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Abstract. Since the work of Mandelbrot in the 1960’s there has accumu-
lated a great deal of empirical evidence for heavy tailed models in finance.
In these models, the probability of a large fluctuation falls off like a power
law. The generalized central limit theorem shows that these heavy-tailed
fluctuations accumulate to a stable probability distribution. If the tails
are not too heavy then the variance is finite and we find the familiar nor-
mal limit, a special case of stable distributions. Otherwise the limit is a
nonnormal stable distribution, whose bell-shaped density may be skewed,
and whose probability tails fall off like a power law. The most important
model parameter for such distributions is the tail thickness α, which gov-
erns the rate at which the probability of large fluctuations diminishes. A
smaller value of α means that the probability tails are fatter, implying more
volatility. In fact, when α < 2 the theoretical variance is infinite. A port-
folio can be modeled using random vectors, where each entry of the vector
represents a different asset. The tail parameter α usually depends on the
coordinate. The wrong coordinate system can mask variations in α, since
the heaviest tail tends to dominate. A judicious choice of coordinate system
is given by the eigenvectors of the sample covariance matrix. This isolates
the heaviest tails, associated with the largest eigenvalues, and allows a more
faithful representation of the dependence between assets.

1. Introduction

In order to construct a useful probability model for an investment portfolio,
we must consider the dependence between assets. If we accept the premise
that price changes are heavy tailed, then we are lead to consider random vec-
tors with heavy tails. In this paper, we survey those portions of the theory of
heavy tailed random vectors that seem relevant to portfolio analysis. The most
flexible models recognize the possibility that the thickness of probability tails
varies in different directions, implying the need for matrix scaling. A judicious
change of coordinates often simplifies the model, and may uncover features
masked by the original coordinates. The original coordinates are the price
changes (or returns) for each asset. The new coordinates can be interpreted
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as market indices, chosen to capture certain features of the market. In some
popular heavy-tailed finance models, the tails are so heavy that the theoret-
ical variance of price changes is undefined. For these models, the theoretical
covariance matrix is also undefined. Of course the sample variance and the
sample covariance matrix can always be computed for any data set, but these
statistics are not estimating the usual model parameters. One of the most
interesting discoveries in heavy tailed modeling is that, in the infinite variance
case, the sample covariance matrix actually contains quite a bit of important
information about the underlying distribution. In fact, the eigenvectors of this
matrix provide a very useful coordinate system. We illustrate the application
of this principle, and we also include a previously unpublished proof, extending
the method to more general heavy tailed vector models with time dependence.

2. Heavy tails

A probability distribution has heavy tails if some of its moments fail to exist.
Suppose that X is a random variable with density f(x) so that

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

The kth moment of the random variable X is defined by an improper integral

µk = E(Xk) =

∫ ∞

−∞
xkf(x)dx.

The mean µ = µ1, variance σ2 = µ2 − µ2
1, skewness and kurtosis depend

on these moments. Because µk is an improper integral, it may not exist. If
f(x) is a normal density, a lognormal density, or any other density whose
tails fall off exponentially then all of the moments µk exist. But if f(x) has
heavy tails that fall off like a power law, then some of the moments µk will
not exist. The simplest example of a heavy tailed distribution is a Pareto,
invented to model the distribution of incomes. A Pareto random variable
satisfies P (X > x) = Cx−α so that the probability of large outcomes falls off
like a power law. The Pareto density is defined by

f(x) =

{
Cαx−α−1 for x > C1/α

0 otherwise

so that

µk =

∫ ∞

C1/α

Cαxk−α−1dx = αCk/α

∫ ∞

1

yk−α−1dy = αCk/α

[
yk−α

k − α

]∞

y=1

using the substitution x = C1/αy. If k < α then the limit at infinity is zero
and µk = αCk/α/(α− k), but if k ≥ α then this improper integral diverges, so
that the kth moment does not exist.
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Pareto distributions are closely related to some other familiar distributions.
If U has a uniform distribution on (0, 1), then X = U−1/α has a Pareto distri-
bution with tail parameter α. To check this, write

P (X > x) = P (U−1/α > x) = P (U < x−α) = x−α.

If X is Pareto with P (X > x) = x−α, then Y = lnX has an exponential
distribution with rate α. To see this, note that

P (Y > y) = P (lnX > y) = P (X > ey) = (ey)−α = e−αy.

Some other familiar distributions have Pareto-like power law tails, causing
some moments to diverge. If Y has a Student-t distribution with ν degrees
of freedom, then P (|Y | > y) ∼ Cy−α where α = ν.1 Then E(Y k) exists
only for k < ν. If Y has a Gamma distribution with density proportional to
yp−1e−qy then the log-Gamma random variable X defined by Y = lnX satisfies
P (X > x) ∼ Cx−α for x large, where α = q. Some other distributions with
Pareto-like tails are the stable and operator stable distributions, which will be
discussed later in this paper.

Heavy tailed random variables with P (|X| > x) ∼ Cx−α are observed in
many real world applications. Estimation of the tail parameter α is important,
because it determines which moments exist. Anderson and Meerschaert [5]
find heavy tails in a river flow with α ≈ 3, so that the variance is finite
but the fourth moment is infinite. Tessier, et al. [74] find heavy tails with
2 < α < 4 for a variety of river flows and rainfall accumulations. Hosking
and Wallis [28] find evidence of heavy tails with α ≈ 5 for annual flood levels
of a river in England. Benson, et al. [9, 10] model concentration profiles for
tracer plumes in groundwater using stochastic models whose heavy tails have
1 < α < 2, so that the mean is finite but the variance is infinite. Heavy
tail distributions with 1 < α < 2 are used in physics to model anomalous
diffusion, where a cloud of particles spreads faster than classical Brownian
motion predicts [11, 32, 73]. More applications to physics with 0 < α < 2 are
cataloged in Uchaikin and Zolotarev [75]. Resnick and Stărică [66] examine
the quiet periods between transmissions for a networked computer terminal,
and find heavy tails with 0 < α < 1, so that the mean and variance are
both infinite. Several additional applications to computer science, finance, and
signal processing appear in Adler, Feldman, and Taqqu [2]. More applications
to signal processing can be found in Nikias and Shao [54].

Mandelbrot [38] and Fama [18] pioneered the use of heavy tail distributions
in finance. Mandelbrot [38] presents graphical evidence that historical daily
price changes in cotton have heavy tails with α ≈ 1.7, so that the mean exists
but the variance is infinite. Jansen and de Vries [30] argue that daily returns
for many stocks and stock indices have heavy tails with 3 < α < 5, and

1Here f(x) ∼ g(x) means that f(x)/g(x) → 1 as x → ∞.
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discuss the possibility that the October 1987 stock market plunge might be
just a heavy tailed random fluctuation. Loretan and Phillips [37] use similar
methods to estimate heavy tails with 2 < α < 4 for returns from numerous
stock market indices and exchange rates. This indicates that the variance is
finite but the fourth moment is infinite. Both daily and monthly returns show
heavy tails with similar values of α in this study. Rachev and Mittnik [62] use
different methods to find heavy tails with 1 < α < 2 for a variety of stocks,
stock indices, and exchange rates. McCulloch [40] uses similar methods to
re-analyze the data in [30, 37], and obtains estimates of 1.5 < α < 2. This is
important because the variance of price returns is finite if α > 2 and infinite
if α < 2. While there is disagreement about the true value of α, depending
on which model is employed, all of these studies agree that financial data is
typically heavy tailed, and that the tail parameter α varies between different
assets.

