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Abstract

Self-similar processes are useful models for natural systems that exhibit scaling. Operator scaling
allows a different scale factor in each coordinate. This paper develops practical methods for modeling
and simulation. A simulation method is developed for operator scaling Lévy processes, based on a series
representation, along with a Gaussian approximation of the small jumps. Several examples are given to
illustrate the range of practical applications. A complete characterization of symmetries in two dimensions
is given, for any exponent and spectral measure, to inform the choice of these model parameters. The paper
concludes with some extensions to general operator self-similar processes.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Self-similar processes form an important and useful class, favored in practical applications
for their nice scaling properties; see for example the recent books of Embrechts and Maejima [7]
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and Sheluhin et al. [37]. The subject was popularized by Mandelbrot [16]; see [1] for additional
applications to electrical engineering, image processing, computer network traffic, finance, and
astrophysics. Recall that a stochastic process X = {X (t)}t≥0 taking values in Rd is self-similar
if

{X (ct)}t≥0
f d
= {cβX (t)}t≥0 (1.1)

at every scale c > 0. Here
f d
= indicates equality of finite dimensional distributions, and we assume

that X is stochastically continuous with X (0) = 0. The parameter β > 0 is often called the Hurst
index [10]. Operator self-similar processes allow the scaling factor (Hurst index) to vary with
the coordinate. Therefore, a process X as above is said to be operator self-similar (o.s.s.) if there
exists a linear operator B ∈ GL(Rd) (i.e., an invertible d × d matrix) such that

{X (ct)}t≥0
f d
=


cB X (t)


t≥0

, (1.2)

for all c > 0, where the matrix power cB
:= exp(B log c). The linear operator B in (1.2) is

called an exponent of the operator self-similar process X. If B = β I for some β > 0, then X is
self-similar. If B is diagonal, then the marginals of X are self-similar, and the Hurst index can
vary with the coordinate. This is important in modeling many real world phenomena.

Park and Cushman [28] use an operator self-similar model for anomalous dispersion in
porous media, and develop the associated Fokker–Planck equations for the motion of individual
particles. Because the porous medium is not isotropic, the scaling properties vary with direction;
see also [17,38]. Molz et al. [27] discuss connections to the multiscaling structure of natural
aquifers. Rachev and Mittnik [31] show that the scaling index will vary between elements of a
portfolio containing different stocks. Similar results were obtained in [23] for exchange rates.
Jansen and de Vries [11] use these models to explain the 1987 stock market crash; see also
Loretan and Phillips [13]. In tick-by-tick analysis of financial data, it is useful to consider the
waiting time between trades and the resulting price change as a two-dimensional random vector.
Scalas et al. [19,36] show that different indices apply to price jumps and waiting times. Park
and Cushman [29] employ an operator self-similar model for the chaotic dynamics of self-motile
colloid particles at the microscale, where the sample paths trace the movements of individual
microbes. Results and further references on o.s.s. processes can be found in [7, Chapter 9]
and [21, Chapter 11]; see also the pioneering work of Hudson and Mason [9].

The main goal of this paper is to provide practitioners with the necessary tools for building
models with operator scaling. We focus on operator self-similar Lévy processes, which are
operator stable processes of a particular type. Section 2 describes this class, with an emphasis on
parameterization. An operator self-similar Lévy process has two parameters: a matrix exponent
and a spectral measure. Roughly speaking, the exponent determines the scaling, and the spectral
measure codes the dependence between the different coordinates. Section 3 presents a method
for simulating sample paths, based on a shot noise representation. A Gaussian approximation of
the small jumps accelerates convergence of the method. Theorem 3.1 justifies this method, and
provides error bounds. The simulation algorithm facilitates numerical experiments for validating
the model, once parameters are chosen. Section 4 presents a number of examples to illustrate the
broad range of applications. These examples also highlight the effect of the exponent and spectral
measure on sample path behavior, providing a basis for choosing those parameters in practical
applications. Section 5 shows how the exponent and spectral measure interact to determine the
symmetries. Symmetry is an important modeling consideration, and a useful guide to model
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selection. Theorem 5.1 provides a complete classification of the possible symmetry groups in
two dimensions, in terms of the exponent. Theorem 5.2 shows how the exponent interacts with
the spectral measure to determine the symmetries, and then Remark 5.3 shows how to explicitly
construct an operator self-similar Lévy process with any given exponent and any admissible
symmetry group, by selecting the appropriate spectral measure. Finally, Section 6 provides some
extensions to general operator self-similar processes.

2. Operator stable processes

This section recalls some basic facts concerning operator stable Lévy processes, with an
emphasis on parameterization. An operator stable Lévy process evolves in a d-dimensional
vector space. It has two parameters: a linear operator defined by a d × d matrix, called an
exponent; and a finite measure on the d − 1-dimensional unit sphere, called a spectral measure.
Roughly speaking, the exponent determines the scaling, and the spectral measure codes the
dependence between the d different coordinate processes.

We say that a Lévy process X = {X (t)}t≥0 taking values in Rd is operator stable with
exponent B ∈ GL(Rd) if for every t > 0 there exists a vector b(t) ∈ Rd such that

X (t) d
= t B X (1)+ b(t) (2.1)

where d
= means equal in distribution. We say that X is strictly operator stable when b(t) = 0 for

all t > 0. A Lévy process is operator self-similar if and only if it is strictly operator stable, in
which case the exponents coincide [9, Theorem 7]. In general, if X is operator stable and 1 is not
an eigenvalue of the exponent B, then there exists a vector a such that {X (t)− at}t≥0 is strictly
operator stable; a complete description of strictly operator stable processes is given by Sato [35].
Henceforth we will always assume that the infinitely divisible distribution µ = L(X (1)) is full
dimensional, i.e., not supported on a lower dimensional hyperplane. The distributional properties
of µ determine those of X. Indeed, two Lévy processes X and Y have the same finite dimensional
distributions if and only if X (1) and Y (1) are identically distributed.

A comprehensive introduction to operator stable laws can be found in the monographs [12,21].
The necessary and sufficient condition for a d × d matrix B to be an exponent of a full operator
stable law is that all the roots of the minimal polynomial of B have real parts greater than or
equal to 1/2, and all the roots with real part equal to 1/2 are simple; see [12, Theorem 4.6.12].
In this work we will assume that the operator stable law µ has no Gaussian component, so all
the roots of the minimal polynomial of B have real parts greater than 1/2. Since the operator
stable law µ is infinitely divisible, with no Gaussian component, its characteristic function can
be expressed in terms of the Lévy representation

log Eei⟨y,X (1)⟩
= i⟨y, x0⟩ +

∫
Rd
(ei⟨y,x⟩

− 1 − i⟨y, x⟩1{‖x‖≤1})ν(dx). (2.2)

See, e.g., [21, Theorem 3.1.11]. Since µ is full, the smallest linear space supporting the Lévy
measure ν is Rd [21, Proposition 3.1.20].

