−α)

as n → ∞, so that the normalized maximum cnMn converges in law to a Fréchet
random variable Y with P(Y ≤ x) = exp(−Cx−α), x > 0. For vector data, the
same argument shows that the random variables 〈Xi, θ〉 for any direction vector θ �=
0 are attracted to an α-Fréchet limit if the tail function F̄θ (x) = P(〈Xi, θ〉 > x)

varies regularly with index −α. Of course it is possible that the tail index α = α(θ)

varies with the direction θ . This paper develops a general theory for such directional
extremes, where the tail index is allowed to vary with the direction. By considering
the joint convergence over all directions θ , a functional limit theorem is established,
using norming by linear operators to retain the full tail information. Then continuous
mapping arguments can be used to compare extremes in different directions.

A functional limit theorem for directional extremes is proven in Section 2.
Section 3 develops operator max-stability properties of the limit process, and simu-
lation methods based on a Poisson point process representation. Section 4 considers
the special, scalar norming case where the tail index is the same in every direction,
and gives a representation of the limit process in terms of extremal integrals. A use-
ful test for hetero-ouracity is developed in Section 5, to determine whether the data
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can be treated with scalar norming, with the same tail index in every radial direc-
tion. Section 6 reports the results of a small simulation study to validate the practical
utility of this test, and Section 7 applies the test to two different data sets, one from
finance and another from hydrology, to see whether the test can detect a difference
in the tail index.

2 Limit theory

Our theory of directional extremes is based on the notion of operator regular varia-
tion, which was developed and used extensively for the study of sums of independent
random vectors (Meerschaert and Scheffler 2001) whose tail index can vary with
direction. A probability distribution μ on R

d is said to be operator regularly varying
at infinity if

nμ(A−1
n ·) v−→ φ(·), as n → ∞, (1)

where the linear operators An → 0 in norm, and the limit φ is a full (not supported
on any lower dimensional subspace) Borel measure that assigns finite mass to tail

sets (sets bounded away from the origin). The vague convergence
v−→ means that

nμ(A−1
n B)−→φ(B) for any Borel tail set B ⊂ R

d , with φ(∂B) = 0. It follows from
Eq. 1 that

tφ(B) = φ(t−EB), for all t > 0 and B ∈ B(Rd \ {0}), (2)

for some exponent matrix E, where t−E = exp(−E log(t)), and exp(A) = I +
A + A2/2! + · · · is the usual matrix exponential (Meerschaert and Scheffler 2001,
Proposition 6.1.2). The normalizing sequence of operators An may be chosen so that

A[tn]A−1
n → t−E as n → ∞, ∀t > 0, (3)

where [·] denotes the greatest integer function (Meerschaert and Scheffler 2001, The-
orem 6.1.24). This extends scalar-normed multivariate regular variation (Resnick
2007) in which An = cnI , a scalar multiple of the identity matrix. If An = cnI , then
E = (1/α)I for some α > 0, and Eq. 3 shows that the sequence cn varies regularly
with index −1/α. Then P(‖X‖ > x) varies regularly with index −α. In fact, opera-
tor regular variation allows one to treat in a unified way distributions with different
tail exponents along different coordinate axes that need not be the original axes nor
orthogonal. In the general case, Theorem 6.4.15 in Meerschaert and Scheffler (2001)
yields a tail index function α(θ) such that, for any direction vector θ �= 0, for any
ε > 0, there exists an x0 such that

x−α(θ)−ε < P(|〈X, θ〉| > x) < x−α(θ)+ε (4)

for all x ≥ x0. For example, if An is a diagonal matrix, then E is also diagonal with
positive entries 1/α1 ≤ · · · ≤ 1/αd , and α(θ) = min{αi : θi �= 0}, where θi is the
ith component of the direction vector θ , so that the heaviest tail dominates.

The limit measure φ in Eq. 2 has a convenient spectral representation (Meerschaert
and Scheffler 2001, Theorem 6.1.7): Let ‖ · ‖E be a norm on R

d depending on E
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in such a way that: (i) for all x �= 0, t 
→ ‖tEx‖ is strictly increasing in t > 0;
and (ii) (t, x) 
→ tEx is a homeomorphism from (0, ∞) × SE onto R

d \ {0}, where
SE := {x ∈ R

d : ‖x‖E = 1}. The existence of such a norm is guaranteed by
Jurek and Mason (1993, Proposition 3.4.3), see also Meerschaert and Scheffler (2001,
Lemma 6.1.5). Then the operator scaling property (2) allows us to write

φ(A) =
∫
SE

∫ ∞

0
1A(tEθ)

dt

t2
λ(dθ) , (5)

where the spectral measure λ is defined as follows

λ(C) := φ{rEθ : r > 1, θ ∈ C}. (6)

Let X, X1, . . . , Xn be iid random vectors in R
d whose distribution μ is operator

regularly varying, so that Eq. 1 holds. Consider an arbitrary direction θ ∈ R
d \ {0}

and define the directional maximum

Mn(θ) := max
i=1,...,n

〈Xi, θ〉. (7)

We view Mn(θ) as a stochastic process indexed by θ , and we establish a limit theorem
for {Mn(A

∗
nθ) : θ �= 0}, where An is from Eq. 1, and A∗

n denotes its transpose.
If An = cnI is scalar, then Mn(A

∗
nθ) = cnMn(θ), and our results reduce to the

normalized maxima of the iid random variables 〈Xi, θ〉. The process convergence
will allow us to compare directional extremes using continuous mapping arguments.

Introduce the half-spaces

B(r, θ) = {x ∈ R
d : 〈x, θ〉 > r} , r ∈ R, θ ∈ R

d \ {0}, (8)

and notice that B(r, θ) is a tail set if r > 0, i.e., bounded away from the origin. Let
C(Rd \ {0}) ≡ C(Rd \ {0};R) denote the set of continuous functions on R

d \ {0},
equipped with the topology induced by the uniform convergence of functions on all
compact sets. This topology is generated, for example, by the metric

ρ(f, g) :=
∞∑

n=1

max
‖θ‖∈[1/n,n]

|f (θ) − g(θ)| ∧ 2−n,

which turns C(Rd \ {0}) into a complete separable metric space.
The next theorem is the main result of this section. It shows that the rescaled

directional extremes process {Mn(A
∗
nθ)} converges weakly in C(Rd\{0}) to a process

{Y (θ)}. The finite-dimensional distributions of the limit process will be given by

P{Y (θ1) ≤ r1, . . . , Y (θm) ≤ rm} = Fθ1,...,θm(r1, . . . , rm)

:= exp

⎧⎨
⎩−φ

⎛
⎝ m⋃

j=1

B(rj , θj )

⎞
⎠
⎫⎬
⎭ , (9)

when all rj > 0, and Fθ1,...,θm(r1, . . . , rm) := 0 when any rj < 0. This defines the
joint distribution function on a dense set D, and we extend to all (r1, . . . , rm) by
taking the right-continuous limit.
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Theorem 2.1 Let Mn be as in Eq. 7 where Xi are iid with μ and Eq. 1 holds. Then

{Mn(A
∗
nθ)}θ∈Rd\{0}

d−→ {Y (θ)}θ∈Rd\{0} as n → ∞ in C(Rd \ {0}) (10)

where Y = {Y (θ)}θ∈Rd\{0} is defined by Eq. 9.