Portfolio analysis involves the joint probability distribution of several prices
or returns X1, . . . , Xd, where d is the number of assets in the portfolio. It
is natural to model this set of numbers as a d-dimensional random vector
X = (X1, . . . , Xd)

′. We say that X has heavy tails if E(‖X‖k) is undefined
for some k = 1, 2, 3, . . .. Let us consider the practical problem of portfolio
modeling. We choose d assets and research historical performance to obtain
data of the form Xi(t) where i = 1, . . . , d is the asset and t = 0, . . . , n is
the time variable. Typically the distribution of values Xi(0), . . . , Xi(n) has a
heavy tail whose parameter αi can be estimated from this data. The research
of Jansen and de Vries [30], Loretan and Phillips [37], and Rachev and Mittnik
[62] indicates, not surprisingly, that αi will vary depending on the asset. Then
the random vectors Xt = (X1(t), . . . , Xd(t))

′ will have heavier tails in some
directions than in others. Despite this well known fact, most existing research
on heavy tailed portfolio modeling has assumed that the probability tails are
the same in every direction. Nolan, Panorska and McCulloch [58] consider such
a model, based on the multivariable stable distribution, for a vector of two
exchange rates. They argue that α is the same for both.2 Rachev and Mittnik
[62] use a multivariable stable model for portfolio analysis, so that α is the
same for every asset. The same approach was also applied to portfolio analysis
by Bawa, Elton and Gruber [7], Belkacem, Véhel and Walter [8], Chamberlain,
Cheung and Kwan [14], Fama [19], Gamba [22], Press [60], Rachev and Han
[63], and Ziemba [77]. If this modeling approach can be enhanced to allow αi
to vary with the asset, a more realistic and flexible representation of financial
portfolios can be achieved. The goal of this paper is to show how this can be
accomplished, using modern central limit theory.

2Example 8.1 gives an alternative operator stable model for the same data set.
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3. Central limit theorems

Normal and log-normal models are popular in finance because of their sim-
plicity and familiarity. Their use can also be justified by the central limit the-
orem. If X,X1, X2, X3, . . . are independent and identically distributed (IID)
random variables with mean m = E(X) and finite variance σ2 = E[(X −m)2]
then the central limit theorem says that

(3.1)
(X1 + · · ·+Xn) − nm

n1/2
⇒ Y

where Y is a normal random variable with mean zero and variance σ2, and
⇒ means convergence of probability distributions. Essentially, (3.1) means
that X1 + · · · + Xn is approximately normal (with mean nm and variance
nσ2) for n large. If the summands Xi represent independent price shocks,
then their sum is the price change over a period of time. If price changes are
accumulations of many IID shocks, then they should be normally distributed.
If price changes accumulate multiplicatively, taking logs changes the product
into a sum, leading to a log-normal model.

For portfolio analysis, we need to consider a vector of prices. Suppose that
X,X1,X2,X3, . . . are IID random vectors on a d-dimensional Euclidean space
Rd. If X = (X1, . . . , Xd)

′ then the mean m = E(X) is a vector with ith
entry mi = E(Xi), the covariance matrix C is a d × d matrix with ij entry
cij = Cov(Xi, Xj) = E[(Xi − mi)(Xj − mj)], and the central limit theorem
says that

(3.2)
(X1 + · · ·+ Xn) − nm√

n
⇒ Y

where Y is a normal random vector with mean zero and covariance matrix
C = E[Y Y ′]. In this case, it simplifies the analysis to change coordinates. If
the matrix P defines the change of coordinates then it follows from (3.2) that

(3.3)
(PX1 + · · ·+ PXn) − nPm√

n
⇒ PY

where PY is multivariate normal with mean zero and covariance matrix
PCP ′ = E[(PY )(PY )′]. If we take the new coordinate system defined by
the eigenvectors of the covariance matrix C, then the limit PY has indepen-
dent normal marginals. The eigenvalues of C determine the variance of each
marginal, so their square roots measure volatility. The corresponding mar-
ginals of PX are all linear combinations of the original assets, chosen to be
asymptotically independent. This coordinate system is one of the cornerstones
of Markowitz’s theory of optimal portfolios, see for example Elton and Gruber
[16].
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For heavy tailed random variables, the central limit theorem may not hold,
because the second moment might not exist. An extended central limit theorem
applies in this case. If X,X1, X2, X3, . . . are IID random variables we say that
X belongs to the domain of attraction of some random variable Y , and we
write X ∈ DOA(Y ), if

(3.4)
(X1 + · · ·+Xn) − bn

an
⇒ Y.

For mathematical reasons we exclude the degenerate case where Y = c with
probability one. The limits in (3.4) are called stable. If E(X2) exists then
the classical central limit theorem shows that Y is normal, a special case of
stable. In this case, we can take an = n1/2 and bn = nE(X). If X has heavy
tails with P (|X| > r) ∼ Cr−α then the situation depends on the tail thickness
α. If α > 2 then E(X2) exists and sums are asymptotically normal. But if
0 < α ≤ 2 then E(X2) = ∞ and (3.4) holds with an = n1/α as long as a tail
balancing condition holds:

(3.5)
P (X > r)

P (|X| > r)
→ p and

P (X < −r)
P (|X| > r)

→ q as r → ∞

for some 0 ≤ p, q ≤ 1 with p + q = 1.
A proof of the extended central limit theorem can be found in Gnedenko and

Kolmogorov [23], see also Feller [20] and Meerschaert and Scheffler [48]. The
condition for X ∈ DOA(Y ) is stated in terms of regular variation. A function
f(r) varies regularly if

(3.6) lim
r→∞

f(λr)

f(r)
= λρ for all λ > 0.

For Y stable with index 0 < α < 2, so that Y is not normal, a necessary
and sufficient condition for X ∈ DOA(Y ) is that P (|X| > r) varies regularly
with index −α and (3.5) holds for some 0 ≤ p, q ≤ 1 with p + q = 1. If
we have P (|X| > r) ∼ Cr−α then it is easy to see that P (|X| > r) varies
regularly with index −α, but the definition also allows a slightly more general
tail behavior. For example, if P (|X| > r) ∼ Cr−α log r then P (|X| > r)
still varies regularly with index −α. The norming constants an in (3.4) can
always be chosen according to the formula nP (|X| > an) → C. If we have
P (|X| > r) ∼ Cr−α this leads to an = n1/α. In practical applications, it is
common to assume that P (|X| > r) ∼ Cr−α because a practical procedure
exists for estimating the parameters C, α for a given heavy tailed data set.3

3See Section 8.
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Stable distributions are typically specified in terms of their characteristic
functions (Fourier transforms). If Y is stable with density f(y) its character-
istic function

E[eikY ] =

∫ ∞

−∞
eikyf(y)dy

is of the form eψ(k) where

(3.7) ψ(k) =





ibk − σα|k|α
(
1 − iβ sign(k) tan

(πα
2

))
for α 6= 1,

ibk − σα|k|α
(

1 + iβ

(
2

π

)
sign(k) ln |k|

)
for α = 1.

The entire class of nondegenerate stable laws on R1 is given by these formulas
with index α ∈ (0, 2], scale σ ∈ (0,∞), skewness β ∈ [−1,+1], and center
b ∈ (−∞,∞). The stable distribution with these parameters will be written as
Sα(σ, β, b) using the notation of Samorodnitsky and Taqqu [68]. The skewness
β = p − q governs the deviations of the distribution from symmetry, so that
f(y) is symmetric if β = 0. The scale σ and the center b have the usual
meaning that if Y has a Sα(1, β, 0) distribution then σY + b has a Sα(σ, β, b)
distribution, except that for α = 1 and β 6= 0 multiplication by σ introduces a
nonlinear change in the shift. The stable index α governs the tails of Y , and
in fact P (|Y | > r) ∼ Cr−α where

(3.8) σα =





C · Γ(2 − α)

1 − α
· cos

(πα
2

)
for α 6= 1,

C · π
2

for α = 1.

in the nonnormal case 0 < α < 2. The tails are balanced so that

(3.9)
P (Y > r)

P (|Y | > r)
→ p and

P (Y < −r)
P (|Y | > r)

→ q as r → ∞

Stable laws belong to their own domain of attraction, but more is true. In
fact, if Yn are IID with Y then

(3.10)
(Y1 + · · · + Yn) − bn

n1/α

d
= Y

for some bn, where
d
= indicates that both sides have the same probability

distribution. Sums of IID stable laws are again stable with the same α, β.
Although there is no closed analytical formula for stable densities, the efficient
computational method of Nolan [56, 59] can be used to plot density curves.
Nolan [57] uses these methods to compute maximum likelihood estimators for
the stable parameters, see also Mittnik, et al. [51, 52].
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908070

sum

Figure 1. Sums of 50 Pareto variables with α = 3. Their
distribution is skewed to the right with several outliers.