Next we define the spectral measure. For a given exponent B, consider a norm ‖ · ‖B on Rd

satisfying the following conditions:

(i) for each x ∈ Rd , x ≠ 0, the map t → ‖t B x‖B is strictly increasing in t > 0,
(ii) the map (t, x) → t B x from (0,∞)× SB onto Rd

\ {0} is a homeomorphism,
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where SB =


x ∈ Rd
: ‖x‖B = 1


is the unit sphere with respect to ‖ · ‖B . There are many ways

of constructing such norms. For example, Jurek and Mason [12, Proposition 4.3.4] propose

‖x‖B =

∫ 1

0
‖s B x‖

ps−1ds

1/p

(2.3)

where 1 ≤ p < ∞ and ‖ · ‖ is any norm on Rd . Meerschaert and Scheffler [21, Remark 6.1.6]
observe that if the matrix B is in Jordan form, then the Euclidean norm satisfies (i)–(ii). Moreover,
in this case the function t → ‖t B x‖ is regularly varying. Under conditions (i)–(ii) we have the
polar decomposition

ν(E) =

∫
SB

∫
∞

0
1E (s Bu)s−2dsλ(du), (2.4)

where λ is a finite Borel measure on SB called the spectral measure of µ. The spectral measure
is given by

λ(F) = ν({x : x = t Bu, for some (t, u) ∈ [1,∞)× F}) (2.5)

and then it follows from (2.4) and (2.5) that the spectral measure λ is uniquely determined for a
given Lévy measure ν, exponent B, and norm ‖x‖B . The choice of ‖ · ‖B is a matter of conve-
nience. For example, if B is in Jordan form, then the Euclidean norm ‖ · ‖ is a natural choice for
‖·‖B . Once the coordinate system and norm are fixed, the exponent B and the spectral measure λ
determine the operator stable Lévy process, up to a drift term determined by the vector x0 in (2.2).

3. Accelerated series representation

This section develops an efficient simulation algorithm for operator stable Lévy processes.
The main technical advantage of the method is that the large jumps are exactly reproduced, at
exactly the correct time points. Let X = {X (t)}t≥0 be a proper operator stable Lévy process with
exponent B, spectral measure λ, no Gaussian component, and characteristic function defined by
(2.2) and (2.4). Our simulation algorithm is based on a series representation [33]: For any fixed
T > 0,

X (t) =

∞−
j=1


1(0,t](τ j )


Γ j

Tλ(SB)

−B

v j −
t
T

c j


, t ∈ [0, T ], (3.1)

where {τ j } is an i.i.d. sequence of uniform on [0, T ] random variables, {Γ j } forms a Poisson
point process on (0,∞) with the Lebesgue intensity measure, {v j } is an i.i.d. sequence on SB
with the common distribution λ/λ(SB), and

c j =

∫ j

j−1

∫
‖x‖≤1

xσr (dx)dr, (3.2)

with

σr (A) = P


r

Tλ(SB)

−B

v1 ∈ A


(3.3)

(see [34, Eq. (5.6)]). The random sequences {τ j }, {Γ j }, and {v j } are independent. The series (3.1)
converges pathwise uniformly on [0, T ] with probability 1; see [34, Theorem 5.1]. This series

MCubed
Sticky Note
This is true in R^2 or if B has no nilpotent part.  It is not true in general.  For more details, see errata at http://www.stt.msu.edu/~mcubed/RVbook.html
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expansion falls into a general category of shot noise representations and is a consequence of the
polar decomposition (2.4); see the remark following [33, Corollary 4.4].

In order to accelerate convergence, the small jumps in (3.1) can be approximated by a
Brownian motion [6]. The Gaussian approximation of small jumps allows a fast and accurate
simulation of sample paths. Fix ϵ ∈ (0, 1] and define Nϵ = {N ϵ(t)}t∈[0,T ] by

N ϵ(t) =

−
Γ j ≤Tλ(SB )/ϵ

I(0,t](τ j )


Γ j

Tλ(SB)

−B

v j . (3.4)

It is elementary to check that Nϵ is a compound Poisson process with characteristic function

E exp i⟨y, N ϵ(t)⟩ = exp


t
∫

SB

∫
∞

ϵ

(ei⟨y,s B u⟩
− 1)s−2dsλ(du)


.

To see this: observe that the number of terms Mϵ in the sum (3.4) is Poisson with mean θϵ =

Tλ(SB)/ϵ; condition on Mϵ = n in the characteristic function, noting that (Γ1/θϵ, . . . ,Γn/θϵ)

is equal in distribution to the vector of order statistics from n IID standard uniform random
variables; permute the order statistics; and rewrite the characteristic function as an integral. Thus
Nϵ has the Lévy measure

νϵ(A) =

∫
SB

∫
∞

ϵ

1A(s Bu)s−2dsλ(du).

The remainder

Rϵ(t) = X (t)− N ϵ(t), (3.5)

is a Lévy process independent of Nϵ and Rϵ(1) has Lévy measure νϵ of bounded support given
by

νϵ(A) =

∫
SB

∫ ϵ

0
1A(s Bu)s−2dsλ(du). (3.6)

Therefore, all moments of Rϵ(1) are finite. A straightforward computation shows that

aϵ := ERϵ(1) =

∫
‖x‖>1

xνϵ(dx)−

∫
‖x‖≤1

xνϵ(dx). (3.7)

Then we have

X (t) = taϵ + N ϵ(t)+ {Rϵ(t)− E[Rϵ(t)]}.

Theorem 3.1 will show that, under certain matrix scaling, the last term Rϵ(t) − E[Rϵ(t)]
converges to a standard Brownian motion in Rd . Thus, any operator stable Lévy process can
be faithfully approximated by the sum of two independent component processes, a compound
Poisson and a Brownian motion with drift. The matrix scaling depends on the covariance matrix
Σϵ of Rϵ(1): a simple computation (see [6, Eq. (2.3)]) yields

Σϵ = E

(Rϵ(1)− E[Rϵ(1)])(Rϵ(1)− E[Rϵ(1)])⊤


=

∫
SB

∫ ϵ

0
(s Bu)(s Bu)⊤s−2dsλ(du) =

∫ ϵ

0
s BΛ(s B)⊤s−2ds, (3.8)
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where Λ is given by

Λ =

∫
SB

uu⊤λ(du). (3.9)

Recall from Section 2 that, since X has no Gaussian component,

b∗ := min{b1, . . . , bd} >
1
2
, (3.10)

where b1, . . . , bd are the real parts of the eigenvalues of B.

Theorem 3.1. Let X be an operator stable Lévy process with exponent B and spectral measure
λ such that

linB(supp λ) = Rd , (3.11)

where linB(supp λ) denotes the smallest B-invariant subspace of Rd containing the support of
λ. Fix T > 0 and let Nϵ be as in (3.4), W be a standard Brownian motion in Rd independent of
Nϵ , and aϵ = {aϵ t}t≥0 be a drift determined by (3.7). Define

Aϵ = ϵ−1/2ϵBΣ 1/2
1 (3.12)

where Σ1 is given by (3.8) with ϵ = 1.
Then, for every ϵ ∈ (0, 1] there exists a cádlág process Yϵ such that on [0, T ]

X f d
= aϵ + AϵW + Nϵ + Yϵ (3.13)

in the sense of equality of finite dimensional distributions and such that for every δ > 0

ϵ1/2−b∗+δ sup
t∈[0,T ]

‖Yϵ(t)‖
P

−→ 0 as ϵ → 0 (3.14)

where b∗ is given by (3.10).