The proof of Theorem 2.1 requires a few simple lemmas. For all θj ∈ R
d \ {0},

j = 1, . . . , m, consider the distribution functions

Fn,θ1,...,θm(r1, . . . , rm) := P{Mn(A
∗
nθj ) ≤ rj , ∀j = 1, . . . , m}. (11)

Lemma 2.2 Under the assumptions of Theorem 2.1, for all θj ∈ R
d \ {0},

j = 1, . . . , m, we have that Fθ1,...,θm in Eq. 9 is a valid distribution function and

Fn,θ1,...,θm

w−→ Fθ1,...,θm, as n → ∞. (12)

Proof First suppose that rj > 0 for all j = 1, . . . , m. Since 〈AnXi, θ〉 = 〈Xi, A
∗
nθ〉,

in view of Eqs. 7 and 11, we obtain

Fn,θ1,...,θm(r1, . . . , rm) = P{〈AnXi, θj 〉 ≤ rj , ∀j = 1, . . . , m, i = 1, . . . , n}

= P

⎧⎨
⎩AnXi ∈

m⋂
j=1

B(rj , θj )
c, ∀i = 1, . . . , n

⎫⎬
⎭

= P{AnX ∈ Bc}n =
(

1 − nP{AnX ∈ B}
n

)n

, (13)

where Bc := ⋂m
j=1 B(rj , θj )

c = (
⋃m

j=1 B(rj , θj ))
c. Note that B = ⋃m

j=1 B(rj , θj )

is a tail set. Lemma 6.1.27 in Meerschaert and Scheffler (2001) shows that B(r, θ) is
a continuity set for any r > 0 and θ �= 0. Thus, in view of Eqs. 1 and 13, we obtain

Fn,θ1,...,θm(r1, . . . , rm) −→ exp(−φ(B)) ≡ Fθ1,...,θm(r1, . . . , rm),

as n → ∞.
Since φ is full, it follows from Eq. 2 that Re(λ) > 0 for all eigenvalues λ of E, so

that n−E → 0 as n → ∞ in operator norm (Meerschaert and Scheffler 2001, Lemma
6.1.4). This, together with the scaling relation (2), implies that the measure φ assigns
infinite mass to any neighborhood of the origin. Extend φ to a σ -finite Borel measure
on R

d by setting φ{0} = 0. Then the regular variation condition (1) implies that
nμ(A−1

n B) → ∞ for any Borel set B that contains an open neighborhood of the
origin. If rj < 0 for some j = 1, . . . , m, then B contains a neighborhood of the
origin, so nP{AnX ∈ B} → ∞, and hence

Fn,θ1,...,θm(r1, . . . , rm) =
(

1 − nP{AnX ∈ B}
n

)n

→ 0 = Fθ1,...,θm(r1, . . . , rm).

(14)

Since we have established convergence for all (r1, . . . , rm) in a dense subset of
R

m, and since Fθ1,...,θm(∞, . . . ,∞) = 1, it follows that Eq. 12 holds. In particular,
Fθ1,...,θm is a valid distribution function.
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Lemma 2.3 There exists a stochastic process Y = {Y (θ)}θ∈Rd\{0} with finite-
dimensional distributions as in Eq. 9.

Proof By Eq. 9, we have that Fθ1,...,θm−1,θm(r1, . . . , rm−1, ∞) = Fθ1,...,θm−1(r1, . . . ,

rm−1), for all rj > 0 and θj ∈ R
d \ {0}, j = 1, . . . , m − 1 and the latter relation is

invariant to permutations. Therefore, {Fθ1,...,θm : θ1, . . . , θm ∈ R
d \ {0}, m ∈ N} is

a projective system of distributions, and the statement follows from the Kolmogorov
consistency theorem.

Lemma 2.4 The distributions of the processes {Mn}n∈N are tight in C(Rd \ {0}).

Proof Consider the modulus of continuity

ωn(δ) := sup
θ,θ ′∈Rd\{0} : ‖θ−θ ′‖<δ

|Mn(A
∗
nθ) − Mn(A

∗
nθ

′)|, (15)

where ‖ · ‖ stands for the Euclidean norm in R
d . By Theorem 3.1.1 in Khoshnevisan

(2002), it is enough to show that

lim
δ↓0

lim sup
n→∞

P{ωn(δ) > ε} = 0 , for all ε > 0 . (16)

Observe that for all ai, bi ∈ R, i = 1, . . . , n, n ∈ N, we have∣∣∣∣∣
n∨

i=1

ai −
n∨

i=1

bi

∣∣∣∣∣ ≤
n∨

i=1

|ai − bi | . (17)

Now, by Eqs. 15 and 17,

ωn(δ) ≤ sup
‖θ−θ ′‖<δ

n∨
i=1

|〈AnXi, θ〉 − 〈AnXi, θ
′〉| = sup

‖θ−θ ′‖<δ

n∨
i=1

|〈AnXi, (θ − θ ′)〉|

≤ δ

n∨
i=1

‖AnXi‖ =: δ Zn , (18)

almost surely. Introduce the tail sets B(r) = {x ∈ R
d : ‖x‖ > r} and observe that by

Eq. 1,

P{Zn ≤ r} = P{AnXi ∈ B(r)c, ∀i = 1, . . . , n}
=

(
1 − nμ(A−1

n B(r))

n

)n

→ e−φ(B(r)), as n → ∞, (19)

for all but countably many r’s. In view of Eq. 18, we have

lim sup
n→∞

P{ωn(δ) > ε} ≤ lim sup
n→∞

P{Zn > ε/δ} =: g(δ).

Notice that the function g(δ) is bounded and non-decreasing and by Eq. 19, we have
g(δ) = 1−e−φ(B(ε/δ)), for all but countably many δ > 0. This, since φ(B(ε/δ)) ↓ 0,
as δ ↓ 0, implies g(δ) ↓ 0, and hence Eq. 16.
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Proof of Theorem 2.1 Lemmas 2.2 and 2.3 show that Eq. 10 holds in the sense of
convergence of the finite–dimensional distributions, where Y is a bona fide stochastic
process. Lemma 2.4 and Prokhorov’s theorem imply that the convergence in Eq. 10
holds in (C(Rd \ {0}), ρ).

The next result gives a Poisson representation of the extremal limit process, akin
to the de Haan spectral representation of a max-stable process (de Haan 1984; de
Haan and Ferreira 2006; Kabluchko 2009; Stoev and Taqqu 2005). This construction
uses the spectral decomposition (5) and (6).