IfXn is the price change on day n then the accumulation of these changes will
be approximately stable, assuming that Xn are IID with X and P (|X| > x) ∼
Cx−α. If α < 2, as in the cotton prices considered in Mandelbrot [38], then the
price obtained by adding these changes will be approximately stable with a
power law tail. The balancing parameters p and q describe the probability that
a large change in price will be positive or negative, respectively. The scale σ (or
equivalently, the dispersion C) depends on the price units (e.g., US dollars).
If 2 < α < 4 then the sum of these price changes will be asymptotically
normal. However, the rule of thumb that sums look normal for n ≥ 30 is no
longer reliable. The heavy tails slow the rate of convergence in the central
limit theorem. To illustrate the point, we simulated Pareto random variables
with α = 3, using the fact that if U is uniform on (0, 1) then U−1/α is Pareto
with tail parameter α. We summed n = 50 of these random variables, and
repeated the simulation 100 times to get an idea of the distribution of these
sums. The boxplot in Figure 1 indicates that the distribution of the resulting
sums is skewed to the right, with some outliers. The normal probability plot
in Figure 2 indicates a significant deviation from normality. The moral of this
story is that for heavy tailed random variables with α > 2, sums eventually
converge to a normal limit, but slower than usual.

For heavy tailed random vectors, a generalized central limit theorem applies.
If X,X1,X2,X3, . . . are IID random vectors on Rd we say that X belongs to
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Figure 2. Sums of 50 Pareto variables with α = 3. Upper tail
shows systematic deviation from normal distribution.

the generalized domain of attraction of some full dimensional random vector
Y on Rd, and we write X ∈ GDOA(Y ), if

(3.11) An(X1 + · · · + Xn − bn) ⇒ Y

for some d × d matrices An and vectors bn ∈ Rd. The limits in (3.11) are
called operator stable [31, 72]. If E(‖X‖2) exists then the classical central
limit theorem shows that Y is multivariable normal, a special case of operator
stable. In this case, we can take An = n−1/2I and bn = nE(X). If X has heavy
tails with P (‖X‖ > r) ∼ Cr−α then the situation depends on the tail thickness
α. If α > 2 then E(‖X‖2) exists and sums are asymptotically normal. But if
0 < α < 2 then E(‖X‖2) = ∞ and (3.11) holds with An = n−1/αI as long as
a tail balancing condition holds:

(3.12)
P (‖X‖ > r, X

‖X‖ ∈ B)

P (‖X‖ > r)
→M(B) as r → ∞
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for all Borel subsets4 B of the unit sphere S = {θ ∈ Rd : ‖θ‖ = 1} whose
boundary has M -measure zero, where M is a probability measure on the unit
sphere which is not supported on any d − 1 dimensional subspace of Rd. A
proof of the generalized central limit theorem can be found in Rvačeva [67] or
Meerschaert and Scheffler [48]. In this case, where the tails of X fall off at the
same rate in every direction, the limit Y is multivariable stable [68], a special
case of operator stable.

If Y is multivariable stable with density f(y) its characteristic function

E[eik·Y ] =

∫
eik·yf(y)dy

is of the form eψ(k) where

ψ(k) = ib · k − σα
∫

‖θ‖=1

|θ · k|α
(

1 − i sign(θ · k) tan

(
πα

2

))
M(dθ)

for α 6= 1 and

ψ(k) = ib · k − σα
∫

‖θ‖=1

|θ · k|
(

1 + i

(
2

π

)
sign(θ · k) ln |θ · k|

)
M(dθ)

for α = 1. The entire class of multivariable stable laws on Rd is given by these
formulas with index α ∈ (0, 2], scale σ > 0, mixing measure M and center
b ∈ Rd. We say that Y has distribution Sα(σ,M, b) in this case. The mixing
measure M is a probability distribution on the unit sphere in Rd that governs
the tails of Y , so that f(y) is symmetric if M is symmetric. The center b
and scale σ have the usual meaning that if Y has a Sα(1,M, 0) distribution
then σY + b has a Sα(σ,M, b) distribution, except when α = 1. The stable
index α governs the tails of Y in the nonnormal case (0 < α < 2). In fact,
P (‖Y ‖ > r) ∼ Cr−α where C is given by (3.8). The mixing measure M is
a multivariable analogue of the skewness β. If d = 1 then M{+1} = p and
M{−1} = q, since the unit sphere on R1 is the two point set {−1,+1}. In this
case, Y is stable with skewness β = p− q. The tails of a multivariable stable
random vector are balanced so that

(3.13)
P (‖Y ‖ > r, Y

‖Y ‖ ∈ B)

P (‖Y ‖ > r)
→M(B) as r → ∞.

If d = 1 this reduces to the tail balancing condition (3.9) for stable random
variables. Multivariable stable laws belong to their own domain of attraction,
and if Yn are IID with Y then

(3.14)
(Y1 + · · ·+ Yn) − bn

n1/α

d
= Y

4The class of Borel subsets is the smallest class that include open sets and is closed under
complements and countable unions.
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for some bn, so that sums of IID multivariable stable laws are again multi-
variable stable with the same α. When Y is nonnormal multivariable stable
with distribution Sα(σ,M, b) for some 0 < α < 2, the necessary and sufficient
condition for X ∈ DOA(Y ) is that P (‖X‖ > r) varies regularly with index
−α and the balanced tails condition (3.12) holds.

Example 3.1. The mixing measure governs the radial direction of large price
jumps. Take Ri IID Pareto random variables with P (R > r) = Cr−α. Take
Θi to be IID random unit vectors with distribution M , independent of (Ri).
Then Xi = RiΘi are IID random vectors with P (‖Xi‖ > r) = Cr−α and

P (‖Xi‖ > r, Xi

‖Xi‖ ∈ B)

P (‖Xi‖ > r)
= P (Θi ∈ B) = M(B)

for any Borel subset B of the unit sphere, and so Xi ∈ DOA(Y ) where Y
is multivariable stable with distribution Sα(σ,M, b) for any b ∈ Rd. We can
take An = n−1/αI in (3.11), and b depends on the choice of centering bn.
We call these heavy tailed random vectors multivariable Pareto. If we use
a multivariable Pareto model for large jumps in the vector of prices for a
portfolio, the parameter α governs the radius and the mixing measure M
governs the angle of large jumps. Sums of these IID jumps are asymptotically
multivariable stable with the same index α and mixing measure M . The
radius R = ‖Y ‖ satisfies P (R > r) ∼ Cr−α and the distribution of the radial
component Θ = Y /‖Y ‖ conditional on P (‖Y ‖ > r) tends to M as r → ∞
in view of the tail balancing condition (3.13). In other words, multivariable
stable random vectors are asymptotically multivariable Pareto on their tails.
In a multivariable stable model for price jumps, the mixing measure determines
the direction of large jumps. If M is discrete with M(θi) = pi, then it follows
from the characteristic function formulas that Y can be represented as the
sum of independent stable components laid out along the θi directions, and the
methods of Nolan [56, 59] can be used to plot multivariable stable densities, see
Byczkowski, Nolan and Rajput [13]. The same idea is used by Modarres and
Nolan [53] to simulate stable random vectors with discrete mixing measures.
For an arbitrary mixing measure, multivariable stable laws can be simulated
using sums of independent, identically distributed multivariable Pareto laws.
If 0 < α < 1 then the random vector n−1/α(X1 + · · · + Xn) is approximately
Sα(σ,M, 0) where C is given by (3.8). If 1 < α < 2 then n−1/α(X1 + · · · +
Xn − nEX1) is approximately Sα(σ,M, 0) where C is given by (3.8) and

E(X1) = E(R1)E(Θ1) =
αC1/α

α− 1

∫

‖θ‖=1

θM(dθ).

