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Abstract. Operator stable laws are the limits of operator normed and centered sums of

independent, identically distributed random vectors. The operator ν-stable laws are the

analogous limit distributions for randomized sums. In this paper we characterize operator

ν-stable laws and their domains of attraction. We also discuss several applications,

including the scaling limits of continuous time random walks and the special case of

operator geometric stable laws, which are useful in finance.

1. Introduction

We introduce a new class of multivariate distributions, which includes stable and oper-

ator stable, geometric operator stable, ν-stable and geometric stable laws as special cases.

Let (Xi) be a sequence of independent and identically distributed (i.i.d.) random vectors

(r.v.’s) in Rd. Consider a random sum

(1.1) SNn = X1 + · · · + XNn ,

where Nn is an integer-valued r.v., independent of the Xi’s, such that Nn
p→ ∞ (in

probability) while Nn/n ⇒ Z (in distribution) as n → ∞, where Z > 0 has distribution

ν. If there exists a weak limit of

(1.2) An

Nn∑

i=1

(Xi − bn),

where An is a linear operator on Rd and bn ∈ Rd, then we call it an operator ν-stable

law. This generalizes the class of ν-stable laws, which arise as limits in (1.2) under scalar
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normalization An = an ∈ R (see, e.g., [15]). If the sum in (1.2) is deterministic (Nn = n),

then the limiting distributions are operator stable laws (see, e.g., [22]) and stable laws (see,

e.g., [30]) under scalar normalization. If Nn has a geometric distribution with mean n then

the limits are operator geometric stable (OGS) laws (see [14]), and reduce to geometric

stable (GS) laws under scalar normalization (see, e.g., [8, 20]). In the latter case, we obtain

the class of skew Laplace distributions as the limiting laws in (1.2) when the components

have finite second moment (see [13, 17]).

Random summation arises naturally in various fields, including biology, economics,

insurance mathematics, physics, reliability and queuing theories among others (see, e.g.,

[5]). Thus, being limiting distributions of random sums, the operator ν-stable laws should

have numerous applications in stochastic modeling. Univariate and multivariate geometric

stable distributions, and their special cases of skew Laplace laws, compete successfully with

stable and other laws in modeling financial asset returns (see, e.g., [13, 16, 17, 19, 21, 27]).

Compared with ν-stable distributions, we obtain more flexibility when normalizing the

sum in (1.1) by linear operators, as here different components of the limiting random

vector are allowed to have different tail behavior.

In this paper we derive basic properties of operator ν-stable laws. After briefly recount-

ing in Section 2 some essential ideas from the theory of operator stable laws and their

(generalized) domains of attraction, we formally define the class of operator ν-stable laws

in Section 3. Here, we prove some basic results about these distributions, and character-

ize their domains of attraction. We show that (under certain conditions on ν) there is a

one-to-one correspondence between operator stable and operator ν-stable laws, and they

have the same domains of attraction. In Section 4 we study the tail behavior of operator

ν-stable laws, generalizing results for ν-stable laws of [15]. In particular, we show that

if ν has a finite mean, then the operator ν-stable law belongs to the generalized domain

of attraction of the underlying operator stable law. In Section 5 we briefly discuss the

connection with continuous time random walks. We conclude with Section 6, where we

summarize the special case of operator geometric stable laws.
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2. Operator stable laws

Suppose X,X1,X2, . . . are independent and identically distributed random vectors on

Rd with common distribution µ and that Y0 is a random vector whose distribution ω is

full, i.e., not supported on any lower dimensional hyperplane. We say that ω is operator

stable if there exist linear operators An on Rd and nonrandom vectors bn ∈ Rd such that

(2.1) An

n∑

i=1

(Xi − bn) ⇒ Y0,

where ⇒ denotes weak convergence. In terms of measures, we can rewrite (2.1) as

(2.2) Anµn ∗ εsn ⇒ ω

where Anµ(dx) = µ(A−1
n dx) is the probability distribution of AnX, µn is the nth convo-

lution power, and εsn is the unit mass at the point sn = −nAnbn. In this case, we say

that µ (or X) belongs to the generalized domain of attraction of ω (or Y0), and we write