Proposition 2.5 Let 0 < �1 < �2 < · · · be the arrival times of a Poisson process
with constant rate λ(SE) > 0, and take �i, i ∈ N iid random vectors on SE with
distribution λ(·)/λ(SE), independent of (�i). Then

{Y (θ)}θ∈Rd\{0}
d=

{∨
i∈N

〈�−E
i �i, θ〉

}

θ∈Rd\{0}
(20)

where E is the exponent from Eq. 2, and λ is the spectral measure from Eq. 5.

Proof Write εi = �−E
i �i , and use the disintegration formula (5) to see that N =

{εi}i∈N is Poisson point process on R
d \ {0} with intensity measure φ. Indeed, this

follows, from the fact that N is a measurable transformation of the Poisson point
process {(�i, �i), i ∈ N} on (0, ∞)×SE (see e.g., Propositions 3.7 & 3.8 in Resnick
1987). Let Ỹ (θ) := supi∈N〈εi, θ〉 for any θ ∈ R

d \ {0}. For arbitrary θj ∈ R
d \ {0},

rj > 0, j = 1, . . . , m, we have that

P{Ỹ (θj ) ≤ rj , ∀j = 1, . . . , m} = P{〈εi, θj 〉 ≤ rj , ∀i ∈ N, j = 1, . . . , m}

= P

⎧⎨
⎩N ⊂

m⋂
j=1

B(θj , rj )
c

⎫⎬
⎭

= P

⎧⎨
⎩N ∩

⎛
⎝ m⋃

j=1

B(rj , θj )

⎞
⎠ = ∅

⎫⎬
⎭

= exp

⎧⎨
⎩−φ

⎛
⎝ m⋃

j=1

B(rj , θj )

⎞
⎠
⎫⎬
⎭

and apply Eq. 9 to finish the proof.

Theorem 2.1 can be employed, along with continuous mapping arguments, to
compare extremes in different directions. Define

Vn(θ) := max
1≤i≤n

{|〈Xi, θ〉|} ≡ max
1≤i≤n

{〈Xi, θ〉 ∨ 〈Xi, −θ〉}

and let Y |·|(θ) := Y (θ) ∨ Y (−θ).
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Proposition 2.6 Under the assumptions of Theorem 2.1, we have, as n → ∞,

{Vn(A
∗
nθ)}θ∈Rd\{0}

d−→ {Y |·|(θ)}θ∈Rd\{0}, in C(Rd \ {0}), (21)

as well as (
max
‖θ‖=1

Vn(A
∗
nθ), min‖θ‖=1

Vn(A
∗
nθ)

)
d−→ (

Y (max), Y (min)) (22)

where Y (max) := max‖θ‖=1 Y |·|(θ), Y (min) := min‖θ‖=1 Y |·|(θ). Moreover, Y (min) > 0
almost surely.

Proof Relations (21) and (22) follow from Theorem 2.1 by a simple continuous
mapping argument. Use Proposition 2.5 to see that

P{Y (min) = 0} = P

{
min‖θ‖=1

∨
i∈N

|〈�−E
i �i, θ〉| = 0

}

and note that the event on the right-hand side is equivalent to the event that every
sample point of the Poisson point process N = {εi}i∈N with εi = �−E

i �i and full
control measure φ lies on some lower dimensional subspace {x ∈ R

d : |〈x, θ〉| = 0}
for some ‖θ‖ = 1. Since φ assigns zero measure to any lower dimensional subspace,
an easy conditioning argument based on Slyvniak’s formula (see e.g. Proposition 2.3
in Garcia and Kurtz 2008) shows that the sample points of this Poisson point process
are a.s. not all contained in the same lower dimensional subspace. Then it follows
that Y (min) > 0 almost surely.

It follows from Eq. 2 with φ full dimensional that every eigenvalue of E has posi-
tive real part. Write these in strictly increasing order 0 < a1 = 1/α1 < a2 = 1/α2 <

· · · < ap = 1/αp, so that α1 > · · · > αp are the tail indices of different directional
extremes in Eq. 4 (not counting multiplicities) where 1 ≤ p ≤ d .

Define the sample counterparts to Y (max) and Y (min), that is, let

V (max)
n := max

‖θ‖=1
Vn(θ) ≡ max

1≤i≤n
‖Xi‖ and V (min)

n := min‖θ‖=1
Vn(θ) (23)

The next result gives consistent estimators of the largest and smallest tail index.

Proposition 2.7 Under the above assumptions, we have that, as n → ∞,

log V
(max)
n

log n

P−→ 1/αp (24)

as well as
log V

(min)
n

log n

P−→ 1/α1. (25)

Proof For the proof we need a technical tool called the spectral decomposition
of R

d with respect to the exponent E. See Meerschaert and Scheffler (2001),
Section 4.3 and page 406 for details. Let W1, . . . , Wp denote the spectral decompo-
sition of R

d with respect to E and assume without loss of generality that (An) is
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spectrally compatible with −E. For i = 1, . . . , p let L̄i = W1 ⊕ · · · ⊕ Wi . Since
(A−1

n )∗ is regularly varying with exponent E∗ and spectrally compatible with E∗,
Proposition 4.3.14 in Meerschaert and Scheffler (2001) shows that the conclusions
of Theorem 4.3.1 in Meerschaert and Scheffler (2001) hold with L̄i .

We first prove Eq. 24. Fix any δ > 0 and note that

P

{∣∣∣∣∣
log V

(max)
n

log n
− ap

∣∣∣∣∣ > δ

}
≤ P

{
V (max)

n > nap+δ
} + P

{
V (max)

n < nap−δ
}
.

Choose θ0 ∈ L̄p \ L̄p−1, ‖θ0‖ = 1 and note that, in view of Theorem 4.3.1 in
Meerschaert and Scheffler (2001), for any 0 < ε < δ, there exists a constant C > 0
such that, if we write (A−1

n )∗θ0 = rnθn, for some rn > 0 and ‖θn‖ = 1, we have
C−1nap−ε ≤ rn for all n ≥ 1.

Then we get

P
{
V (max)

n < nap−δ
} ≤ P

{
Vn(θ0) < nap−δ

}
= P

{
Vn(A

∗
nθn) < r−1

n nap−δ
}

≤ P
{
Vn(A

∗
nθn) < Cnε−δ

}
.

Since ‖θn‖ = 1, every subsequence (n′) contains a further subsequence (n′′) ⊂ (n′)
such that θn → θ along (n′′). Then, by Proposition 2.6 we have Vn(A

∗
nθn)

d−→
Y |·|(θ) along (n′′). Since P{Y |·|(θ) < r} → 0 as r → 0, given ε1 > 0 there exists
ρ > 0 such that P{Y |·|(θ) < ρ} < ε1/2. Now choose n0 ≥ 1 such that Cnε−δ < ρ

and ∣∣∣P{Vn(A
∗
nθn) < ρ

} − P
{
Y |·|(θ) < ρ

}∣∣∣ < ε1/2

for all n′′ ≥ n0. Then we get P{Vn(A
∗
nθn) < Cnε−δ} < ε1 for all n′′ ≥ n0. Hence

P
{
Vn(A

∗
nθn) < Cnε−δ

} → 0 along (n′′)

and therefore P{V (max)
n < nap−δ} → 0 as n → ∞.