Remark 3.2. Previously a different type of multivariable Pareto distribution
was considered by Arnold [6], see also Kotz, et al., [33].
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4. Matrix scaling

The multivariable stable model is the basis for the work of Nolan, Panorska
and McCulloch [58] on exchange rates, and the portfolio models in Rachev
and Mittnik [62]. Under the assumptions of this model, the probability tail
of the random vector Xt is assumed to fall off at the same power law rate in
every radial direction. Suppose that Xt = (X1(t), . . . , Xd(t))

′ where Xi(t) is
the price change of the ith asset on day t. If Xt belongs to the domain of
attraction of some multivariable stable random vector Y = (Y1, . . . , Yd)

′ with
index α, and that (3.11) holds with An = n−1/αI. Projecting onto the ith
coordinate axis shows that

(4.1)
Xi(1) + · · ·+Xi(n) − bi(n)

n1/α
⇒ Yi

where bn = (b1(n), . . . , bd(n))′, so that Yi is stable with index α and Xi(t)
belongs to the domain of attraction of Yi. According to Jansen and de Vries
[30], Loretan and Phillips [37], and Rachev and Mittnik [62], the stable index
αi should vary depending on the asset. Then (4.1) is replaced by

(4.2)
Xi(1) + · · · +Xi(n) − bi(n)

n1/αi
⇒ Yi for each i = 1, . . . , d

so that Yi is stable with index αi. Mittnik and Rachev [50] seem to have been
the first to apply such models to a problem in finance, see also Section 8.6 in
Rachev and Mittnik [62]. Assuming the joint convergence

(4.3) An







X1(1)
X2(1)

...
Xd(1)


+ · · · +




X1(n)
X2(n)

...
Xd(n)


−




b1(n)
b2(n)

...
bd(n)





⇒




Y1

Y2
...
Yd




and changing to vector-matrix notation we get (3.11) with diagonal norming
matrices

(4.4) An =




n−1/α1 0 · · · 0
0 n−1/α2 0
...

. . .
...

0 0 · · · n−1/αd




which we will also write as An = diag(n−1/α1 , . . . , n−1/αd). The matrix scaling
is natural since we are dealing with random vectors, and it allows a more
realistic portfolio model. The ith marginal Yi of the operator stable limit
vector Y is stable with index αi, so the tail behavior of Y varies with angle.
The convergence (3.11) with An diagonal was first considered in Resnick and
Greenwood [65], see also Meerschaert [43].
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Matrix notation also leads to a natural analogue of the stable index α.
Let exp(A) = I + A + A2/2! + A3/3! + · · · be the usual exponential op-
erator for d × d matrices. This operator occurs, for example, in the the-
ory of linear differential equations. If A = diag(a1, . . . , ad) then an easy
matrix computation using the Taylor series formula ex = 1 + x + x2/2! +
x3/3! + · · · shows that exp(A) = diag(ea1 , . . . , ead). See Hirsch and Smale
[27] or Section 2.2 of [48] for details and additional information. Now de-
fine E = diag(1/α1, . . . , 1/αd). Then the norming matrices An in (4.4) can
also be written in the more compact form An = n−E = exp(−E lnn), since
−E lnn = diag(−(1/α1) lnn, . . . ,−(1/αd) lnn) and e−(1/αi) lnn = n−1/αi . The
matrix E, called an exponent of the operator stable random vector Y , plays
the role of the stable index α. This matrix E need not be diagonal. Diag-
onalizable exponents involve a change of coordinates, degenerate eigenvalues
thicken probability tails by a logarithmic factor, and complex eigenvalues in-
troduce rotational scaling, see Meerschaert [42]. The case of a diagonalizable
exponent plays an important role in Example 8.1.

The generalized central limit theorem for matrix scaling can be found in
Meerschaert and Scheffler [48]. Matrix scaling allows for a limit with both
normal and nonnormal components. Since Y is infinitely divisible, the Lévy
representation (Theorem 3.1.11 in [48]) shows that the characteristic function
E[eik·Y ] is of the form eψ(k) where

ψ(k) = ib · k − 1

2
k · Ck +

∫

x6=0

(
eik·x − 1 − ik · x

1 + ‖x‖2

)
φ(dx)

for some b ∈ Rd, some nonnegative definite symmetric d × d matrix C and
some Lévy measure φ. The Lévy measure satisfies φ{x : ‖x‖ > 1} <∞ and

∫

0<‖x‖<1

‖x‖2φ(dx) <∞.

For a multivariable stable law,

φ{x : ‖x‖ > r,
x

‖x‖ ∈ B} = Cr−αM(B)

and the characteristic function formulas for multivariable stable laws follow
by a lengthy computation, see Section 7.3 in Meerschaert and Scheffler [48]
for complete details. If φ = 0 then Y is normal with mean b and covariance
matrix C. If C = 0 then a necessary and sufficient condition for (3.11) to hold
is that

(4.5) nP (AnX ∈ B) → φ(B) as n→ ∞

for Borel subsets B of Rd \ {0} whose boundary have φ-measure zero, where φ
is the Lévy measure of the limit Y . Proposition 6.1.10 in [48] shows that the
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convergence (4.5) is equivalent to regular variation of the probability distrib-
ution µ(B) = P (X ∈ B). If (4.5) holds then Proposition 6.1.2 in [48] shows
that the Lévy measure satisfies

(4.6) tφ(dx) = φ(t−Edx) for all t > 0

for some d × d matrix E. Then it follows from the characteristic function
formula that Y is operator stable with exponent E, and that for Yn IID with
Y we have

(4.7) n−E(Y1 + · · · + Yn − bn)
d
= Y

for some bn, see Theorem 7.2.1 in [48]. Hence operator stable laws belong to
their own GDOA, so that the probability distribution of Y also varies regularly,
and sums of IID operator stable random vectors are again operator stable with
the same exponent E. If E = aI then Y is multivariable stable with index
α = 1/a, and (4.5) is equivalent to the balanced tails condition (3.12).

Example 4.1. Multivariable Pareto random vectors with matrix scaling ex-
tend the model in Example 3.1. Suppose Y is operator stable with exponent
E and Lévy measure φ. Define

Fr,B = {sEθ : s > r, θ ∈ B}
and let λ(B) = φ(F1,B) for any Borel subset B of the unit sphere S whose
boundary has λ-measure zero.5 Let C = λ(S) and define the probability
measure M(B) = λ(B)/C. Take Ri IID standard Pareto random variables
with P (R > r) = Cr−1, Θi IID random unit vectors with distribution M and
independent of (Ri), and finally let Xi = RE

i Θi. Since tEF1,B = Ft,B we have
φ(Ft,B) = φ(tEF1,B) = t−1φ(F1,B) = Ct−1M(B) in view of (4.6). Then

nP (n−EXi ∈ Ft,B) = nP (RE
i Θi ∈ Fnt,B)

= nP (Ri > nt,Θi ∈ B)

= nC(nt)−1M(B) = φ(Ft,B)

for n > 1/t, so that (4.5) holds for the sets Ft,B with An = n−E. Then
Xi ∈ GDOA(Y ). Operator stable laws can be simulated using sums of these
IID random vectors. If every eigenvalue of E has real part greater than one,
then n−E(X1 + · · · + Xn) is approximately operator stable with exponent E
and Lévy measure φ. If every eigenvalue of E has real part less than one, then
n−E(X1 + · · ·+ Xn − nm) is approximately operator stable with exponent E
and Lévy measure φ where

m = C

∫

‖θ‖=1

∫ ∞

C

rEθ
dr

r2
M(dθ)

5The measure λ is called the spectral measure of Y .
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is the mean of X1.

5. The spectral decomposition

The tail behavior of an operator stable random vector Y is determined by
the eigenvalues of its exponent E. If E = (1/α)I then Y is multivariable
stable and P (|Y · θ| > r) ∼ Cθr

−α for any θ 6= 0. If E = diag(a1, . . . , ad) then
Y = (Y1, . . . , Yd)

′ where Yi is a stable random variable with index αi = 1/ai.
This requires 0 < αi ≤ 2 so that ai ≥ 1/2. For any d × d matrix E there
is a unique spectral decomposition based on the real parts of the eigenvalues,
see for example Theorem 2.1.14 in [48]. This decomposition allows us to write
E = PBP−1 where P is a change of coordinates matrix and B is block-diagonal
with

(5.1) B =




B1 0 · · · 0
0 B2 0
...