µ ∈ GDOA(ω), or X ∈ GDOA(Y0). Theorem 7.2.1 in [22] shows that the operator stable

law ω is infinitely divisible and

(2.3) ωt = tEω ∗ εat for all t > 0,

where at ∈ Rd, E is a linear operator called an exponent of ω, tE = exp(E log t), and

exp(A) = I + A + A2/2! + A3/3! + · · · is the usual exponential operator. If (2.1) holds

with all bn = 0 we say that µ belongs to the strict generalized domain of attraction of ω.

If (2.3) holds with all at = 0 we say that ω is strictly operator stable.

The following two results are basic and well known, but we include them here for

completeness, since we could not locate a suitable reference.

Lemma 2.1. If the distribution ω of Y is operator stable and (2.3) holds, then the char-

acteristic function ω̂(x) = E[ei〈x,Y 〉] satisfies

(2.4) ω̂(x)t = ω̂(tE
∗
x)ei〈at,x〉 for all t > 0.

Proof. Given a probability measure µ1 on Rd, let µ2 = Aµ1 ∗ εa where A is a linear

operator on Rd and a ∈ Rd. It is well known that µ̂2(x) = µ̂1(A∗x)ei〈a,x〉, see for example
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Proposition 1.3.8 in [22]. If ω is operator stable and (2.3) holds, then (2.4) follows easily,

using the fact that (tE)∗ = tE
∗
. �

Lemma 2.2. If µ belongs to the strict generalized domain of attraction of ω, then ω is

strictly operator stable.

Proof. Assume (2.1) holds with all bn = 0 for some full ω. Fix t > 0 and let µn = A[tn]µ
[tn]

and Bn = AnA−1
[tn]. Then (2.1) implies that µn ⇒ ω and since ω is infinitely divisible,

Proposition 3.3.7 of [22] yields Bnµn = Anµ[tn] ⇒ ωt. Since ωt is full, Lemma 2.3.7 in

[22] shows that (Bn) is relatively compact. Theorem 2.1.8 in [22] shows that if Bn′ → Bt

along a subsequence then ωt = Btω. Then it follows along the same lines as the proof

of Theorem 5.2.11 of [22] that (2.3) holds with all at = 0 for some exponent E, so ω is

strictly operator stable. �

3. The operator ν-stable laws

In this section we develop basic properties of operator ν-stable laws. Suppose

X,X1,X2, . . . are independent and identically distributed random vectors on Rd with

common distribution µ and that Y is a random vector whose distribution λ is full. Let

Z > 0 be a random variable with probability distribution ν, and suppose that Nn are

integer-valued random variables independent of the Xi’s and such that Nn/n ⇒ Z. We

say that λ is operator ν-stable if there exist linear operators An on Rd and nonrandom

vectors bn ∈ Rd such that

(3.1) An

Nn∑

i=1

(Xi − bn) ⇒ Y.

In this case, we say that µ (or X) belongs to the generalized domain of ν-attraction of λ

(or Y ) and we write µ ∈ GDOAν(λ), or X ∈ GDOAν(Y ). If (3.1) holds with all bn = 0

we say that µ belongs to the strict generalized domain of ν-attraction of λ.

Lemma 3.1. Suppose that X ∈ GDOA(Y0) and (2.1) holds. If Nn are positive integer-

valued random variables independent of (Xi) with Nn → ∞ in probability, and if Nn/kn ⇒

Z for some random variable Z > 0 with distribution ν and some sequence of positive
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integers (kn) tending to infinity, then

(3.2) Akn

Nn∑

i=1

(Xi − bkn) ⇒ Y

where Y has distribution

(3.3) λ(dx) =
∫ ∞

0
ω(dx)tν(dt)

and ω is the distribution of Y0.