Using Theorem 4.3.1 in Meerschaert and Scheffler (2001) again, for any 0 < ε <

δ there exists a C > 0 such that ‖(A−1
n )∗θ‖ ≤ C−1nap+ε for all n ≥ 1 and all

‖θ‖ = 1. Write (A−1
n )∗θ = rnθn as before. Then we get

P
{
V (max)

n > nap+ε
} = P

{
max
‖θ‖=1

Vn(A
∗
nθn) > r−1

n nap+δ
}

≤ P

{
max
‖θ‖=1

Vn(A
∗
nθ) > Cnδ−ε

}
.

Since by Proposition 2.6 the sequence (max‖θ‖=1 Vn(A
∗
nθ))n is tight, Eq. 24 follows

easily.
Similarly, for the proof of Eq. 25, note that for any δ > 0 we have

P

{∣∣∣∣∣
log V

(min)
n

log n
− a1

∣∣∣∣∣ > δ

}
≤ P

{
V (min)

n > na1+δ
} + P

{
V (min)

n < na1−δ
}
.
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As before, choose θ0 ∈ V1, ‖θ0‖ = 1. Then, if we write (A−1
n )∗θ0 = rnθn, for any

0 < ε < δ there exists C > 0 such that rn ≤ C−1na1+ε for all n ≥ 1. Now

P
{
V (min)

n > na1+δ
} ≤ P

{
Vn(θ0) > na1+δ

}
= P

{
Vn(A

∗
nθn) > r−1

n na1+δ
}

≤ P

{
max
‖θ‖=1

Vn(A
∗
nθ) > Cnδ−ε

}

and use tightness again to see that P
{
V

(min)
n > na1+δ

} → 0 as n → ∞.
Finally, if we write (A−1

n )∗θ = rnθn again, given 0 < ε < δ, there exists a C > 0
such that rn = ‖(A−1

n )∗θ‖ ≥ C−1na1−ε for all ‖θ‖ = 1 and all n ≥ 1. Then we have

P
{
V (min)

n < na1−δ
} = P

{
min‖θ‖=1

Vn(A
∗
nθn) < r−1

n na1−δ
}

≤ P

{
min‖θ‖=1

Vn(A
∗
nθ) < Cnε−δ

}
.

Now, in view of Proposition 2.6 we have min‖θ‖=1 Vn(A
∗
nθ)

d−→ Y (min) where

Y (min) > 0 almost surely. This easily implies P
{
V

(min)
n < na1−δ

} → 0 and the proof
is complete.

3 The extremal limit process

In this section, we investigate properties of the extremal limit process Y := {Y (θ)} in
Theorem 2.1. The first result shows that the random field Y is operator max-scaling.

Proposition 3.1 Let Yk = {Yk(θ)}θ∈Rd\{0} for k = 1, . . . , n be independent copies
of the process Y in Eq. 9. Then

{Y1(θ) ∨ · · · ∨ Yn(θ)}θ∈Rd\{0}
d= {Y (nE∗

θ)}θ∈Rd\{0} (26)

for all n ∈ N.

Proof Since n−EB(r, θ) = {n−Ex : 〈x, θ〉 > r} = {y : 〈y, nE∗θ〉 > r} =
B(r, nE∗

θ), we may write

P

{
n∨

k=1

Y (θj ) ≤ rj ∀ 1 ≤ j ≤ m

}
= exp

⎧⎨
⎩−nφ

⎛
⎝ m⋃

j=1

B(rj , θj )

⎞
⎠
⎫⎬
⎭

= exp

⎧⎨
⎩−φ

⎛
⎝n−E

m⋃
j=1

B(rj , θj )

⎞
⎠
⎫⎬
⎭

= exp

⎧⎨
⎩−φ

⎛
⎝ m⋃

j=1

B(rj , n
E∗

θj )

⎞
⎠
⎫⎬
⎭

= P
{
Y
(
nE∗

θj

) ≤ rj ∀ 1 ≤ j ≤ m
}
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using Eq. 9, the operator scaling property (2) of φ, and the independence of
the Yk’s.

Remark 3.2 The operator scaling Eq. 26 implies that Y (θi) is Fréchet max-stable
with index αi = 1/ai for any eigenvector Eθi = aiθi . To see this, first note that
rE∗

θi = rai θi for any r > 0. Then observe that B(r, cθ) = B(r/c, θ) in Eq. 8, and
so it follows from Eq. 9 that Y (cθ) = cY (θ) almost surely for all c > 0 and all
θ ∈ R

d \ {0}. Hence Eq. 26 yields

Y1(θi) ∨ · · · ∨ Yn(θi)
d= n1/αi Y (θi) for all n = 1, 2, 3, . . .

so that Y (θi) is max-stable. In fact, Eqs. 8 and 9 imply that P(Y (θi) ≤ r) =
exp(−Cr−αi ) for any r > 0, where C = φ(B(1, θi)). We could formulate our
extreme value theory for θ on the unit sphere, but our approach reveals the operator
scaling property in Proposition 3.1.

As in the case of scalar norming, the Poisson representation (20) is particularly
useful for computer simulations. To that end, consider the truncated maximum

Y (n)(θ) :=
n∨

i=1

〈�−E
i �i, θ〉 and let also Y (∞)(θ)

:= lim
n→∞ Y (n)(θ) ≡

∞∨
i=1

〈�−E
i �i, θ〉.

Proposition 3.3 For all K ⊂ Sd−1 := {θ ∈ R
d : ‖θ‖ = 1}, ε > 0 and δ ∈ (0, 1),

there exists nε,δ such that for all n ≥ nε,δ

P{Y (∞)(θ) �= Y (n)(θ), for some θ ∈ K} ≤ δn + P

{
inf
θ∈K

Y (∞)(θ) ≤ ε
}
. (27)

Proof Let ε > 0 and observe that if Y (∞)(θ) > ε and 〈�−E
i �i, θ〉 ≤ ε, ∀ i ≥ n+1,

then Y (∞)(θ) = Y (n)(θ) > ε. Therefore,

P{Y (∞)(θ) = Y (n)(θ), ∀θ ∈ K} ≥ P

{
sup

i≥n+1
‖�−E

i �i‖ ≤ ε, inf
θ∈K

Y (∞)(θ) > ε
}
,

and hence with cE = (supθ∈SE
‖θ‖)−1, we have

P{Y (∞)(θ) �= Y (n)(θ), ∃ θ ∈ K} ≤ P

{
sup

i≥n+1
‖�−E

i ‖ > cEε
}

+P

{
inf
θ∈K

Y (∞)(θ) ≤ ε
}
.