. . .
...

0 0 · · · Bp




where Bi is a di × di matrix, every eigenvalue of Bi has real part equal to ai,
a1 < · · · < ap, and d1+· · ·+dp = d. Let e1 = (1, 0, . . . , 0)′, e2 = (0, 1, 0, . . . , 0)′,
. . ., ed = (0, . . . , 0, 1)′ be the standard coordinates for Rd and define pik = Pej
when j = d1 + · · ·+ di−1 + k for some k = 1, . . . , di. Then

Vi = span{pi1, . . . ,pidi
} =

{
di∑

k=1

tkpik : t1, . . . , tdi
real

}

is a di-dimensional subspace of Rd. Any vector y ∈ Rd can be written uniquely
in the form y = y1+· · ·+yp with yi ∈ Vi for each i = 1, . . . , p. This is called the
spectral decomposition of Rd with respect to E. Since B is block-diagonal and
E = PBP−1, every Epik is a linear combination of pi1, . . . ,pidi

and therefore
Eyi ∈ Vi for every yi ∈ Vi. This means that Vi is an E-invariant subspace of
Rd. Given a nonzero vector θ ∈ Rd, write θ = θ1 + · · · + θp with θi ∈ Vi for
each i = 1, . . . , p and define

(5.2) α(θ) = max{1/ai : θi 6= 0}.
Since the probability distribution of Y varies regularly with exponent E, The-
orem 6.4.15 in [48] shows that for any small δ > 0 we have

r−α(θ)−δ < P (|Y · θ| > r) < r−α(θ)+δ

for all r > 0 sufficiently large. In other words, the tail behavior of Y is
dominated by the component with the heaviest tail. This also means that
E(|Y · θ|β) exists for 0 < β < α(θ) and diverges for β > α(θ). If we write
Y = Y1 + · · ·+Yp with Yi ∈ Vi for each i = 1, . . . , p, then projecting (4.7) onto
Vi shows that Yi is an operator stable random vector on Vi with some exponent
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Ei. We call this the spectral decomposition of Y with respect to E. Since every
eigenvalue of Ei has the same real part ai we say that Yi is spectrally simple,
with index αi = 1/ai. Although Yi might not be multivariable stable, it has
similar tail behavior. For any small δ > 0 we have

r−αi−δ < P (‖Yi‖ > r) < r−αi+δ

for all r > 0 sufficiently large, so E(‖Yi‖β) exists for 0 < β < αi and diverges
for β > αi.

If X ∈ GDOA(Y ) then Theorem 8.3.24 in [48] shows that the limit Y and
norming matrices An in (3.11) can be chosen so that every Vi in the spectral
decomposition of Rd with respect to the exponent E of Y is An-invariant
for every n, and V1, . . . , Vp are mutually perpendicular. Then the probability
distribution of X is regularly varying with exponent E and X has the same
tail behavior as Y . In particular, for any small δ > 0 we have

r−α(θ)−δ < P (|X · θ| > r) < r−α(θ)+δ

for all r > 0 sufficiently large. In this case, we say that Y is spectrally
compatible with X, and we write X ∈ GDOAc(Y ).

Example 5.1. If Y is operator stable with exponent E = aI then (4.7) shows
that Y is multivariable stable with index α = 1/a. Then p = 1, P = I,
and B = E. There is only one spectral component, since the tail behavior is
the same in every radial direction. If asset price change vectors are IID with
X = (X1, . . . , Xd)

′ ∈ GDOA(Y ), then every asset has the same tail behavior.
If θj measures the amount of the jth asset in a portfolio, price changes for this
portfolio are IID with the random variable X · θ = X1θ1 + · · · + Xdθd. Since
the probability tails of X are uniform in every direction, the probability of a
large jump in price falls off like r−α for any portfolio.

Example 5.2. If Y is operator stable with exponent E = diag(a1, . . . , ad)
where a1 < · · · < ad then p = d, P = I, B = E, Bi = ai and Vi is the ith
coordinate axis. The spectral decomposition of Y = (Y1, . . . , Yd)

′ with respect
to E is Y = Y1 + · · · + Yd with Yi = Yiei, the ith marginal laid out along
the ith coordinate axis. Projecting (4.7) onto the ith coordinate axis shows
that Yi is stable with index αi = 1/ai, so that P (|Yi| > r) ∼ Cir

−αi. If θ 6= 0
then P (|Y · θ| > r) falls off like r−α(θ) where α(θ) = max{αi : θi 6= 0}. In
other words, the heaviest tail dominates. If asset price change vectors are IID
with X ∈ GDOAc(Y ), then the assets are arranged in order of increasing
tail thickness. If θi measures the amount of the ith asset in a portfolio, the
probability of a large jump in price falls off like r−α(θ).

Example 5.3. If Y is operator stable with exponent E = diag(β1, . . . , βd)
then Bi = aiI for some ai ≥ 1/2 and di counts the number of diagonal entries
βj for which βj = 1/αi. The matrix P sorts β1, . . . , βd in increasing order, and
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the vectors pik are the coordinates ej for which βj = ai. The vectors Yi are
multivariable stable with index αi = 1/ai, so that P (‖Yi‖ > r) ∼ Cir

−αi. For
nonzero vectors θ ∈ Vi we have P (|Y · θ| > r) = P (|Yi · θ| > r) ∼ Cθr

−αi

by the balanced tails condition for multivariable stable laws. For any other
nonzero vector θ, P (|Y · θ| > r) ∼ Cθr

−α(θ) where α(θ) = max{1/βj : θj 6= 0}.
Again, the heaviest tail dominates. If asset price change vectors are IID with
X ∈ GDOAc(Y ), then X has essentially the same tail behavior as Y , and P
sorts the assets in order of increasing tail thickness.

Example 5.4. Take B = diag(a1, . . . , ad) where a1 < · · · < ad and P orthog-
onal, so that P−1 = P ′. If Y = (Y1, . . . , Yd)

′ is operator stable with exponent
E = PBP−1 then p = d, Bi = ai and V1, . . . , Vd are the coordinate axes in
the new coordinate system defined by the vectors pi = Pei for i = 1, . . . , d.
The spectral component Yi is the stable random variable Y · pi with index
αi = 1/ai, laid out along the Vi axis. Since Yj = Y · ej is a linear com-
bination of stable laws of different indices, it is not stable. The change of
coordinates P rotates the coordinate axes to make the marginals stable. Since
n−PBP−1

= Pn−BP−1 it follows from (4.7) that

Pn−BP−1(Y1 + · · · + Yn − bn)
d
= Y

n−B(P−1Y1 + · · ·+ P−1Yn − P−1bn)
d
= P−1Y

so that Y0 = P−1Y is operator stable with exponent B. Then the tail behavior
of Y = PY0 follows from Example 5.2 and the change of coordinates. If we
write θ = θ1p1 + · · ·+ θdpd in these coordinates then P (|Y · θ| > r) ∼ Cθr

−α(θ)

where α(θ) = max{αi : θi 6= 0}. If asset price change vectors are IID with
X ∈ GDOAc(Y ), then the tail behavior of X is essentially the same as Y . In
particular, taking θ = p1 gives a portfolio with the lightest probability tails.