Proof. The proof is an application of Theorem 3.1 in [6] (see also [8]). That theorem requires
Σϵ to be nonsingular for all ϵ > 0. In view of the scaling

Σϵ = ϵ−1
∫ 1

0
(ϵr)BΛ((ϵr)B)⊤r−2dr = ϵ−1ϵBΣ1(ϵ

B)⊤ (3.15)

it suffices to show that Σ1 is nonsingular when (3.11) holds. Let ν1 be the Lévy measure (3.6)
with ϵ = 1 and let

L = lin(supp ν1)

be the closed linear space spanned by supp ν1. By [6, Lemma 2.1] it suffices to show that L = Rd .
Following [12, Corollary 4.3.5] we have

supp ν1 = {x : x = s Bu, 0 ≤ s ≤ 1, u ∈ supp λ}.

We will show that L is B-invariant. To this end it is enough to show that if x = s Bu ∈ supp ν1,
for some 0 < s ≤ 1 and u ∈ supp λ, then Bs Bu ∈ L . For any θ ∈ (0, 1), (θs)Bu ∈ supp ν1 so

Bs Bu = lim
θ↗1

(θs)Bu − s Bu
log θ

∈ L .
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Since L is closed and B-invariant and contains the support of λ, L = Rd by (3.11). Thus Σ1 is
nonsingular.

Theorem 2.2 in [6] shows that the asymptotic normality of Rϵ(t)−E[Rϵ(t)] holds if and only
if for every κ > 0 we have

lim
ϵ→0

∫
⟨Σ−1

ϵ x,x⟩>κ

⟨Σ−1
ϵ x, x⟩νϵ(dx) = 0. (3.16)

Using (3.15) we have

⟨Σ−1
ϵ s Bu, s Bu⟩ = ϵ⟨(ϵ−B)⊤Σ−1

1 ϵ−Bs Bu, s Bu⟩

= ϵ⟨Σ−1
1 ϵ−Bs Bu, ϵ−Bs Bu⟩

= ϵ⟨Σ−1
1 (s/ϵ)Bu, (s/ϵ)Bu⟩.

Note that in general ⟨Ax, x⟩ ≤ ‖A‖ ‖x‖
2

≤ C‖A‖ ‖x‖
2
B (for some constant C > 0, since all

norms on Rd are equivalent). Then, since t → ‖t Bu‖B is strictly increasing and t B x = x when
t = 1, the above bound shows that

⟨Σ−1
ϵ s Bu, s Bu⟩ ≤ Cϵ‖Σ−1

1 ‖ ‖(s/ϵ)Bu‖
2
B ≤ Cϵ‖Σ−1

1 ‖, (3.17)

whenever 0 < s ≤ ϵ ≤ 1 and u ∈ SB . Since Σ1 is invertible we know that c1 = C‖Σ−1
1 ‖ ∈

(0,∞). Then, for every κ > 0 and ϵ ∈ (0, 1) we have∫
⟨Σ−1

ϵ x,x⟩>κ

⟨Σ−1
ϵ x, x⟩νϵ(dx)

=

∫∫
{(s,u)∈(0,ϵ]×SB : ⟨Σ−1

ϵ s B u,s B u⟩>κ}

⟨Σ−1
ϵ s Bu, s Bu⟩s−2dsλ(du)

= 0

when ϵ < c−1
1 κ . Indeed, in view of (3.17) the region of integration is empty for c1ϵ < κ .

Therefore, (3.16) trivially holds.
Applying [6, Theorem 3.1] we get (3.13) and that

sup
t∈[0,T ]

‖A−1
ϵ Yϵ(t)‖

P
−→ 0 as ϵ → 0. (3.18)

It remains to show (3.14). If ‖Σ1‖ = c2 then ‖Σ 1/2
1 ‖ =

√
c2. Since every eigenvalue of −B has

real part less than or equal to −b∗, [21, Proposition 2.2.11(d)] implies that for any δ > 0, for some
c3 > 0, we have ‖t−B x‖ ≤ c3t−b∗+δ‖x‖ for all t ≥ 1 and all x ∈ Rd . Then ‖s B

‖ ≤ c3sb∗−δ for
all s ≤ 1. Then for all 0 < ϵ ≤ 1 we have

‖Aϵ‖ ≤ ϵ−1/2
‖ϵB

‖ ‖Σ 1/2
1 ‖ ≤ cϵ−1/2−δ+b∗

where c = c3
√

c2. Therefore,

‖Yϵ(t)‖ ≤ ‖Aϵ‖ ‖A−1
ϵ Yϵ(t)‖ ≤ cϵ−1/2−δ+b∗‖A−1

ϵ Yϵ(t)‖,

which together with (3.18) yields (3.14). The proof is complete. �
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4. Simulation

This section implements the simulation method of Section 3 for sample paths of an operator
stable Lévy process {X (t)}t∈[0,T ] specified by (2.2) and (2.4). Several examples illustrate the
range of behavior possible for an operator scaling model, and illuminate the effect of the exponent
B and the spectral measure λ on the sample paths. Theorem 3.1 decomposes X into the drift
aϵ t , the large jumps N ϵ(t), and a Gaussian approximation of the small jumps. This justifies the
approximation

X (t) ≈ Zϵ(t) := aϵ t + AϵW (t)+ N ϵ(t), (4.1)

with Aϵ given by (3.12) and W (t) a standard Brownian motion, for simulating sample paths. The
process {Zϵ(t)}t∈[0,T ] reproduces the large jumps exactly, which is its main technical advantage.
The error in the Gaussian approximation of small jumps is given by the remainder term Yϵ
in (3.13), whose supremum converges to zero in probability at a polynomial rate described by
(3.14) as the number of large jumps increases or, equivalently, as the size of the remaining jumps
tends to zero. The discarded random jumps are all of the form r Bv where v ∈ SB and r ≤ ϵ.
If B has no nilpotent part then ‖r Bv‖B ≤ ϵb∗ . Hence in order to retain all jumps larger than
m it suffices to take ϵ = m1/b∗ , and then the number of jumps simulated will be Poisson with
mean m−1/b∗ Tλ(SB). If there is a nilpotent part, the bound involves additional log ϵ terms. The
approximation converges faster, as ϵ → 0, when the real parts of the eigenvalues of B are
uniformly larger. Remark 7.2.10 in [21] shows that the exponent governs the tails of an operator
stable process, and b∗ = min{b1, . . . , bd} > 1/2 determines the lightest tail, in the sense that
E|⟨X (t), u⟩|

ρ diverges for all ρ > 1/b∗ and all u ≠ 0. Hence the convergence is faster when X
has heavier tails.