By Theorem 2.2.4 in Meerschaert and Scheffler (2001), we have that for all t ≥ 1,
‖t−E‖ ≤ Cat

−a , where ‖ · ‖ stands for the operator norm induced by the Euclidean
norm in R

d and where 0 < a < minλ∈spec(E) Re(λ) is strictly less than the smallest



418 M.M. Meerschaert et al.

real part of the eigenvalues of E. Since a > 0 and �n+1 ≤ �i , for all i ≥ n + 1, we
obtain

P

⎧⎨
⎩

∞∨
i=n+1

‖�−E
i �i‖ > ε

⎫⎬
⎭ ≤ P{�−a

n+1 > cE,aε}

= P{�n+1/(n + 1) < (cE,aε)
−1/a/(n + 1)},

where cE,a := (Ca supθ∈SE
‖θ‖)−1. Recall, however, that �n+1 = E1 + · · · + En+1,

where the Ei’s are iid Exponential with mean 1/λ(SE). Thus, by the Cramér’s large
deviations theorem (see e.g. Theorem 2.2.3, Remark (c), p. 27, and Exercise 2.2.23
in Dembo and Zeitouni 1998), we obtain

P

{
�n+1

(n + 1)
<

(cE,aε)
−1/a

(n + 1)

}

≤ 2 exp

{
λ(SE)

(cE,aε)1/a
+ (n + 1)(1 − log n + log(λ(SE)(cE,aε)

−1/a))

}
.

Since log(1/n) → −∞, as n → ∞, the last inequality implies Eq. 27.

Remark 3.4 If supp(φ) contains a neighborhood of the origin, take K = Sd−1 in
Eq. 27. Since φ is full and assigns finite mass to sets not containing a neighborhood of
the origin, the convex hull of the point process N is almost surely a polyhedron with
finite number of extremal points. The process Y (∞)(·) depends only on this convex
hull, hence Y (n)(·) equals Y (∞)(·) for n sufficiently large. Then the finite maximum
Y (n)(·) can be used to simulate the exact values of arbitrary statistics of Y (·) with
high probability. For vector data where every component is positive, it is natural for
φ to be concentrated on [0, ∞)d , and then one should choose K = [0, ∞)d ∩ Sd−1.

4 Scalar norming

If An = cnI , a scalar multiple of the identity, then Mn(A
∗
nθ) = cnMn(θ), E =

(1/α)I for some α > 0, condition (1) is scalar-normed multivariate regular variation,
and Y (θ) has an α-Fréchet distribution. In this case, we can use the Euclidean norm
‖·‖ and the corresponding sphere Sd−1 in the disintegration formula (5). Then we can
develop a representation theorem for the limit process {Y (θ)}θ∈Rd\{0} in Theorem 2.1
using extremal integrals.

Following (de Haan 1984; Kabluchko 2009; Stoev and Taqqu 2005), any
separable-in-probability α-Fréchet max-stable process ξ = {ξ(t)}t∈T can be repre-
sented as

{ξ(t)}t∈T
d=

{∫e
D

ft (u)Mα(du)

}
t∈T

(28)

where ft ∈ Lα+(D, λ) are non-negative deterministic functions defined on a Borel
measure space (D,B(D), λ) with

∫
D

f α
t dλ < ∞, and

∫e
D

f dMα is an extremal
stochastic integral with respect to the random α-Fréchet sup-measure Mα on
(D,B(D)) with control measure λ, so that Mα is σ -sup-additive rather than additive,
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and it assigns independent α-Fréchet variables to disjoint measurable sets, with scale
coefficients controlled by the deterministic measure λ:

P{Mα(B) ≤ x} = exp{−λ(B)x−α}, x > 0.

The spectral functions ft in Eq. 28 yield the finite-dimensional distributions of the
process:

P{ξ(tj ) ≤ xj , ∀j = 1, . . . , m} = exp

{
−

∫
D

(
max

1≤j≤m

f α
tj

(u)

xα
j

)
λ(du)

}
, (xj > 0)

(29)

(see also Proposition 5.11 in Resnick 1987). The extremal integral representation (28)
is called the spectral representation of ξ . The next result provides the spectral
representation of the directional process Y .

Proposition 4.1 Suppose that Eq. 1 holds with scalar An = cnI . Then cn is regularly
varying with exponent −1/α for some α > 0, and the directional process in Eq. 10
is α-Fréchet with the following extremal integral representation:

{Y (θ)}θ∈Rd\{0}
d=

{∫e
Sd−1

〈u, θ〉+Mα(du)

}
θ∈Rd\{0}

(30)

where Mα is an α-Fréchet sup-measure on (Sd−1,B(Sd−1)) with control measure λ,
the spectral measure from Eq. 6.

Proof If Eq. 1 holds with scalar An = cnI , then cn is regularly varying with expo-
nent −1/α for some α > 0 by Meerschaert and Scheffler (2001, Proposition 6.1.37).
Let θj ∈ R

d \ {0} and rj > 0, j = 1, . . . , m be arbitrary. In view of Eqs. 9 and 5,
we have

P
{
Y (θj ) ≤ rj , ∀j = 1, . . . , m

}

= exp

{
−

∫
Sd−1

∫ ∞

0
1∪m

j=1B(rj ,θj )(t
1/αθ)

dt

t2
λ(dθ)

}

= exp

{
−

∫
Sd−1

∫ ∞

0

(
max

1≤j≤m
1B(rj ,θj )(t

1/αθ)
)dt

t2
λ(dθ)

}
, (31)

where we used the facts that tE = t1/αI and 1∪m
j=1B(rj ,θj )(·) =

max1≤j≤m 1B(rj ,θj )(·). By focusing on the inner integral in the right–hand side of
Eq. 31 and making the change of variables τ := t−1, we obtain∫ ∞

0

(
max

1≤j≤m
1B(rj ,θj )(t

1/αθ)
)dt

t2
=

∫ ∞

0

(
max

1≤j≤m
1B(rj ,θj )(τ

−1/αθ)
)

dτ.

Observe that the integrand equals 0 or 1, and it is equal to 1 if and
only if τ−1/α〈θ, θj 〉 > rj , for some j = 1, . . . , m, or equivalently,
if τ < max1≤j≤m〈θ, θj 〉α+/rα

j (with max ∅ = 0, by convention.) Thus,
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∫ ∞
0 (max1≤j≤m 1B(rj ,θj )(τ

−1θ))dτ = max1≤j≤m 〈θ, θj 〉α+/rα
j , which implies that the

right–hand side of Eq. 31 equals

exp

{
−

∫
Sd−1

(
max

1≤j≤m

〈θ, θj 〉α+
rα
j

)
λ(dθ)

}
.

In view of Eq. 29 the last expression is precisely that of the finite–dimensional
distributions of a max–stable process with spectral representation as in Eq. 30.