Example 5.5. Suppose that Y is operator stable with exponent E = PBP−1

where P is orthogonal and B is given by (5.1), with di × di blocks Bi = aiI
for some 1/2 ≤ a1 < · · · < ap. Let D0 = 0 and Di = d1 + · · · + di for
1 ≤ i ≤ p. Then pik = Pej when j = Di−1 + k for some k = 1, . . . , di and
Vi = span{pik : k = 1, . . . , di}. To avoid double subscripts we will also write
qj = Pej , so that qj = pik when j = Di−1 + k for some k = 1, . . . , di. The
jth column of the matrix P is the vector qj, and

Eqj = PBP−1qj = PBej = Paiej = aiPej = aiqj

when qj ∈ Vi, so that qj is a unit eigenvector of the matrix E with correspond-
ing eigenvalue ai. The spectral component

Yi =

di∑

k=1

(Y · pik)pik
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is the orthogonal projection of Y onto the di-dimensional subspace Vi. The
random vector Yi is multivariable stable with index αi = 1/ai, so that
P (‖Yi‖ > r) ∼ Cir

−αi , and every marginal Yik = Y · pik is stable with the
same index αi. The change of coordinates P rotates the coordinate axes to
find a set of orthogonal unit eigenvectors for E, so that the marginals of Y
in the new coordinate system are all stable random variables. The matrix P
also sorts the corresponding eigenvalues in increasing order. For any nonzero
vector θ ∈ Rd, P (|Y · θ| > r) ∼ Cθr

−α(θ) where α(θ) = αi for the largest i
such that the orthogonal projection of θ onto the subspace Vi is not equal to
zero. If asset price change vectors are IID with X ∈ GDOAc(Y ), then the
tail behavior of X is essentially the same as Y . If θ = θ1e1 + · · · θded so that
θi measures the amount of the ith asset in a portfolio, price changes for this
portfolio are IID with X · θ = X1θ1 + · · · + Xdθd. In particular, any θ ∈ V1

gives a portfolio with the lightest probability tails.

6. Sample covariance matrix

Given a data set of price changes (or log returns) X1, X2, . . . , Xn for a given
asset, the kth sample moment

µ̂k =
1

n

n∑

t=1

Xk
t

estimates the kth moment µk = E(Xk). These sample moments are used to
estimate the mean, variance, skewness and kurtosis of the data. If Xt are IID
with P (|Xt| > r) ∼ Cr−α, then Xk

t are also IID and heavy tailed with

P (|Xk
t | > r) = P (|Xt| > r1/k) ∼ Cr−α/k

so the extended central limit theorem applies. Recall from Section 2 that µk
exists for k < α and diverges for k ≥ α. If α > 4 then Var(X2

t ) = µ4 − µ2
2

exists and the central limit theorem (3.1) implies that

(6.1) n1/2(µ̂2 − µ2) = n−1/2
n∑

t=1

(X2
t − µ2) ⇒ Y

where Y is normal. When 2 < α < 4, the mean µ2 = E(X2
t ) of these summands

exists but Var(X2
t ) is infinite, and the extended central limit theorem (3.4)

implies that

n1−2/α(µ̂2 − µ2) = n−2/α

n∑

t=1

(X2
t − µ2) ⇒ Y

where Y is stable with index α/2. When 0 < α < 2 the mean µ2 = E(X2
t )

of the squared price change diverges, and the extended central limit theorem
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implies that

n1−2/αµ̂2 = n−2/α
n∑

t=1

X2
t ⇒ Y

where again Y is stable with index α/2. In this case, the sample second
moment µ̂2 exists but the second moment µ2 does not. When 0 < α < 2, or
when 2 < α < 4 and µ1 = 0, the sample variance

(6.2) σ̂2 =
1

n

n∑

t=1

(Xt − µ̂1)
2 = µ̂2 − µ̂2

1

is asymptotically equivalent to the sample second moment, see for example
Anderson and Meerschaert [4]. Since we can always center to zero expectation
when 2 < α < 4, both have the same asymptotics. If α > 4 the sample
variance is asymptotically normal, and when 0 < α < 4 the sample variance
is asymptotically stable. Since the variance is a measure of price volatility,
the sample variance estimates volatility. Confidence intervals for the variance
are based on normal asymptotics when α > 4 and stable asymptotics when
2 < α < 4. When α < 2 the variance is undefined, but the sample variance
still captures some important features of the data, see Section 8.

Suppose that Xt = (X1(t), . . . , Xd(t))
′ where Xi(t) is the price change of the

ith asset on day t. The covariance matrix characterizes dependence between
price changes of different assets over the same day, and the sample covariance
matrix estimates the covariance matrix. As before, it is simpler to begin with
the uncentered estimate

(6.3) Mn =
1

n

n∑

t=1

XtX
′
t

where X ′ denotes the transpose of the vector X = (X1, . . . , Xd)
′ and hence

XX ′ =



X1
...
Xd


 (X1, . . . , Xd) =




X1X1 · · · X1Xd

X2X1 · · · X2Xd
...

...
...

XdX1 · · · XdXd




is an element of the vector space Md
s of symmetric d × d matrices. The ij

entry of Mn is

Mn(i, j) =
1

n

n∑

t=1

Xi(t)Xj(t)

which estimates E(XiXj). If Xt are IID with X, then XtX
′
t are IID random

matrices and we can apply the central limit theorems from Section 3 (see
Section 10.2 in [48] for complete proofs). If the probability distribution of X
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is regularly varying with exponent E and (4.5) holds with tφ{dx} = φ{t−Edx}
for all t > 0, then the distribution of XX ′ is also regularly varying with

(6.4) nP (AnXX ′A′
n ∈ B) → Φ(B) as n→ ∞

for Borel subsets B of Md
s that are bounded away from zero and whose bound-

ary has Φ-measure zero. The exponent ξ of the limit measure Φ{d(xx′)} =
φ{dx} is defined by ξM = EM +ME ′ for M ∈ Md

s. Using the matrix norm

‖M‖ =

(
d∑

i=1

d∑

j=1

M(i, j)2

)1/2

we get

‖XX ′‖2 =
d∑

i=1

d∑

j=1

(XiXj)
2 =

(
d∑

i=1

X2
i

)(
d∑

j=1

X2
j

)
= ‖X‖4

so that ‖XX ′‖ = ‖X‖2. If every eigenvalue of E has real part ai < 1/4, then
E(‖XX ′‖2) = E(‖X‖4) < ∞ and the multivariable central limit theorem
(3.2) shows that

(6.5) n1/2(Mn − C) = n−1/2

n∑

t=1

(XtX
′
t − C) ⇒W

where W is a Gaussian random matrix and C is the (uncentered) covariance
matrix C = E(XX ′). The estimates of Jansen and de Vries [30] and Loretan
and Phillips [37] indicate tail estimates in the range 2 < α < 4. In this case,
every eigenvalue of E has real part 1/4 < ai < 1/2. Then E(‖XX ′‖2) =
E(‖X‖4) = ∞, but E(‖XX ′‖) = E(‖X‖2) < ∞ so the covariance matrix
C = E(XX ′) exists. Now the generalized central limit theorem (3.11) gives

(6.6) nAn(Mn − C)A′
n = An

(
n∑

t=1

(XtX
′
t − C)

)
A′
n ⇒W

where the limit W is a nonnormal operator stable random matrix. The esti-
mates in Rachev and Mittnik [62] give tail estimates in the range 1 < α < 2,
so that every eigenvalue of E has real part ai > 1/2. Then E(‖XX ′‖) =
E(‖X‖2) = ∞ and the covariance matrix C = E(XX ′) diverges. In this
case,

(6.7) nAnMnA
′
n ⇒ W

holds with W operator stable. Since the covariance matrix is undefined, there
is no reason to believe that the sample covariance matrix contains useful in-
formation. However, we will see in Section 8 that even in this case the sample
covariance matrix characterizes the most important distributional features of
the random vector X.
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The centered sample covariance matrix is defined by

Γn =
1

n

n∑

i=1

(Xi − X̄n)(Xi − X̄n)
′

where X̄n = n−1(X1 + · · · + Xn) is the sample mean. In the heavy tailed
case ai > 1/4, Theorem 10.6.15 in [48] shows that Γn and Mn have the same
asymptotics, similar to the one dimensional case. In practice, it is common to
mean-center the data, so it does not matter which form we choose.