Proof. Let Sn
r = Xn1 + · · · + Xnr where Xni = Akn(Xi − bkn). Then (2.1) implies

Sn
kn

=
kn∑

i=1

Xni = Akn

kn∑

i=1

(Xi − bkn) ⇒ Y0,

and a transfer theorem (Theorem 1 in Rosiński [29]) yields

Sn
Nn

=
Nn∑

i=1

Xni = Akn

Nn∑

i=1

(Xi − bkn) ⇒ Y,

so that (3.2) holds, where Y is a random vector on Rd whose distribution has characteristic

function

(3.4) λ̂(x) =
∫ ∞

0
ω̂(x)tν(dt)

so that (3.3) also holds. �

Lemma 3.2. Suppose that (Xi) are independent, identically distributed random vectors

on Rd, Mn are positive integer-valued random variables independent of (Xi) with Mn → ∞

in probability, and

(3.5) Bn

Mn∑

i=1

(Xi − an) ⇒ Y

for some random vector Y with distribution λ and some linear operators Bn on Rd and

centering constants an ∈ Rd. Then there exists a sequence of positive integers (kn) tending

to infinity such that for any subsequence (n′) there exists a further subsequence (n′′), a



6 TOMASZ J. KOZUBOWSKI, MARK M. MEERSCHAERT, AND HANS-PETER SCHEFFLER

random variable Z > 0 with distribution ν, and a random vector Y0 with distribution ω

such that Mn′′/kn′′ ⇒ Z,

(3.6) Bn′′

kn′′∑

i=1

(Xi − an′′) ⇒ Y0,

and (3.3) holds.

Proof. Let Sn
r = Xn1 + · · ·+Xnr where Xni = Bn(Xi−an). Then Sn

Nn
⇒ Y and the result

follows immediately from Theorem 3 in Rosiński [29]. �

Under a certain technical condition, the generalized domain of attraction is the same

for randomized and non-randomized sums. The condition on the probability measure ν,

supported on the positive real numbers, is that

(3.7)
∫ ∞

0
ω1(dx)tν(dt) =

∫ ∞

0
ω2(dx)tν(dt) implies ω1 = ω2

for any two infinitely divisible probability measures ω1, ω2. Following [15], we shall call

the operator ν-stable law regular if ν satisfies condition (3.7). As remarked by several

authors (see [33, 34, 4]) this condition may be true in general, but as Gnedenko and

Korolev [4] have put it, “no one has managed either to prove this or to refute it yet” (see

[4], p. 108). However, there are cases where the condition holds. As noted by Szasz and

Freyer [34], it holds when ν is standard exponential, or more generally when the function

a(z) =
∫ ∞
0 ztν(dt) admits the inverse function on the unit disk. It is also true when ν has

finite mean and the ch.f’s ω̂1 and ω̂2 are analytic or when ν is arithmetic and has finite

mean.

Theorem 3.3. Suppose that (Xi) are independent, identically distributed random vectors

on Rd, let Z > 0 be a random variable with probability distribution ν, and suppose that

Nn are integer-valued random variables independent of (Xi) such that Nn/n ⇒ Z. If

X ∈ GDOA(Y0) and (2.1) holds then X ∈ GDOAν(Y ) and (3.1) holds. Conversely, if

X ∈ GDOAν(Y ) and (3.1) holds, and if condition (3.7) also holds, then X ∈ GDOA(Y0)

and (2.1) holds. In either case, the distribution ω of Y0 and the distribution λ of Y are

related by (3.3).
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Proof. If X ∈ GDOA(Y0) and (2.1) holds then Lemma 3.1 with kn = n shows that

X ∈ GDOAν(Y ), (3.1) holds, and (3.3) holds. Conversely, if X ∈ GDOAν(Y ) and (3.1)

holds then for any subsequence (kn) of the positive integers, Lemma 3.2 with Bn = Akn ,

an = bkn and Mn = Nkn shows that there is a subsequence (n′′) and a random variable

Z1 > 0 with distribution ν1 such that Nkn′′/kn′′ ⇒ Z1 and

Akn′′

kn′′∑

i=1

(Xi − bkn′′ ) ⇒ Y0

where the distribution ω of Y0 satisfies (3.3) with ν1 in place of ν. Since we also have