5 Testing for hetero-ouracity

A natural and important question is whether the tail index of a given data set varies
with direction, so that operator normalization should be used. We say that such distri-
butions possess hetero-ouracity (from the greek words for different tails). We address
this question here with a formal hypothesis test. As in Proposition 2.7, we consider
the distinct real parts 0 < 1/α1 ≤ · · · ≤ 1/αp of the eigenvalues of the scaling
matrix E from Eq. 2, so that α1 > · · · > αp > 0 are the distinct tail indices Eq. 4 of
the data. We assume iid data X1, X2, . . . whose underlying distribution μ is operator
regularly varying with index E, so that Eq. 1 holds. Our goal is to test whether the
data has different tail indices in different directions. Under the null hypothesis H0:
scalar norming, the norming operators in Eq. 1 are of the form An = cnI , where cn

is a regularly varying sequence with index −1/α, α = α1 = αp (same tail index in
every direction). By Proposition 2.6, we then have

{
cnVn(θ)

}
θ∈Rd\{0}

d−→ {Y |·|(θ)}θ∈Rd\{0}, in C(Rd \ {0}), as n → ∞. (32)

Moreover, Eq. 22 in this particular case reads

cn(V
(max)
n , V (min)

n )
d−→ (Y (max), Y (min)), (33)

where V
(max)
n and V

(min)
n are as in Eq. 23. Since Y (min) > 0 almost surely by

Proposition 2.6, applying continuous mapping again to Eq. 33 yields

V
(max)
n

V
(min)
n

d−→ Y (max)

Y (min)
, as n → ∞. (34)

For this convergence to hold, it is essential that α1 = αp, so that V
(max)
n and V

(min)
n

are of the same order. In fact, it follows immediately from Proposition 2.7 that

V (max)
n /V (min)

n

P→ ∞ as n → ∞
in the case where αp < α1.

Relation (34) (valid under the null hypothesis) and Proposition 2.7 will help us
design a test for scalar norming, with asymptotic power equal to 1 when the tail
index varies. To obtain asymptotically accurate rejection regions, however, we need
to first construct consistent estimates for the quantiles of Y (max)/Y (min) under the
null hypothesis. The following two results are required for this purpose.
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Proposition 5.1 Let λn and λ be finite measures on Sd−1 such that λn
w→ λ, and

that αn → α > 0 as n → ∞. Then

{Yn(θ)}θ∈Sd−1
d−→ {Y (θ)}θ∈Sd−1 , as n → ∞ in (C(Sd−1,R), ‖ · ‖) (35)

where Yn(θ) := ∫e
Sd−1〈u, θ〉+M

(n)
αn (du) is a continuous version of the directional

process whose αn-Fréchet random sup–measure M
(n)
αn has control measures λn, and

similarly Y (θ) := ∫e
Sd−1〈u, θ〉+Mα(du) has an α-Fréchet random sup–measure Mα

with control measure λ.

Proof For all rj > 0 and θj ∈ Sd−1, j = 1, . . . , m by Eq. 29, we have

P{Yn(θj ) ≤ rj , j = 1, . . . , m} = exp

{
−

∫
Sd−1

g
αn

θ,r (u)λn(du)

}
(36)

and similarly

P{Y (θj ) ≤ rj , j = 1, . . . , m} = exp

{
−

∫
Sd−1

gα
θ,r (u)λ(du)

}
, (37)

where gθ,r (u) = max1≤j≤n 〈u, θj 〉+/rj . Observe that u 
→ g
αn

θ,r (u) are bounded
and continuous functions, such that sup‖u‖=1 |gαn

θ,r (u) − gα
θ,r (u)| → 0, as n → ∞.

Therefore, λn
w→ λ implies that the probabilities in Eq. 36 converge to those in

Eq. 37, as n → ∞. This shows that Eq. 35 is valid in the sense of convergence of the
finite-dimensional distributions.

The tightness of the laws of Yn = {Yn(θ)}θ∈Sd−1 , n ∈ N follows as in the proof
of Lemma 2.4. Indeed, by applying Eq. 17 to relation (20) above, we obtain

|Yn(θ) − Yn(θ
′)| ≤

∞∨
i=1

|〈θ − θ ′, �−1/αn

i �
(n)
i 〉|

≤ ‖θ − θ ′‖
∞∨
i=1

�
−1/αn

i = ‖θ − θ ′‖�−1/αn

1 , (38)

where 0 < �1 < �2 < · · · is a Poisson point process with constant intensity
λn(S

d−1) on (0, ∞) and the �
(n)
i ’s are iid random variables on Sd−1 with distribu-

tion λn(·)/λn(S
d−1). Since αn → α > 0, as n → ∞, relation (38) readily implies

Eq. 16 for the modulus of continuity of Yn and thus the desired tightness.

The next result involves the notion of weak convergence of random measures,
which we briefly recall. Following Section 3.3.5 in Resnick (2007), let M+(Sd−1)

be the set of finite Borel measures on Sd−1. M+(Sd−1) can be equipped with a met-
ric ρM+ which metrizes the vague (equivalently, weak) convergence of measures. In
fact, ρM+ can be chosen in such a way that (M+(Sd−1), ρM+) becomes a complete
separable metric space. By a random measure on Sd−1 we will understand a Borel
measurable mapping ξ : � → M+(Sd−1), i.e. a random element taking values in the
metric space M+(Sd−1). For a sequence of random measures ξn, we write ξn⇒ξ if
the law of ξn converges to that of ξ in M+(Sd−1) as n → ∞.
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Proposition 5.2 Let Xi, i = 1, . . . , n be independent random vectors with distribu-
tion μ, that satisfies Eq. 1 with An = cnI and spectral measure λ as in Eq. 6. For all
u > 0, consider the random measure

λ̂u(A) :=
∑n

i=1 1A(Xi/‖Xi‖)1(u,∞)(‖Xi‖)∑n
i=1 1(u,∞)(‖Xi‖) (39)

using the convention λ̂u ≡ 0 if ‖Xi‖ ≤ u for all i = 1, . . . , n. If un → ∞ and
cnun → 0, then

λ̂un =⇒ λ(·)/λ(Sd−1), as n → ∞ in M+(Sd−1). (40)

Proof The result readily follows from a slight modification of Theorem 6.2, part (9)
in Resnick (2007). Since we are assuming scalar-normed multivariable regular varia-
tion, with spectral measure λ as in Eq. 6, the convergence (6.18) on p. 180 of Resnick
(2007) holds in M+((0, ∞]×Sd−1). Namely, with Ri := ‖Xi‖ and �i := Xi/‖Xi‖,
we have:

ξn := 1

k

n∑
i=1

ε(Ri/b(n/k),�i) =⇒ ξ := cνα × λ, (41)

where να([x, ∞)) = x−α, x > 0, λ is the spectral measure of μ on Sd−1, and k =
k(n) → ∞ in such a way that n/k(n) → ∞. Write b(n) := c−1

n = �(n)n1/α where
�(n) is slowly varying. Since cnun → 0 and un → ∞, one can choose k = k(n)

such that un ∼ b(n/k) = �(n/k)(n/k)1/α as n → ∞.
Then, for all measurable sets A ⊂ Sd−1,

λ̂un(A) = ξn((1, ∞) × A)

ξn((1, ∞) × Sd−1)
. (42)

Observe that since να in Eq. 41 has no atoms, for all A ⊂ Sd−1 that are continuity
sets of λ, the set (1, ∞) × A is also a continuity set of the limit measure in Eq. 41.
Therefore, for all measurable continuity sets A of λ, relation (41) implies that, as
n → ∞,

(ξn((1, ∞) × A), ξn((1, ∞) × Sd−1))
P−→ c(λ(A), λ(Sd−1)), (43)

where the last convergence is in probability since the limit in Eq. 41 is deterministic.