7. Dependent random vectors

Suppose that Xt = (X1(t), . . . , Xd(t))
′ where Xi(t) represents the price

change (or log return) of the ith asset on day t. A model where Xt are IID
with X ∈ GDOA(Y ) allows dependence between the price changes Xi(t) and
Xj(t) on the same day t, which is commonly observed in practice. If we also
want to model dependence between days, we need to relax the IID assumption.
A wide variety of time series models can be mathematically reduced to a linear
moving average. This reduction may involve integer or fractional differencing,
detrending and deseasoning, and nonlinear mappings. Asymptotics for the un-
derlying moving average are established in Section 10.6 of [48]. Assume that
Z,Z1,Z2,Z3, . . . are IID random vectors on Rd whose probability distribution
is regularly varying with exponent E, so that

(7.1) nP (AnZ ∈ B) → φ(B) as n→ ∞
for Borel subsets B of Rd \ {0} whose boundary have φ-measure zero, and
tφ(dx) = φ(t−Edx) for all t > 0. If every eigenvalue of E has real part
ai > 1/2 then Z ∈ GDOA(Y ) and

(7.2) An(Z1 + · · ·+ Zn − nbn) ⇒ Y

where Y is operator stable with exponent E and Lévy measure φ. Define the
moving average process

(7.3) Xt =
∞∑

j=0

CjZt−j

where Cj are d×d real matrices. If every eigenvalue of E has real part ai < ap
then the moving average (7.3) is well defined as long as

(7.4)

∞∑

j=0

‖Cj‖δ <∞

for some δ < 1/ap with δ ≤ 1. If every eigenvalue of E has real part ai < 1/2,
then E(‖Xt‖2) exists and the asymptotics are normal, see Brockwell and Davis
[12]. If every eigenvalue of E has real part ai > 1/2, and if for each j either
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Cj = 0, or else C−1
j exists and AnCj = CjAn for all n, then Theorem 10.6.2 in

[48] shows that

(7.5) An

(
X1 + · · ·+ Xn − n

∞∑

j=0

Cjbn

)
⇒

∞∑

j=0

CjY .

The limit in (7.5) is operator stable with no normal component and Lévy
measure

∑
j Cjφ, where Cjφ = 0 if Cj = 0 and otherwise Cjφ(dx) = φ(C−1

j dx).

If every eigenvalue of E has real part ai < 1/2, then both the mean m =
E(Xt) and the lag h covariance matrix

Γ(h) = E[(Xt − m)(Xt+h − m)′]

exist. The matrix Γ(h) tells us when price changes on day t are correlated
with price changes (of the same asset or some other asset) h days later. These
correlations are useful to identify leading indicators, and they are the basic
tools of time series modeling. The sample covariance matrix at lag h ≥ 0 for
the moving average Xt is defined by

(7.6) Γ̂n(h) =
1

n− h

n−h∑

t=1

(Xt − X̄)(Xt+h − X̄)′

where X̄ = (X1 + · · ·+Xn)/n. If every eigenvalue of E has real part ai < 1/4,

then E(‖Xt‖4) < ∞ and Γ̂n(h) is asymptotically normal, see Brockwell and
Davis [12]. If every eigenvalue of E has real part 1/4 < ai < 1/2, the estimates
of Jansen and de Vries [30] and Loretan and Phillips [37], then

(7.7) An

(
n∑

t=1

ZtZ
′
t −D

)
A′
n ⇒ U

as in Section 6, where U is a nonnormal operator stable random matrix and
D = E(ZZ ′). Then Theorem 10.6.15 in [48] shows that

(7.8) nAn

(
Γ̂n(h) − Γ(h)

)
A′
n ⇒

∞∑

j=0

CjUC
′
j+h

for any h ≥ 0, The asymptotics (7.8) determine which elements of the sample

covariance matrix Γ̂n(h) are statistically significantly different from zero.
If every eigenvalue of E has real part ai > 1/2, as in the estimates of Rachev

and Mittnik [62], then

(7.9) An

(
n∑

t=1

ZtZ
′
t

)
A′
n ⇒ U
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and Theorem 10.6.15 in [48] shows that

(7.10) nAnΓ̂n(h)A
′
n ⇒

∞∑

j=0

CjUC
′
j+h

for any h ≥ 0. In this case the covariance matrix Γ(h) does not exist, but

the sample covariance matrix Γ̂n(h) still contains useful information about
the time series Xt of price changes. In the next section, we will explain this
apparent paradox.

8. Tail estimation

Given a set of price changes (or log-returns) X1, . . . , Xn for some asset,
it is important to estimate the tail behavior. If the price changes Xt are
identically distributed6 with X and P (X > r) ∼ Cr−α, then the dispersion C
and the tail index α determine the central limit behavior, as well as the extreme
value behavior, of the price change distribution. Mandelbrot [38] pioneered a
graphical estimation method for C and α. If y = P (X > r) ≈ Cr−α then
log y ≈ logC − α log r. Ordering the data so that X(1) ≥ X(2) ≥ · · · ≥ X(n)

we should have approximately that r = X(i) when y = i/n. Then a plot
of logX(i) versus log(i/n) should be approximately linear with slope −α and
logC can be estimated from the vertical axis intercept. If P (X > r) ≈ Cr−α

for r large, then the upper tail should be approximately linear. We call this
a Mandelbrot plot. Several Mandelbrot plots for stock market and exchange
rate returns appear in Loretan and Phillips [37] as evidence of heavy tails
with 2.5 < α < 3. Replacing X by −X gives information about the left tail.
Least squares estimators for α based on the Mandelbrot plot were proposed
by Schultze and Steinebach [71], see also Csörgo and Viharos [15].

The most popular numerical estimator for C and α is due to Hill [26], see
also Hall [25]. Sort the data in decreasing order to obtain the order statistics
X(1) ≥ X(2) ≥ · · · ≥ X(n). Assuming that P (X > r) = Cr−α for large values
of r > 0, the maximum likelihood estimates for α and C based on the m + 1
largest observations are

α̂ =

[
1

m

m∑

i=1

(
lnX(i) − lnX(m+1)

)
]−1

Ĉ =
m

n
X α̂

(m+1)

(8.1)

where m is to be taken as large as possible, but small enough so that the
tail condition P (X > r) = Cr−α remains valid. Replacing X by −X gives
estimates for the left tail. Replacing X by |X| gives estimates for the combined

6Note that we are not assuming IID here.
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tail. This is often advantageous, because it allows us to combine the data from
both tails, and increase the number m of order statistics used. Finding the best
value of m is a challenge, and creates a certain amount of controversy. Jansen
and de Vries [30] use Hill’s estimator with a fixed value of m = 100 for several
different assets. Loretan and Phillips [37] tabulate several different values of m
for each asset. Hill’s estimator α̂ is consistent and asymptotically normal with
variance α2/m, so confidence intervals are easy to construct. These intervals
clearly demonstrate that the tail parameters in Jansen and de Vries [30] and
Loretan and Phillips [37] vary depending on the asset.

Aban and Meerschaert [1] develop a more general Hill’s estimator to account
for a possible shift in the data. If P (X > r) = C(r − s)−α for r large,
the maximum likelihood estimates for α and C based on the m + 1 largest
observations are

α̂ =

[
1

m

m∑

i=1

(
ln(X(i) − ŝ) − ln(X(m+1) − ŝ)

)
]−1

Ĉ =
m

n
(X(m+1) − ŝ)α̂

(8.2)

where ŝ is obtained by numerically solving the equation

(8.3) α̂(X(m+1) − ŝ)−1 = (α̂ + 1)
1

m

m∑

i=1

(X(i) − ŝ)−1

over ŝ < X(m+1). Once the optimal shift is computed, α̂ and Ĉ come from
Hill’s estimator applied to the shifted data. One practical implication is that,
since the Pareto model is not shift-invariant, it is a good idea to try shifting
the data to get a linear Mandelbrot plot.