Nkn′′/kn′′ ⇒ Z by assumption, ν = ν1 and so condition (3.7) implies that the limit

distribution ω is the same for any sequence (kn). Since every sequence (kn) has a further

subsequence with this property, it follows that (2.1) holds. �

Remark 3.4. Note that if the operator and operator ν-stable laws related via (3.3) are

symmetric, then (3.7) holds since the relevant characteristic functions are real (see [4]);

thus in this case the two distributions have the same domains of attraction.

Corollary 3.5. If Y is operator ν-stable law then under the assumptions of Theorem 3.3

we also have

(3.8) Y
d= ZEY0 + aZ .

where Z > 0 has distribution ν, the limit Y0 in (2.1) is operator stable with exponent E

and independent of Z, and (at) is from (2.3).

Proof. Since ω is operator stable, (2.4) implies that the characteristic function of ZEY +aZ

is given by

E[ei〈x,ZEY0+aZ〉] = E[E(ei〈x,ZEY0+aZ〉|Z)]

= E[E(ei〈ZE∗
x,Y0〉ei〈x,aZ〉|Z)]

= E[ω̂(ZE∗
x)ei〈x,aZ 〉]

=
∫ ∞

0
ω̂(tE

∗
x)ei〈x,at〉ν(dt)

=
∫ ∞

0
ω̂(x)tν(dt).

(3.9)
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which agrees with (3.3), so that λ is the distribution of ZEY0 + aZ . �

Remark 3.6. If d = 1 and Y0 in (3.8) is strictly stable with some index 0 < α ≤ 2, then

Y
d= Z1/αY0 is called a scale mixture of Y0. Then if EZε/α exists for some 0 < ε < α,

Proposition 1.3 in [6] implies that Y0 is uniquely determined by Y , so that condition (3.7)

holds. Then Theorem 3.3 shows that GDOAν(Y ) = GDOA(Y0) in this case.

Remark 3.7. Lemma 3.1 assumes that the summands Xi are independent of the random

variables Nn. There is also a corresponding transfer theorem for dependent sums. Theorem

2.4 in [1] shows that if µ ∈ GDOA(ω) and (2.2) holds, if Nn are positive integer-valued

random variables (not necessarily independent of the Xi) with Nn → ∞ in probability,

and if Nn/kn → Z > 0 in probability for some random variable Z > 0 with distribution

ν and some sequence of positive integers (kn) tending to infinity, then (3.2) still holds,

where the limit distribution λ is given by (3.3).

Remark 3.8. Note that if the random variable ν is infinitely divisible, then the operator

ν-stable measure (3.3) is infinitely divisible as well (since ω is infinitely divisible). In this

case one can obtain the characteristic triplet of the Lévy - Khintchine representation of λ̂

from that of ω̂, see [31], Theorem 30.1.

Remark 3.9. Note that in case of classical summation (with deterministic number of terms)

the limiting distributions of (1.2) have the stability property: the appropriately normalized

sum has the same distribution as each one of the terms. This is usually no longer so in

the random summation scheme: The (normalized) random sum may not have the same

distribution as each Xi. There are cases, however, when this holds (for example when Nn

is geometric). Some authors define Nn-stable laws as distributions admitting this stability

property (see, e.g., [3, 4, 8, 9, 10, 11, 25, 26]). In this setting it is usually assumed that

{Nθ,Θ ⊂ (0, 1)} is a family of integer-valued random variables with finite mean ENθ = 1/θ,

and the semigroup of generating functions generated by {Nθ} is commutative, in which case

one obtains the representation Pθ(z) = φ(1
θφ−1(z)), where Pθ is the generating function

corresponding to Nθ and φ is the Laplace transform of ν. Then the Nθ-stable (or operator

stable) laws are power mixtures (3.3) where ω is stable (operator stable). Our class of
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distributions is much larger, as the variable ν is not assumed to have a finite mean and

the semigroup of generating functions does not have to be commutative. In fact, in the

above setting one always has θNθ ⇒ ν (see [4]), so that these classes of distributions are

special cases of ν-stable laws as defined in this paper. Thus, our Theorem 3.3 extends

the results of [11] who showed that the domains of attraction are the same in the above

setting under certain additional technical conditions.