In view of Eq. 42, Eq. 43 implies that λ̂un(A)
P→ λ(A)/λ(Sd−1) as n → ∞, for all

λ−continuity sets A. This yields the desired weak convergence (40).

We are now ready to propose a test for hetero-ouracity. Let H0: scalar norming
(same tail index in all directions). Under H0, Eq. 34 holds. On the other hand, when
the tail indices vary, Proposition 2.7 implies that the ratio in Eq. 34 tends to infinity.
We therefore reject H0 at a level β ∈ (0, 1) if

V
(max)
n

V
(min)
n

> c1−β(λ, α), (44)
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where c1−β(λ, α) is the (1 − β) quantile of the distribution of Y (max)/Y (min), that is,

c1−β(λ, α) = F←
Y(max)

Y (min)

(1 − β) := inf{c > 0 : P{Y (max)/Y (min) ≤ c} ≥ 1 − β}.

Given a real data set, one must estimate the tail exponent α and the spectral measure
λ. Proposition 5.2 provides a consistent estimate of the spectral measure λ in Eq. 6
under the null hypothesis H0. For the tail index, one can apply Proposition 2.7 to get
a consistent estimate of the tail index α, on the same probability space (�,F,P).
If desired, any other consistent tail estimator can be applied (e.g., the simple Hill
estimator). To justify the use of these estimators in the proposed test, we develop the
following parametric bootstrap procedure. Consider the parametric bootstrap version
of the directional process Y∗

n = {Y ∗
n (θ)}θ∈Sd−1 defined by

Y ∗
n (θ) :=

∫e
Sd−1

〈u, θ〉+M ∗̂
αn

(du), (45)

where M ∗̂
αn

is an α̂n-Fréchet random sup-measure with control measure λ̂n. The
sup-measure M ∗̂

αn
and the process Y∗

n are defined on a different probability space
(�∗,F∗,P∗). Without loss of generality, assume that Y∗

n has continuous paths, and
introduce the quantities

Y ∗(max)
n := sup

‖θ‖=1
Y ∗

n (θ) and Y ∗(min)
n := inf‖θ‖=1

(Y ∗
n (θ) ∨ Y ∗

n (−θ)). (46)

The next result justifies our bootstrap procedure.

Proposition 5.3 Under the above assumptions,

LP∗

(
Y

∗(max)
n

Y
∗(min)
n

)
P=⇒ LP∗

(
Y ∗(max)

Y ∗(min)

)
(47)

as n → ∞, where Y ∗(max) and Y ∗(min) are as in Eq. 46 but with M ∗̂
αn

in Eq. 45
replaced by an α-Fréchet sup-measure M∗

α with control measure λ. The convergence
in probability in Eq. 47 is viewed in the space (�,F,P), while ’⇒’ therein denotes
weak convergence of probability distributions in the space (�∗,F∗,P∗).

Proof To establish convergence in probability (47), it suffices to show that for any
integer sequence nk → ∞, there exists a further sub-sequence n′ → ∞ such that

Y
∗(max)

n′ (·, ω)

Y
∗(min)

n′ (·, ω)
=⇒ Y ∗(max)(·)

Y ∗(min)(·) , for P–almost all ω ∈ �. (48)

Note that Y ∗(max)/Y ∗(min) is supported on the probability space (�∗,F∗,P∗) and it
does not depend on ω. Now since

α̂n
P→ α and λ̂n

P⇒ λ(·)/λ(Sd−1)
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as n → ∞, for every nk → ∞, there exists a further sub-sequence n′ → ∞, such
that

α̂n′(ω) −→ α and λ̂n′(ω) −→ λ(·)/λ(Sd−1), for P–almost all ω ∈ �. (49)

Fix such an ω ∈ �, and view Y
(max)

n′ (·, ω)/Y
(min)

n′ (·, ω) as random variables on the
probability space (�∗,F∗,P∗). Observe that

Y
∗(max)

n′ (·, ω)

Y
∗(min)

n′ (·, ω)
= �(Y ∗

n (·, ω)),

where �(f ) := (sup‖θ‖=1 f (θ))/(inf‖θ‖=1 f (θ) ∨ f (−θ)). The functional � :
C(Sd−1) → R is continuous on the support of the law of Y∗ = {Y ∗(θ)}θ∈Sd−1 since
Y ∗(min) > 0. Therefore, Proposition 5.1 and the continuous mapping theorem applied
to the functional � show that Eq. 48 holds. This is true for P-almost all ω ∈ �.
Therefore, since the sequence nk → ∞ was arbitrary, the convergence (48) implies
Eq. 47.

Corollary 5.4 Suppose that c1−β(α, λ) is a continuity point of the quantile function

F←
Y (max)/Y (min) of Y (max)/Y (min). Then, c1−β (̂αn, λ̂n)

P−→ c1−β(α, λ), as n → ∞.

Proof As in the proof of Proposition 5.3, we apply the method of selecting a
P-almost surely converging sub-sequence. The result then follows from the continu-
ous mapping theorem applied to Eq. 47 with the help of Proposition 0.1 on page 5 in
Resnick (1987) (see also Proposition 2.2, page 20 in Resnick 2007).

To conclude this section, we summarize the steps of our test:

(1) Compute consistent statistics α̂n and λ̂n from the sample Xi, i = 1, . . . , n.
(2) Apply the simulation methods from Section 3 to obtain N independent boot-

strap samples from Y
∗(max)
n /Y

∗(min)
n using (1).

(3) Approximate c1−β (̂αn, λ̂n) with its empirical quantile ĉ1−β (̂αn, λ̂n) based
on (2).

(4) Compute the statistic V
(max)
n /V

(min)
n from the sample Xi, i = 1, . . . , n and

test the hypothesis H0 according to the rule Eq. 44 with c1−β(α, λ) replaced by
ĉ1−β (̂αn, λ̂n).