In practical applications, it is advantageous to produce a simulated process whose mean equals
that of the operator stable process X (t). If every eigenvalue of the exponent B has real part b < 1,
then the mean exists, by [21, Theorem 8.2.14]. If any eigenvalue has real part b > 1 then the mean
is undefined. In the former case, one can choose aϵ such that the right hand side in (4.1) has mean
zero. Recall that the number of terms Mϵ in the sum (3.4) defining N ϵ(t) is Poisson with mean
θϵ = Tλ(SB)/ϵ, and that conditional on Mϵ = n, (Γ1/θϵ, . . . ,Γn/θϵ) is equal in distribution
to the vector of order statistics from n IID standard uniform random variables. Condition to get
E[N ϵ(t)|Mϵ = n] = n(t/T )E[(ϵU )−B

]E[v] where U is standard uniform and v has distribution
λ/λ(SB). Remove the condition and simplify to get

E[N ϵ(t)] = tλ(SB)ϵ
B−I E[U−B

]E[v]. (4.2)

Since E[W (t)] = 0 we can set aϵ t = −E[N ϵ(t)] to get mean zero. Note that for such B we have
‖ϵB−I x‖ → ∞ for all x ≠ 0 by [21, Theorem 2.2.4], so ‖aϵ‖ → ∞ as ϵ → 0. This reflects
the fact that, in the finite mean case, the infinite series (3.1) does not converge without centering.
Finally we note that, if E[v] = 0, then no centering is necessary.

In this section, we assume a fixed coordinate system on R2 with the standard coordinate
vectors e1 = [1, 0]

⊤ and e2 = [0, 1]
⊤, and we write X (t) = X1(t)e1 + X2(t)e2. Recall that a

strictly operator stable process satisfies the scaling relationship

X (t) d
= t B X (1) (4.3)

for all t > 0. All plots in this section use T = 1 and ϵ = 0.001, and we show the simulated
processes at the time points t = n1t for 0 ≤ t ≤ T with 1t = 0.001. Unless otherwise noted,
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Fig. 1. Simulated operator stable process for Example 4.1, with a diagonal exponent and a discrete spectral measure. The
top left panel shows the sample path of the shot noise process N ϵ(t), and the top right panel shows the corresponding
operator stable process X (t). The bottom left panel shows the marginal process X1(t), and the bottom right panel shows
X2(t).

we use the standard Euclidean norm. Additional examples, and computer codes, are available
from the authors.

Example 4.1. This simple example has a diagonal exponent and a discrete spectral measure.
Eq. (4.1) was used to simulate an operator stable process X (t) whose exponent is diagonal:

B =

[
1/1.8 0

0 1/1.5

]
= diag(b1, b2)

so Bei = bi ei with b1 = 1/1.8 and b2 = 1/1.5. Were we to take b2 = b1, this would
be a stable process. Since the exponent is already in Jordan form, we can take ‖x‖B to be
the usual Euclidean norm, so that SB is the unit circle. We choose the spectral measure λ
to place equal masses of 1/4 at the four points ±e1 and ±e2. Then E[v] = 0 in (4.2) so
no centering is needed, as the simulated process has mean zero without any centering. Then
Λ = diag(1/2, 1/2),Σ1 = diag(9/2, 3/2), and Aϵ = diag(3

√
5 3√10/10,

√
15/10). It is easy to

see from the definition t B
= I + B log t + (B log t)2/2! + · · · that t B

= diag(tb1 , tb2). From the
scaling relation (4.3) it follows that

X i (t)
d
= tbi X i (1).

Hence the coordinate marginals are (strictly) stable with index α1 = 1/b1 = 1.8 and α2 = 1.5,
respectively. The top right panel in Fig. 1 shows a typical sample path of the process, an
irregular meandering curve punctuated by occasional large jumps. The top left panel shows the
corresponding shot noise part N ϵ(t) before the Gaussian approximation of the small jumps is
added. Since the spectral measure is concentrated on the coordinate axes, the large jumps are
all either horizontal or vertical. Pruitt and Taylor [30] showed that the Hausdorff dimension of
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Fig. 2. Simulated operator stable process for Example 4.2, with a diagonal exponent and a continuous spectral measure.
The top panel shows the sample path of the operator stable process. The bottom panels show the marginal processes.

the sample path is max{α1, α2} = 1.8 with probability 1. A comparison of the two top panels
in Fig. 1 shows the importance of small jumps for the “roughness” of the sample paths, which
is the practical meaning of the Hausdorff dimension. The bottom panels in Fig. 1 graph each
marginal process. Lemma 2.3 in [22] shows that these coordinate marginals X1(t) and X2(t) are
independent stable processes. Note that the large jumps occur at different times, reflecting the
independence of the marginals. Blumenthal and Getoor [5] showed that the graph of the stable
process X i (t) has Hausdorff dimension 2 − 1/αi . The bottom left graph is “rougher” due to
its higher dimension. Modifying the spectral measure in this example can introduce skewness,
and/or dependence between the marginals.

Example 4.2. This example illustrates the effect of a continuous spectral measure. We use the
same exponent B as in Example 4.1, but now we take the spectral measure λ to be uniformly
distributed on the unit circle: set v = (x2

+ y2)−1/2
[x, y]

⊤ where x, y are independent standard
normal. The matrices Λ and Aϵ turn out to be the same as Example 4.1. Since E[v] = 0, no cen-
tering is needed. The marginals X i (t) are symmetric stable with index α1 = 1.8 and α2 = 1.5,
but they are no longer independent. The top panel in Fig. 2 shows a typical sample path of the
process. Since the spectral measure is uniform, the large jumps apparent in the sample path take
a random orientation. Theorem 3.2 in [26] shows that the sample path is a random fractal, a set
whose Hausdorff and packing dimension are both equal to 1.8 with probability 1. The bottom
panels in Fig. 2 show the graphs of each marginal process. Note that the large jumps in both
marginals are simultaneous, reflecting the dependence. An asymmetric continuous spectral mea-
sure can represent preferential directions for large jumps; see [32, Section 3.5] for an illustration.

Example 4.3. Fig. 2 of Zhang et al. [38] represents a model of contaminant transport in fractured
rock. Pollution particles travel along fractures in the rock, which form at specific angles due to
the geological structure of the rock matrix. An operator stable process X (t) represents the path
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of a pollution particle, with independent skewed stable components in the fracture directions.
The skewness derives from the fact that particles jump forward (downstream) when mobilized
by water that flows through the fractured rock. The two components of X (t) are skewed stable
with index α = 1.3 on the line with angle θ1 = 30◦ measured from the positive e1 axes as usual,
and index 1.7 on the line with angle θ2 = −35◦. The e1 axis represents the overall direction of
flow, caused by a differential in hydraulic head (pressure caused by water depth). The exponent B
has one eigenvalue b1 = 1/1.3 with associated eigenvector v1 = Rθ1e1 = [0.865, 0.500]

⊤, and
another eigenvalue b2 = 1/1.7 with associated eigenvector v2 = Rθ2e1 = [0.820,−0.572]

⊤.
The spectral measure is specified as λ(v1) = 0.4 and λ(v2) = 0.6, representing the relative
fraction of jumps along each fracture direction. In order to compute the matrix power t B a change
of basis is useful. Define the matrix P according to Pei = vi so that

P =

[
0.865 0.820
0.500 −0.572

]
and D = P−1 B P = diag(b1, b2) is a diagonal matrix. Then the exponent

B = P D P−1
=

[
0.688 0.142
0.057 0.671

]
.

From (3.9) we get

Λ =

[
0.703 −0.109

−0.109 0.297

]
.