4. Regular variation and tail behavior

For a full operator stable law ω with no normal component, Corollary 8.2.12 in [22]

shows that (2.2) holds for some bn ∈ Rd if and only if

(4.1) n · Anµ → φ

where φ is the Lévy measure of the infinitely divisible law ω. The convergence µn → φ

means that µn(B) → φ(B) for any Borel set B ⊂ Rd with dist(B, {0}) > 0 and φ(∂B) = 0.

Theorem 8.1.5 in [22] shows that we can always choose An in (2.2) to vary regularly with

index −E, meaning that

A[tn]A
−1
n → t−E as n → ∞

for all t > 0. Proposition 6.1.10 in [22] shows that the convergence (4.1) is equivalent to

regular variation of the probability measure µ (at infinity) with exponent E.

Theorem 4.1. Suppose that Z > 0 is a random variable with distribution ν independent

of a strictly operator stable law ω with exponent E and no normal component. If m =

EZ < ∞ and λ is given by (3.3) then

(4.2) n · n−Eλ → m · φ as n → ∞,

so that λ varies regularly with exponent E.

Proof. We first show that for any Borel set B ⊂ Rd with dist(B, {0}) > 0 and φ(∂B) = 0

we have

(4.3) sup
t>0

t · (t−Eω)(B) = C(B) < ∞.
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In fact if 0 < t ≤ 1, then t · (t−Eω)(B) ≤ 1 · 1 = 1. On the other hand if supt≥1 t ·

(t−Eω)(B) = ∞, then there exists a sequence tn → ∞ such that tn · (t−E
n ω)(B) →

∞ as n → ∞. But since ω ∈ GDOA(ω) with norming sequence An = n−E we have

n · (n−Eω) → φ as n → ∞ or equivalently t · (t−Eω) → φ as t → ∞. Since φ(B) < ∞ we

get a contradiction.

Since ω is strictly operator stable we know that ωr = (rEω) for all r > 0. Now for Borel

sets B as above write

n · (n−Eλ)(B) = n

∫ ∞

0
(n−Eωr)(B)dν(r)

=
∫ ∞

0
n ·

(
(n/r)−Eω

)
(B)dν(r)

=
∫ ∞

0
fn(r)dν(r),

where fn(r) = n · ((n/r)−Eω)(B).

Then limn→∞ fn(r) = r · φ(B) and fn(r) ≤ M · r for all n ≥ 1 and r > 0. In fact note

that

fn(r) = r · (n
r
) ·

(
(
n

r
)−Eω

)
(B) → r · φ(B) as n → ∞

since t · (t−Eω) → φ as t → ∞. Moreover, by (4.3) we have

fn(r) = r · (n
r
)
(
(
n

r
)−Eω

)
(B)

≤ r · sup
t>0

t · (t−Eω)(B)

= C(B) · r.

Since
∫ ∞
0 rdν(r) < ∞ we get by dominated convergence that

lim
n→∞

n · (n−Eλ)(B) = lim
n→∞

∫ ∞

0
fn(r)dν(r)

= φ(B)
∫ ∞

0
rdν(r)

= m · φ(B).

Then the Portmanteau Theorem, Proposition 1.2.19 in [22], yields (4.2). �

Corollary 4.2. Under the assumptions of Theorem 4.1 we have:

(4.4) n−Eλn ∗ εan ⇒ ωm = mEω as n → ∞
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for some sequence (an) of shifts, or equivalently

(
mn)−Eλn ∗ εbn ⇒ ω as n → ∞

for some sequence (bn) of shifts.