Corollary 5.4 ensures that this procedure yields asymptotically accurate estimates
of c1−β(α, λ). Equation 34 shows that under the null hypothesis H0: scalar norming,
the test is asymptotically consistent, provided c1−β(α, λ) is a continuity point of the
quantile function of the test statistic. Furthermore, Proposition 2.7 implies that under
the alternative of hetero-ouracity (variation in tail index), the test has an asymptotic
power of 1.

Remark 5.5 Scalar norming implies but is not equivalent to having the same tail
exponent in all directions. If the matrix exponent E has non-trivial nilpotent part, or
multiple eigenvalues with equal real parts but different imaginary parts, then the same
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tail index can pertain in every direction, but with operator norming, the tail behavior
can vary between coordinates. Such subtle scenarios are hard to detect in practice
since one tail can fall off like x−α and the other can fall off like x−α log x.

6 Simulation

This section reports the results of a small simulation study to validate the testing
procedure outlined in Section 5. We simulate data from an operator Pareto distribu-
tion in R

3 with uniform spectral density on the Euclidean unit sphere. Namely, the
distribution μ is the law of the random vector

X = U−E�,

where U ∼ Uniform(0, 1) and � ∼ Uniform(Sd−1) are independent. The exponent
matrix E is diagonal: E := diag(1/α1, 1/α2, 1/α3) with 0 < α3 ≤ α2 ≤ α1. We
simulate independent samples from this distribution and test for variation in the tail
index as follows. The corresponding MATLAB code can be downloaded from Stoev
et al. (2012).

(i) Under the null hypothesis (scalar norming), the spectral measure estimate λ̂un

from Proposition 5.2 depends on the number of sample points with ‖Xi‖ > un.
For simplicity, we choose un ≡ 1, so that all the simulated data is used to
estimate the spectral measure.

(ii) The tail estimate α̂n is computed using the plain Hill estimator for the sample
‖Xi‖, i = 1, . . . , n, which under the null is heavy tailed with exponent α. The
threshold for the Hill estimator is k := [n/2], where n is the sample size, so
that the upper half of the data is used to estimate the tail index.

(iii) The spectral measure λ is estimated using Eq. 39, with un = 1.

Remark 6.1 In step (i) we have chosen to use all the simulated data. This is justifiable
because of the operator Pareto model, which assumes a power law distribution for the
entire data set. For real data analysis, it is often advisable to consider the largest order
statistics of the data, where the power law behavior should be evident (assuming that

Table 1 Empirical rejection probabilities for our test (at level β = 0.1) under the null and eight
alternatives

n α∗

0.1 0.3 0.5 0.9 1.0 1.1 1.5 2.0 3.0

100 1.000 0.844 0.512 0.116 0.095 0.090 0.232 0.399 0.633

1000 1.000 1.000 0.924 0.125 0.096 0.119 0.431 0.816 0.952

10000 1.000 1.000 0.999 0.162 0.107 0.150 0.754 0.953 0.962

Observe that in the case α∗ = 1 (null hypothesis), these probabilities approximate the Type I error, while
in the rest of the cases they approximate the power of the test under various alternatives
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Fig. 1 Histograms of the p-values based on 1000 replicates of the test. The first two panels (left to right)
correspond to the alternatives α1 = α∗, α2 = α3 = 1, with α∗ = 0.5 and 0.9, respectively. The third panel
corresponds to the null and the right-most panel to the alternative α1 = α2 = 1, and α3 = α∗ = 1.5

a power law tail model is appropriate). Under the null hypothesis, the data can be
ordered in terms of the vector norm. Then the behavior of the test for sample sizes
n = 100, 1000, and 10 000 in our simulation study can serve as a proxy to the large
sample behavior of the test for heavy tailed data, where the threshold is chosen to
grow with the sample size, and the number of data points with ‖Xi‖ ≥ un equals
100, 1000, or 10 000.

We tested nine scenarios, where two of the tail exponents αi’s were set equal to 1,
and the third tail exponent α∗ varied over the set {0.1, 0.3, 0.5, 0.9, 1, 1.1, 1.5, 2, 3}.
Table 1 shows empirical rejection probabilities for 1000 independent replications of
the test. Observe that under the null hypothesis (α∗ = 1), the test is essentially exact,
with Type I error equal to the nominal level β = 0.1. The power of the test increases
as α∗ departs from 1. Rejection probabilities are highest for the alternative α∗ = 0.1,
the case in which the ratio between tail indices is largest. Figure 1 illustrates the
range of p-values in several cases. Under the null hypothesis, the distribution of the
p-values is nearly uniform, which confirms the accuracy of the parametric bootstrap.

7 Applications

We applied the test for variations in tail index from Section 5 to two bivariate data
sets studied in the literature. The first one consists of n = 2853 consecutive daily
log returns for exchange rates of the Deutschmark versus the US dollar, and Japanese
Yen versus the US dollar (Meerschaert and Scheffler 2003; Nolan et al. 2001). A
scatter-plot of the data set is shown in Fig. 2 (top left). A multivariate stable model
with the same tail index α = 1.65 was fitted to this data in Nolan et al. (2001). An
alternative model was proposed in Meerschaert and Scheffler (2003), with a heav-
ier tail with index α2 = 1.65 along the 45◦ axis, and a lighter tail with α1 ≈ 2.0
along the −45◦ axis. The second data set describes flow through a simulated fracture
network, obtained from a large simulation study for site characterization of a pro-
posed nuclear waste repository in Sweden (Meerschaert and Scheffler 2003; Painter
et al. 2002). The two variables are travel time τ in years, and inverse velocity β in
years/meter. Here the power law behavior is quite clear, and exhibits as a long straight
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Fig. 2 Top left: Log returns of daily exchange rates. Top right: Flow data from a fracture network. Bottom
left and right: The p-values of the proposed test for variations in the tail index, applied to the corresponding
data sets above, versus the fraction q of largest (in norm) data points used to estimate the spectral measure.
The null hypothesis (same tail index in every direction) is conclusively rejected for the fracture data, but
not for the exchange rate data

line on a log-log plot of the sorted data for each variable, allowing an easy estimate of
α2 = 1.05 for β (vertical axis) and α1 = 1.4 for τ (horizontal axis).

The estimation of the tail exponent under the null hypothesis assumption is one
of the most delicate problems in practice. For these two data sets, we used the pre-
viously obtained estimates of α = 1.65 for the exchange rate data set and α = 1.05
for the fracture transport data. Since the heaviest tail dominates, the lower index is
appropriate, and this is also consistent with the simulation study in Section 6. The test
uses Proposition 5.2 to estimate the spectral measure, and because the test may be
sensitive to the number of upper order statistics used, we consider a range of thresh-
olds u = u(q), corresponding largest 100q % of the observations, ordered in terms
of the vector norm. The resulting p-values are shown in Fig. 2 (bottom), obtained
using the parametric bootstrap with 1000 independent replications. Observe that for
the exchange rate data set, the p-values are high, and our test fails to reject the null
hypothesis of scalar norming. On the other hand, in the case of fracture transport,
there is strong evidence in favor of operator norming.
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