Since t D
= diag(tb1 , tb2) we can compute t B

= Pt D P−1 and integrate in (3.8) to get the
Gaussian covariance matrix Σϵ whose symmetric square root is given by

Aϵ =

[
0.723 −0.416

−0.416 0.407

]
.

To compute the square root, we decompose Σϵ = QE Q−1 where E = diag(c1, c2), ci are
the eigenvalues of Σϵ , and the columns of Q are the corresponding eigenvectors, so that
Aϵ = QE1/2 Q−1 where E1/2

= diag(c1/2
1 , c1/2

2 ). From (4.2) we get aϵ = [27.9,−10.1]
⊤

to compensate the shot noise portion to mean zero. Note that B⊤ui = bi ui where u1 =

[0.572, 0.820]
⊤ and u2 = [0.500,−0.865]

⊤ are the dual basis vectors. Then each projection
⟨X (t), ui ⟩ is (strictly) stable with index αi = 1/bi , since

⟨X (t), ui ⟩
d
= ⟨t B X (1), ui ⟩ = ⟨X (1), t B⊤

ui ⟩ = ⟨X (1), tbi ui ⟩ = tbi ⟨X (1), ui ⟩.

Hence 0.572X1(t) + 0.820X2(t) is stable with index α1 = 1.3 and 0.500X1(t) − 0.865X2(t)
is stable with index α2 = 1.7. Lemma 2.3 in [22] shows that these two skewed stable processes
are independent, since the spectral measure is concentrated on the eigenvector coordinate axes
⟨x, vi ⟩ = 0. The sample path in Fig. 3 illustrates the dispersion of a typical pollution particle
away from the center of mass of the contaminant plume. Dispersion is the spreading of particles
due to variations in velocity, and it is the main cause of plume spreading in ground water
hydrology. In this application, the mean zero operator stable process X (t) represents particle
location in a moving coordinate system, with origin at the plume center of mass. Note that the
large jumps lie in the fracture directions vi . The coordinate marginals X i (t) in this example are
not stable, and they are not independent. Variations on this example are discussed in [38,32], in
which the spectral measure is modified to code different flow geometries.
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Fig. 3. Simulated operator stable sample path for Example 4.3, a model of contaminant transport in fractured rock.
The exponent has two distinct real eigenvalues, and the discrete spectral measure is concentrated on the eigenvector
coordinates.

Example 4.4. We simulate an operator stable process X (t) whose exponent has a nilpotent part

B =

[
1/1.5 0

q 1/1.5

]
for some q > 0. Note that if q = 0 this reduces to a stable process with index α = 1.5. We
choose the spectral measure λ to place equal masses of 1/4 at the four points ±e1 and ±e2. Then
E[v] = 0 in (4.2) so no centering is needed. Here Λ = diag(1/2, 1/2),

Σ1 =

[
3/2 −9q/2

−9q/2 (3 + 54q2)/2

]
and, in the case q = 1,

Aϵ =

[
0.146 −0.359

−0.359 4.009

]
.

Note that t B
= tbt N where b = 1/1.5 and

t N
=

[
1 0

q log t 1

]
.

From (4.3) it follows that the second marginal X2(t) is symmetric stable with index α = 1/b =

1.5. The first marginal is not stable, but it lies in the domain of attraction of a symmetric stable
with index α = 1.5; see [20, Theorem 2]. Fig. 4 shows a typical sample path of the process in
the case q = 1. The large jumps apparent in the sample path of Fig. 4 are all of the form t Bv

where v = ±ei and t > 0. Hence they are either vertical, or they lie on the curved orbits ±t Be1.
Theorem 3.2 in [26] shows that the sample path is almost surely a random fractal with dimension
1.5. Lemma 2.3 in [22] shows that the coordinates X1(t) and X2(t) are not independent. An
exponent B with complex eigenvalues (replace 0 by −q) produces a somewhat different sample
path, with large jumps along curved orbits t B

= tb Rq ln t that spiral at a logarithmic rate.
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Fig. 4. Simulated operator stable sample path for Example 4.4. The exponent has a nilpotent part, and the discrete
spectral measure is concentrated on the coordinate axes.

Example 4.5. This example illustrates computation of the norm (2.3) when the exponent is not
in Jordan form. The matrix

B =

[
1/1.8 1/2

0 1/1.5

]
has eigenvalue–eigenvector pairs Bvi = bivi with b1 = 1/1.8, v1 = e1, b2 = 1/1.5, and
v2 = (9/2)e1 + e2.

t B
=

[
t1/1.8

−(9/2)t1/1.8
+ (9/2)t1/1.5

0 t1/1.5

]
.

We compute the norm (2.3) with p = 2 : ‖x‖
2
B = (9/10)x2

1 − (81/110)x1x2 + (903/880)x2
2

so that the unit sphere SB is an ellipse, whose major axis is rotated approximately 50◦

counterclockwise from the e1 direction. The spectral measure λ places equal masses of 1/4 at
each point where the unit sphere SB intersects the coordinate axes: ±ci ei where c2

1 = 10/9 and
c2

2 = 880/903. Here Λ = diag(5/9, 440/903), and

Aϵ =

[
5.209 −0.266

−0.266 0.274

]
.

The second coordinate X2(t) is symmetric stable with index α2 = 1.5, and the projection onto
the remaining eigenvector X1(t) − (9/2)X2(t) is stable with index α1 = 1.8. These two stable
marginals of X (t) are not independent, since the spectral measure is not concentrated on the
eigenvector axes. The large jumps of the process are all of the form t Bv where v = ±c1e1 or
v = ±c2e2, since we have concentrated the spectral measure at these points. If v = ±c1e1 then,
since e1 is an eigenvector of B (and hence of t B), these jumps will be in the horizontal. The
remaining jumps lie along the orbits {±t Bc2e2 : t > 0}. Any exponent, with any coordinate
system and norm, can be accommodated in an operator stable model, but an exponent in Jordan
form and Euclidean geometry is the most straightforward.
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5. Exponents and symmetries in two dimensions

The examples in Section 4 illustrate the wide range of sample path behavior for an operator
stable Lévy process X in R2 with exponent B and spectral measure λ. In this section, we consider
the important modeling issue of symmetry in the distribution of X (t). First we classify the
possible symmetries in two dimensions, in terms of the exponent. For any operator stable law, a
change of coordinates puts the exponent into Jordan form. Theorem 5.1 shows that all symmetries
are orthogonal in this coordinate system, and then describes the possible symmetries for each
exponent. Theorem 5.2 shows how the exponent and spectral measure interact to determine the
symmetries. In short, the exponent B determines the orbits t B and, if these orbits are curved,
it can break the symmetry in the spectral measure. Finally Remark 5.3 shows how to explicitly
construct a process X with any given exponent and any admissible symmetry group, by selecting
the appropriate spectral measure. Symmetry is an important modeling consideration, and a useful
guide to model selection. In many practical applications, the natural symmetries of the system
are known, and these results can be used to calibrate the choice of parameters.