Proof. Note that m · φ is the Lévy measure of ωm. Then it follows from Corollary 8.2.11

of [22] that (4.2) implies (4.4). �

The next results provides a converse to Theorem 4.1. Together these two results show

that the operator ν-stable law λ given by (3.3), where ω is strictly operator stable with

no normal component, belongs to the generalized domain of normal attraction of ω if and

only if ν has a finite mean. Here normal refers to the special form n−E of norming and

not to a normal limit.

Theorem 4.3. Suppose that ω is a full strictly operator stable law with no normal compo-

nent, Z > 0 has distribution ν independent of ω, and λ is the operator ν-stable law given

by (3.3). If

n · (n−Eλ) → Φ as n → ∞

for some Borel measure Φ on Rd\{0}, which is finite on sets bounded away from the origin

and is not supported on any lower dimensional subspace of Rd, then E(Z) < ∞.

Proof. Let φ denote the Lévy measure of ω. Choose a Borel set B ⊂ Rd with dist(B, {0}) >

0 such that φ(B) > 0 and that B is a Φ-continuity set. Let fn(t) = n · ((n/t)−Eω)(B)

and note that limn→∞ fn(t) = t · φ(B) as in the proof of Theorem 4.1. Then, by Fatou’s

lemma we obtain ∫ ∞

0
tdν(t) =

1
φ(B)

∫ ∞

0
t · φ(B)dν(t)

=
1

φ(B)

∫ ∞

0
lim inf
n→∞

fn(t)dν(t)

≤ 1
φ(B)

lim inf
n→∞

∫ ∞

0
fn(t)dν(t)

=
1

φ(B)
lim inf
n→∞

n · (n−Eλ)(B)

=
Φ(B)
φ(B)

< ∞
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showing that E(Z) < ∞. �

Various properties of operator ν-stable limits follow from Theorem 4.1 along with known

results about regular variation and generalized domains of attraction. Let a1 < · · · < ap

denote the real parts of the eigenvalues of E. Then Theorem 8.2.14 in [22] implies that

there exists a function ρ : Γ → {a−1
p , . . . , a−1

1 } such that for all θ ∈ Γ = Rd \ {0} the radial

moments

(4.5)
∫

|〈y, θ〉|γλ(dy)

exist for 0 ≤ γ < ρ(θ) and diverge for γ > ρ(θ). Corollary 8.2.15 in [22] implies that

(4.6)
∫

‖y‖γλ(dy)

exists if γ < 1/ap and is infinite if γ > 1/ap. Also, Theorem 6.4.15 in [22] gives the power

law tail behavior of the truncated moments and tail moments

(4.7)
∫

|〈x,y〉|≤r
|〈x, y〉|ζλ(dy) and

∫

|〈x,y〉|>r
|〈x, y〉|ηλ(dy)

in terms of multivariable R-O variation. Roughly speaking, this result says that the tail

P (|〈Y, θ〉| > r) falls off like r−ρ(θ) as r → ∞.

Remark 4.4. These moments results can be sharpened using the fact that λ belongs to

the generalized domain of normal attraction of the operator stable limit in (4.4). Then

the results in Meerschaert [24] show that the integral (4.5) also diverges when ρ = ρ(θ).

5. Applications to continuous time random walks

Continuous time random walks were introduced in [28], and are now used in physics to

model a wide variety of phenomena connected with anomalous diffusion [7, 32, 35] and

relaxation [12]. Given a sequence of nonnegative i.i.d random variables (Ji), set T0 = 0

and Tn =
∑n

j=1 Ji. The random variable Tn represents the time of the nth jump. Given

a sequence of i.i.d. random vectors (Xj) on Rd, let S(0) = 0 and S(t) =
∑[t]

i=1 Xj. The

random vector S(n) represents the position of the particle after the nth jump. Finally let

Nt = max{n ≥ 0 : Tn ≤ t} denote the number of jumps by time t ≥ 0 so that

(5.1) W (t) = S(Nt) = X1 + · · · + XNt
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is the position of the particle at time t.