For any full dimensional probability distribution µ, the set of symmetries

S(µ) :=


A ∈ GL(Rd) : Aµ = µ ∗ δx for some x ∈ Rd


(5.1)

forms a compact subgroup of GL(Rd); see for example [4]. If the full operator stable law
µ = L(X (1)) has a large degree of symmetry, the exponent B in (1.2) is not unique. The possible
exponents are given by [12, Theorem 4.6.7]:

E(µ) = B + TS(µ) (5.2)

where B ∈ E(µ) is arbitrary. Here TS(µ) is the tangent space of S(µ) at the identity. If S(µ) is
finite, then TS(µ) = {0}, and the exponent is unique. If A ∈ S(µ) and B is an exponent of µ,
then so is A−1 B A. When the exponent is unique, we must have AB = B A, so B commutes with
S(µ). The use of commuting exponents simplifies the analysis of E(µ). Every operator stable
law µ has an exponent Bc that commutes with S(µ), see [12, Theorem 4.7.1]. If µ is operator
stable with S(µ) = Od , the orthogonal group on Rd , then Bc = β I for some β > 0 is the only
commuting exponent, and µ is multivariable stable with index 1/β. Since T (Od) = Qd is the
linear space of skew symmetric matrices, we get from (5.2) that

E(µ) = β I +Qd . (5.3)

Recall that a matrix Q is skew symmetric if Q⊤
= −Q, where Q⊤ is the transpose of Q.

If S(µ) is an arbitrary compact subgroup of GL(Rd), then by a classical result of algebra (see,
e.g., [4, Theorem 5]) there exists a symmetric positive-definite matrix W and a compact subgroup
G of the orthogonal group Od such that

S(µ) = W −1GW. (5.4)

Then (5.2) becomes

E(µ) = B + W −1HW, (5.5)

where H is the tangent space of G.
Theorem 2 in [25] implies that a compact subgroup G of GL(Rd) can be the symmetry group

of a full dimensional probability distribution on Rd if and only if it is maximal, meaning that
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G cannot be strictly contained in any other subgroup that has the same orbits. For example, the
special orthogonal groupO+

d is not maximal becauseO+

d x = Od x for every x ∈ Rd , andO+

d is a
proper subgroup ofOd . Consequently,O+

d cannot be the symmetry group of any full dimensional
probability measure on Rd . Actually Theorem 2 in [25] characterizes the strict symmetry group
of µ defined by

S0(µ) := {A ∈ GL(Rd) : Aµ = µ}. (5.6)

However, Theorem 5 in Billingsley [4] implies that S(µ) = S0(µ ∗ δa) for some a ∈ Rd . Hence
S(µ) must be maximal as well. Moreover, we have a relation between the symmetries of µ and
the strict symmetries of the Lévy measure ν in (2.2):

S(µ) = S0(ν) :=


A ∈ GL(Rd) : Aν = ν


, (5.7)

which is valid for any infinitely divisible distribution without a Gaussian part.
Since the real parts of the eigenvalues of B are greater than 1/2, there is a coordinate system

in which the exponent assumes one the following Jordan forms

B0 = bI, B1 =

[
b1 0
0 b2

]
, B2 =

[
b −c
c b

]
, B3 =

[
b 0
1 b

]
(5.8)

where b, b1, b2 > 1/2, b1 ≠ b2, and c ≠ 0. If B = B0, then X is a multivariable stable process
with index α = 1/b, and all maximal compact subgroups of GL(R2) are admissible as S(µ). A
genuine operator stable Lévy process is obtained when B = Bi , i = 1, 2, 3. Our first question is,
what are the possible symmetry groups?

To deal with this question, we need to review some basic facts concerning subgroups of the
orthogonal group O2 on R2, which can be found, e.g., in [2]. Recall that O2 consists of rotations
and reflections,

O2 = {Rθ , Fθ : θ ∈ [0, 2π)},

where

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
and Fθ =

[
cos θ sin θ
sin θ − cos θ

]
.

Rθ is a rotation counterclockwise by θ and Fθ is a reflection through the line of angle θ/2
passing through the origin. The following rules of composition hold: Rθ1 Rθ2 = Rθ1+θ2 , Fθ1 Fθ2 =

Rθ1−θ2 , Rθ1 Fθ2 = Fθ1+θ2 , Fθ2 Rθ1 = Fθ2−θ1 .
The group of rotationsO+

2 = {Rθ : θ ∈ [0, 2π)} is the only infinite proper compact subgroup
ofO2. There are also only two kinds of finite subgroups ofO2 (modulo the orthogonal conjugacy;
see [2, Ch. VII.3]):

(1) cyclic groups Cn = {Rk2π/n : k = 0, . . . , n − 1}, n ≥ 1,
(2) dihedral groups Dn = {Rk2π/n, Fk2π/n : k = 0, . . . , n − 1}, n ≥ 1.

Notice that C1 = {I }, C2 = {I,−I }, D1 = {I, F0}, and D2 = {I, F0,−I,−F0}, where

F0 =

[
1 0
0 −1

]
is the reflection with respect to the x-axis. We will also need D∗

1 = {I,−F0}, the group of
reflections with respect to the y-axis, which is orthogonally conjugate to D1.
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The next result characterizes the possible symmetries of the distribution of X (t) in the truly
operator stable case where B = Bi in (5.8) for some i = 1, 2, 3. In view of (2.1), the symmetry
groups do not depend on t . Remarkably, once the exponent takes the Jordan form, all symmetries
must be orthogonal.

Theorem 5.1. Let X = {X (t)}t≥0 be full operator stable Lévy processes on R2 with exponent B
in the Jordan form (5.8), and let µ = L(X (1)). Then the following hold.

(i) If B = B1, then S(µ) is either C1, C2,D1, D∗

1 , or D2.
(ii) If B = B2, then S(µ) is either Cn, n ≥ 1, or O2.

(iii) If B = B3, then S(µ) is either C1 or C2.

Proof. Suppose thatµ has an exponent B = Bi , i = 1, 2, 3, and let Bc be a commuting exponent.
If S(µ) is finite, then Bi = Bc; otherwise Bc can be different from Bi . The symmetries S(µ)
defined in (5.1) form a compact subgroup of the centralizer C(Bc),

S(µ) ⊂ C(Bc) := {A ∈ GL(R2) : ABc = Bc A}. (5.9)

First consider finite symmetry groups S(µ), so that Bc = Bi . If i = 1,

C(B1) =

[
α 0
0 β

]
: αβ ≠ 0


,

and since S(µ) is finite (and thus compact),

S(µ) ⊂

[
α 0
0 β

]
: |α| = |β| = 1


.

Then (i) follows. The remaining cases (ii) and (iii) are similar.
Now we consider infinite symmetry groups S(µ), so that (5.4) holds. From (5.9), W BcW −1

commutes with every orthogonal transformation. Thus W BcW −1 is a multiple of the identity
matrix, which yields

Bc = β I. (5.10)

Since TO2 = Q2, Bi = Bc + W −1 K W = W −1(β I + K )W for some skew symmetric matrix
K , and so Bi = γW −1 RφW for some γ ≠ 0 and φ ∈ [0, 2π). This equation eliminates the cases
i = 1 and i = 3 by comparing the eigenvalues on the left and right hand sides. Thus i = 2 and
B2 = αRψ for some ψ ∈ (0, π) ∪ (π, 2π), from which we have αRψ = B2 = γW −1 RφW .
Comparing the determinants of both sides gives α = γ . Hence Rψ = W −1 RφW . Since the sets
of eigenvalues of both sides of this equation must be the same, φ = ψ or φ = 2π −ψ . If φ = ψ

then W Rψ = RψW for ψ ∈ (0, π) ∪ (π, 2π). A direct verification of this equation reveals that
W = κRτ is a multiple of a rotation. (In fact, W is a scalar multiple of the identity, since it is
also symmetric and positive definite.) Therefore, S(µ) = (κRτ )−1O2κRτ = O2, as claimed. If
φ = 2π − ψ , then

Rψ = W −1 R2π−ψW = W −1 F0 FψW = W −1 F0 Rψ F0W

or (F0W )Rψ = Rψ (F0W ). For the same reason as above, one can verify that F0W = κRτ is a
multiple of rotation. Hence W = κF−τ and

S(µ) = (κF−τ )
−1O2κF−τ = O2.

This proves that B = B2 and S(µ) = O2 provided S(µ) = W −1O2W . �
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Operator stable laws are parameterized by their exponents and spectral measures. The next
result shows how the interplay between the curved orbits t B determined by the exponent, along
with the symmetries of the spectral measure, combine to determine the symmetries of the process.
Recall that O+

2 is the group of rotations.

Theorem 5.2. Let X = {X (t)}t≥0 be a full operator stable Lévy process in R2 with exponent B,
spectral measure λ, and no Gaussian component. Let µ = L(X (1)). Suppose that B is given in
the Jordan form (5.8) and that the polar decomposition (2.5) holds with SB = S1, the Euclidean
unit sphere of R2. Let S0(λ) = {A ∈ GL(R2) : Aλ = λ} denote the strict symmetry group of the
spectral measure.
(a) If B = B1, then S(µ) = S0(λ) ∩D2.
(b) If B = B2, then either S(µ) = S0(λ) ∩O+

2 = Cn for some n ≥ 1, or S(µ) = S0(λ) = O2.
(c) If B = B3, then S(µ) = S0(λ) ∩ C2.

Proof. Let ν be the Lévy measure of µ. Since µ does not have a Gaussian part, we have

S(µ) = S0(ν) = {A ∈ GL(R2) : Aν = ν} (5.11)

as in (5.7). First we will show that if B = Bi , i = 1, 2, 3, and S(µ) is finite, then

S(µ) = S0(λ) ∩ {A ∈ O2 : AB = B A}. (5.12)

Let A ∈ S(µ),S(µ) being finite. Then A ∈ O2 by Theorem 5.1 and A commutes with B. For
every F ∈ B(S1), A−1 F ∈ B(S1) and by (2.4) and (2.5) with SB = S1 we have

λ(A−1 F) = ν({x : x = t B A−1v, for some (t, v) ∈ [1,∞)× F})

= ν(A−1
{x : x = t Bv, for some (t, v) ∈ [1,∞)× F}) = λ(F)

because S(µ) = S0(ν) from (5.11). Hence A ∈ S0(λ). The proof of the opposite inclusion in
(5.12) uses similar arguments and is omitted.

Proof of (a). A direct verification shows that B1 commutes with D2. Thus by (5.12)

S0(λ) ⊃ S(µ) ⊃ S0(λ) ∩D2.

Since S(µ) ⊂ D2 by Theorem 5.1, we get (a).
Proof of (b). By Theorem 5.1 S(µ) = Cn for some n ≥ 1, or S(µ) = O2. Suppose that

S(µ) = Cn . Since O+

2 commutes with B2, by (5.12) we have

S0(λ) ⊃ S(µ) ⊃ S0(λ) ∩O+

2 .

Thus S(µ) = S0(λ) ∩O+

2 = Cn .
Suppose S(µ) = O2. Then Rθ ∈ S0(ν) for every θ by (5.11). Since Rθ commutes with

B2, Rθ ∈ S0(λ) by the same line of arguments as in the proof of (5.12). Hence S0(λ) ⊃ O+

2 ,
which implies that λ is a finite full measure in R2. Then λ is a constant multiple of a probability
measure, so S0(λ) must be maximal by [25, Theorem 2], and hence S0(λ) = O2.

Proof of (c). This follows from (5.12) because C2 obviously commutes with B3. �

Remark 5.3. Using Theorem 5.2 we can explicitly construct an operator stable process with any
given exponent Bi for i = 1, 2, 3 in Jordan form (5.8) and any admissible symmetry group. For
example, let λ be concentrated at four points (±2−1/2,±2−1/2). Choosing masses at these points
appropriately, any subgroup of D2 is realized as S0(λ). By Theorem 5.2, all cases of S(µ) are
realized by this example when B = B1 and B = B3. When B = B2, we only get C1 and C2. To
get S(µ) = Cn, n ≥ 3, we take λ concentrated at vertices of a regular n-gon inscribed into the
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unit circle with one vertex at (1, 0) and equal masses at all the vertices. Then S0(λ) = Dn , so by
Theorem 5.2, S(µ) = Dn ∩ O+

2 = Cn . Finally S(µ) = O2 when B = B2 and λ is a uniform
measure on S1.

Remark 5.4. In order to tie the results of this section back to the examples in Section 4, we
compute the symmetry group S(µ) for a few interesting cases. For Example 4.1 we have
S(µ) = S0(λ) = D2 by Theorem 5.2(a), since the exponent B = B1 in (5.8), and spectral
measure λ gives equal mass to the four points ±e1,±e2. The spectral measure in Example 4.2 is
uniform on the unit sphere, so S0(λ) = O2, but the symmetry is of the form B = B1 in (5.8),
so the symmetry group S(µ) = D2 by Theorem 5.2(a). The construction in Example 4.4 yields
S0(λ) = D2. Then S(µ) = C2 since the exponent B = B3 is nilpotent, by Theorem 5.2(b).
The shot noise representation in Theorem 3.1 shows that the symmetries in the distribution of
X (t) are also reflected in the sample paths. Hence, for example, the sample path in Fig. 2 can be
reflected through either axis, or both, to produce an equally likely path.

6. Operator self-similar processes

An operator stable Lévy process has stationary, independent increments. Some applications
require dependent increments, nonstationarity, or both. In this section, we discuss more general
operator self-similar processes, whose increments need not be independent or stationary. As
usual, we assume that the operator self-similar process X is proper, and stochastically continuous,
with X (0) = 0. Under these assumptions, the real parts of eigenvalues of the exponent B are
positive [9, Theorem 4]. Let S(X) denote the symmetries of X, i.e., the set of linear operators A
in GL(Rd) such that

{AX (t)}t≥0
f d
= {X (t)}t≥0. (6.1)

The symmetries form a compact subgroup of GL(Rd) as long as X is proper. Symmetry is an
important modeling consideration, and a useful guide to model selection. In particular, the natural
symmetries of the system reflect the choice of exponent. Hudson and Mason [9, Theorem 2]
proved that the possible exponents are given by

E(X) = B + TS(X), (6.2)

where B ∈ E(X) is arbitrary and TS(X) is the tangent space of S(X) at the identity. Maejima [14]
showed that one can always find a commuting exponent Bc ∈ E(X) such that ABc = Bc A for
all A ∈ S(X). For any operator self-similar process, a change of coordinates puts the commuting
exponent into Jordan form. The next result extends Theorem 5.1 to the more general case of
operator self-similar processes. It shows that all symmetries are orthogonal in this coordinate
system, and describes the possible symmetries depending on the Jordan form of the exponent.