The following results are proven in [23]. Let
f.d.
=⇒ denote convergence of all finite dimen-

sional distributions of a stochastic process. If J1 belongs to the strict domain of attraction

of some stable law with index 0 < β < 1, then

(5.2)
{
b(c)−1Nct

} f.d.
=⇒ {Vt} as c → ∞

where b(tc)/b(c) → tβ as c → ∞ for all t > 0, and {Vt} is the inverse process [2]

(5.3) Vτ = inf{t : D(t) > τ}

for the stable subordinator {D(t)} of index β, a stationary independent increment process

such that D = D(1) has Laplace transform E[e−sD] = e−sβ
. The random variable Vt

d=

(D/t)−β has moments of all orders. If (Xj) are independent of (Ji) and their common

distribution µ belongs to the strict generalized domain of attraction of some full operator

stable law ω with exponent E, then

(5.4) {AcS(ct)} f.d.
=⇒ {Y (t)} as c → ∞

where AtcA
−1
c → t−E as c → ∞ for any t > 0, {Y (t)} has stationary independent incre-

ments, and Y (1) has distribution ω. Finally

(5.5) {Ab(c)W (ct)} f.d.
=⇒ {Y (Vt)} as c → ∞.

Since a continuous time random walk is a randomized sum, the results of this paper

apply. Fix t > 0 and let cn = n/t, kn = [b(cn)]. Since b(c) → ∞ as c → ∞ we have

kn ∼ b(cn), and then the uniform convergence theorem, Theorem 4.2.1 in [22], implies

that Akn ∼ Ab(cn). Then multivariable convergence of types, Theorem 2.3.17 in [22], along

with (5.5) yields

(5.6) Akn(X1 + · · · + XNn) = AknA−1
b(cn)

· Ab(cn)W (cnt) ⇒ Y (Vt).

On the other hand, (5.2) implies that Nn/kn ⇒ Vt, and hence Corollary 3.5 yields

(5.7) Akn(X1 + · · · + XNn) ⇒ V E
t Y (1).

Since Y (t) d= tEY (1) and Vt is independent of {Y (t)}, Y (Vt)
d= V E

t Y (1), so that the

limits in (5.6) and (5.7) are identically distributed. In particular, the distribution of Y (Vt)
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is operator ν-stable. If ω has no normal component, then Theorem 4.1 shows that the

distribution of Y (Vt) varies regularly with exponent E, and Corollary 4.2 shows that Y (Vt)

belongs to the generalized domain of normal attraction of Y (t). Theorem 4.7 of [23] shows

that Y (Vt) is not operator stable, but since Y (Vt) belongs to the generalized domain of

normal attraction of the operator stable law ω, the moment and tail behavior of Y (Vt) are

quite similar to Y (t).

6. Operator geometric stable laws

Operator geometric stable laws arise as limiting distributions in (3.2) with a geometri-

cally distributed number of terms Nn with mean n in the sum (see [11, 14]). Random sums

with a geometric distribution of summands arise quite naturally (see, e.g., [5]), so that

their limiting distributions have many potential applications. Several results on operator

geometric stable laws appear in [14], along with an application to finance. We give a brief

summary here. A geometric operator stable law λ has the representation (3.3) where ν is

standard exponential. Then (3.8) also holds with Z standard exponential. A geometric

operator stable law λ is infinitely divisible, with characteristic function of the form

(6.1) λ̂(t) = (1 − log ω̂(t))−1,

where ω̂ is the characteristic function of an operator stable law ω in (3.3). If ω has no

normal component then λ has Lévy measure
∫ ∞

0
ωt(dx)t−1e−tdt.

If ω is strictly operator stable with exponent E and (3.3) holds with ν standard exponential

and independent of ω, then we say that the λ is strictly operator ν-stable. In this case we

also have

nEY
d= Y1 + · · · + YNn

d= ZEY0

where Y, Y1, Y2, . . . are i.i.d. with distribution λ, Nn is geometric with mean n, Z is standard

exponential, and Y0 has the strictly operator stable distribution ω corresponding to λ via

(6.1).
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