Corollary 6.1. Let X = {X (t)}t≥0 be a proper operator self-similar process in R2 with an
exponent B given in the Jordan form (5.8). Then the statements (i)–(iii) of Theorem 5.1 hold
verbatim after replacing S(µ) by S(X) and including O+

2 as a possible symmetry group in (ii).

Proof. The exponents of a proper operator self-similar process are related to the symmetry group
by (6.2), there always exists a commuting exponent, and the eigenvalues of any exponent all have
positive real part. These were the crucial facts used in the proof of Theorem 5.1. The rest of the
proof is identical to that of Theorem 5.1, except that here we cannot exclude the case where S(µ)
is conjugate to O+

2 ; see Example 6.4 later in this section. �
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Remark 6.2. As a simple extension of the construction in Remark 5.3, we can obtain an operator
self-similar process in R2 with any exponent, and any admissible symmetry group. Take X (t)
as in Remark 5.3 and let Y (t) = X (T (t)) where T (t) is a self-similar process (time change)
with T (at) = a pT (t) (e.g., take T (t) = t p). Then Y (t) is operator self-similar with exponent
D = pB. This, together with Example 6.4, also shows that S(X) can take every possible form
listed in Corollary 6.1, which therefore provides a complete characterization in R2 of the possible
symmetries of an o.s.s. process. An interesting and useful example of a self-similar process
{T (t)} with Hurst index 0 < β < 1, which is not infinitely divisible or even Markovian, is given
by the first passage time or hitting time T (t) = inf{u > 0 : D(u) > t} of a stable subordinator
D(t) with E(e−s D(t)) = exp(−ctsβ). If we take {D(t)} independent of the outer process X, then
the time changed process Y (t) = X (T (t)) has densities h(x, t) that solve a space–time fractional
multiscaling diffusion equation

∂βh(x, t)
∂tβ

= Lh(x, t)

where L is the generator of the operator stable semigroup; see for example [17,18,38]. This
fractional diffusion equation has been applied to contaminant transport in heterogeneous porous
media, where the process Y (t) represents the path of a randomly selected contaminant particle.
The order of the time fractional derivative β controls particle retention (sticking or trapping)
while the exponent of the operator stable process codes the anomalous superdiffusion caused
by long particle jumps. The inner process T (t) is constant on intervals corresponding to jumps
of the stable subordinator D(t), the length of which is determined by the stable index β. A
different governing equation pertains when the time change is not be independent of the outer
process [3,24]. Methods for simulating these non-Markovian subordinated processes have
recently been developed by Magdziarz and Weron [15] and Zhang et al. [39] based on a simple
random walk approximation of X. It would be interesting to apply the results of this paper to
improve those methods.

The alert reader will note that a shift is included in the definition of symmetry (5.1) for
operator stable Lévy processes, which is natural, since the process definition (2.1) also includes
a shift. For operator self-similar processes, the definition (1.1) does not include a shift, so it is
natural that the symmetry definition (6.1) does not allow a shift. The following lemma relates
these two definitions in the operator stable case.

Lemma 6.3. Let X = {X (t)}t≥0 be a strictly operator stable Lévy process with exponent B.
Suppose that 1 is not an eigenvalue of B. Then S(X) = S(µ), where µ = L(X (1)).

Proof. Since {X (t)}
f d
= {AX (t)} if and only if X (1) d

= AX (1), we have S(X) = S0(µ), so
it suffices to show that S(µ) = S0(µ) (see definitions (5.1) and (5.6)). Let A ∈ S(µ), so
that AX (1) and X (1) − b are identically distributed for some b ∈ Rd . Since the real parts of
eigenvalues of all exponents of µ are the same (see [21, Corollary 7.2.12]), we may take B as a
commuting exponent. Then, for every t > 0 we have

AX (t) d
= X (t)− tb d

= t B X (1)− tb = t B(AX (1)+ b)− tb

= At B X (1)+ t Bb − tb d
= AX (t)+ t Bb − tb.

Thus (t B
− t)b = 0 for all t > 0, and since 1 is not an eigenvalue of B, b = 0. Hence A ∈ S0(µ).

The converse inclusion, S(µ) ⊃ S0(µ), is obvious. �
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Full dimensional operator stable Lévy processes, and proper operator self-similar processes,
form two distinct classes. Neither class is contained in the other: a drift can be added to an
operator stable process, to break the operator self-similarity; a time change can make increments
dependent or nonstationary, while maintaining operator scaling. Remark 6.2 showed how to
construct an operator self-similar process with any admissible symmetry group. The group O+

2
was included, even though it is not maximal, and hence cannot be the symmetry group of
any probability measure (see Section 2). The next example shows that it is possible to have
S(X) = O+

2 for some operator self-similar (not Lévy) processes. This illustrates the basic
difference between the symmetries of a random vector, and those of a stochastic process. Process
symmetries must also preserve finite dimensional distributions, and this further restriction affects
the possible symmetry groups.

Example 6.4. Consider a complex valued process

X (t) = tβ exp (i(Θ + log t)) , t > 0,

where β > 0,Θ is a uniform random variable on [0, 2π ] and X (0) = 0. Since for any φ ∈ R

{eiφX (t)}t≥0
f d
= {X (t)}t≥0,

X as a process in R2,

X (t) = tβ
[

cos(Θ + log t)
sin(Θ + log t)

]
is self-similar with index β and O+

2 ⊂ S(X). By (6.2), I and B2 are exponents of X (B2 with
b = β and arbitrary c). If A ∈ S(X) then

AX (1) d
= X (1)

which implies A ∈ O2. ThusO+

2 ⊂ S(X) ⊂ O2. Consider the process {F0 X (t)}t≥0, where F0 is
the reflexion with respect to the x-axis,

F0 X (t) = tβ
[

cos(Θ + log t)
− sin(Θ + log t)

]
.

If F0 ∈ S(X), then for t1 = 1 and t2 = eπ/2 we would have

(F0 X (1), F0 X (eπ/2)) d
= (X (1), X (eπ/2)),

or [
cos Θ

− sin Θ

]
, eβπ/2

[
− sin Θ
− cos Θ

]
d
=

[
cos Θ
sin Θ

]
, eβπ/2

[
− sin Θ
cos Θ

]
.

This equality written in R4 means

(cos Θ,− sin Θ,− sin Θ,− cos Θ) d
= (cos Θ, sin Θ,− sin Θ, cos Θ),

which is impossible since the sum of the first and the fourth random variables on the left hand
side is 0, while for the right hand side it is 2 cos Θ . Hence F0 ∉ S(X), which yields S(X) = O+

2 .
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Process. Appl. 115 (1) (2005) 55–75.
[27] F.J. Molz, H. Rajaram, S. Lu, Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins,

applications, limitations, and future research questions, Rev. Geophys. 42 (2004) RG1002.
[28] M. Park, J.H. Cushman, On upscaling operator-stable Lévy motions in fractal porous media, J. Comput. Phys. 217
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