If Xt is the sum of many IID price shocks, then it can be argued that the
distribution of Xt must be (at least approximately) stable with distribution
Sα(σ, β, b). Maximum likelihood estimation for the stable parameters is now
practical, using the efficient method of Nolan [56] for computing stable densi-
ties, see also Mittnik, et al. [51, 52]. Since the stable index 0 < α ≤ 2, the
stable MLE for α cannot possibly agree with the estimates found in Jansen
and de Vries [30] and Loretan and Phillips [37]. Rachev and Mittnik [62] use
a stable model for price changes, and their estimates yield 1 < α < 2 for a
variety of assets. McCulloch [41] argues that the α > 2 estimates found in
Jansen and de Vries [30] and Loretan and Phillips [37] are inflated due to a
distributional misspecification. The Pareto tail of a stable random variable X
disappears as α→ 2, so that it may be impossible to take m large enough for
a reliable estimate, see Fofack and Nolan [21] for a more detailed discussion.
The estimator in [1] corrects for the fact that Hill’s α̂ is not shift-invariant, and
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may go some distance towards correcting the problem identified by McCulloch
[41].

Maximum likelihood estimation is quite sensitive to deviations from the
proscribed distribution, and it is no surprise that the MLE computations of
Jansen and de Vries [30] and Loretan and Phillips [37], based on the Pareto
model, differ significantly from the estimates of Rachev and Mittnik [62], based
on a stable model. Part of the controversy stems from the fact that the range
of α is limited to (0, 2] for the stable model. Akgiray and Booth [3] interpret
the results of Hill’s estimator for stock returns as evidence against the stable
model. Actual finance data does not exactly fit either the stable or Pareto-tail
models, and in our opinion, parameter estimates are only valid with respect
to the model used to obtain them, so that Pareto-based estimates of α > 2 in
no way invalidate the stable model.

Meerschaert and Scheffler [44] propose a robust estimator

(8.4) α̂ =
2 lnn

lnn+ ln σ̂2

based on the sample variance (6.2). This estimator can be applied whenever
X ∈ DOA(Y ) and Y is stable with index 0 < α < 2. Then X can be stable
or Pareto, or any distribution with balanced power-law tails. The estimator is
also applicable to dependent data, since it also applies when Xt =

∑
j cjZt−j,

Zt is IID with Z ∈ DOA(Y ), and Y is stable with index 0 < α < 2. The
estimator is based on the simple idea that

n1−2/ασ̂2 ⇒ Y

ln(nσ̂2) − 2

α
lnn⇒ lnY

2 lnn

(
ln(nσ̂2)

2 lnn
− 1

α

)
⇒ lnY

so that ln(nσ̂2)/(2 lnn) estimates 1/α. If X has heavy tails with α ≥ 2 then
α̂ → 2. In this case, we can apply the estimator to Xk, which also has heavy
tails with tail parameter α/k. It is interesting, and even somewhat ironic, that
the sample variance can be used to estimate tail behavior, and hence tells us
something about the spread of typical values, even in this case 0 < α < 2
where the variance is undefined.

Portfolio modeling requires a vector model to incorporate dependence be-
tween price changes for different assets. In these vector models, the sample
variance is replaced by the sample covariance matrix. For heavy tailed price
changes with infinite variance, the covariance matrix does not exist. Even so,
we will see that the sample covariance matrix is a very useful tool for portfo-
lio modeling. Suppose that Xt = (X1(t), . . . , Xd(t))

′ where Xi(t) is the price
change of the ith asset on day t. If Xt are identically distributed with X
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and if X has heavy tails with P (‖X‖ > r) ∼ Cr−α then the vector norms
‖X1‖, . . . , ‖Xn‖ can be used to estimate the tail parameter α. Alternatively,
we can apply one variable tail estimators to the ith marginal to get an estimate
α̂i of the tail parameter. If the probability tails of X fall off at the same rate
r−α in every radial direction, then these estimates should all be reasonably
close. In that case, we might assume that X is multivariable stable with dis-
tribution Sα(σ,M, b). The mean b can be estimated using the sample mean in
the usual case 1 < α < 2. Several estimators now exist for the scale σ and the
mixing measure M , or equivalently, for the spectral measure λ(dθ) = σαM(dθ).
Those estimators are surveyed in another paper in this volume [35], so we will
not dwell on them here. If α > 2, one might consider the multivariable Pareto
laws introduced in Example 3.1. If P (‖X‖ > r) ∼ Cr−α and the balanced
tails condition (3.13) holds for some mixing measure M , then the tail behavior
of X is multivariable Pareto. Multivariable stable random vectors have this
property with 0 < α < 2. If α > 2 then multivariable Pareto could offer a
reasonable alternative, which to our knowledge has not been pursued in the
finance literature.

While experts disagree on the range of α for typical assets, there seems to
be general agreement that the tail index depends on the asset. Then it is
appropriate to assume that the probability distribution of X varies regularly
with some exponent E. For IID random vectors, a method for estimating the
exponent E can be found in Section 10.4 of [48]. In Section 9 we show that the
same methods also apply to dependent random vectors which are identically
distributed. The method is applicable when the eigenvalues of E all have real
part ai > 1/2, the infinite variance case. To be concrete, we adopt the model
of Example 5.5, which is the simplest model flexible enough for realism. This
model assumes that E has a set of d mutually orthogonal unit eigenvectors.
Note that if the eigenvalues of E are all distinct then these unit eigenvectors
are unique up to a factor of ±1. On the other hand, if E = aI for some a > 1/2
then any set of d mutually orthogonal unit vectors can be used.

Recall the spectral decomposition E = PBP−1 from Example 5.5, where P
is orthogonal and B is given by (5.1), with di × di blocks Bi = aiI for some
1/2 ≤ a1 < · · · < ap. Let D0 = 0 and Di = d1 + · · · + di for 1 ≤ i ≤ p. Then
qj = Pej is a unit eigenvector of the matrix E and the di dimensional subspace
Vi = span{qj : Di−1 < j ≤ Di} contains every eigenvector of E with associated
eigenvalue ai. Our estimator for E is based on the sample covariance matrix
Mn defined in (6.3). Since Mn is symmetric and nonnegative definite, there
exists an orthonormal basis of eigenvectors for Mn with nonnegative eigenval-
ues. Eigenvalues and eigenvectors of Mn are easily computed using standard
numerical routines, see for example Press et al. [61]. Sort the eigenvalues

λ1 ≤ · · · ≤ λd
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and the associated unit eigenvectors

θ1, . . . , θd

so that Mnθj = λjθj for each j = 1, . . . , d. Now Theorem 10.4.5 in [48] shows
that

log n+ log λj
2 logn

→ ai as n→ ∞

in probability for any Di−1 < j ≤ Di. This is a multivariable analogue for the
one variable tail estimator (8.4). Furthermore, Theorem 10.4.8 in [48] shows
that the eigenvectors θj converge in probability to V1 when j ≤ D1, and to
Vp when j > Dp−1. This shows that the eigenvectors estimate the coordinate
vectors in the spectral decomposition, at least for the lightest and heaviest
tails.

Now we illustrate the practical application of the multivariable tail estima-
tor. Recall that Xt = (X1(t), . . . , Xd(t))

′ where Xi(t) is the price change of
the ith asset on day t. Compute the (uncentered) sample covariance matrix
Mn using the formula (6.3) and then compute the eigenvalues λ1 ≤ · · · ≤ λd
and the associated eigenvectors

θ1 = (θ1(1), . . . , θd(1))′

...

θd = (θ1(d), . . . , θd(d))
′

(8.5)

of the matrix Mn. A change of coordinates is essential to the method. Write

Zj(t) = Xt · θj = X1(t)θ1(j) + · · · +Xd(t)θd(j)

for each j = 1, . . . , d. Our portfolio model is based on these new coordinates.
Let

α̂j =
2 logn

logn + logλj

for each j = 1, . . . , n. Since the eigenvalues are sorted in increasing order
we will have α̂1 ≥ · · · ≥ α̂d. Our model assumes that Zj(t) are identically
distributed with Zj, and the tail parameter α̂j governs the jth coordinate Zj.
If α̂j < 2 then P (|Zj| > r) falls off like r−α̂j and if α̂j ≥ 2 then a finite variance
model for Zj is adequate. We can also use any other one variable tail estimator
to get αj for each of the new coordinates Zj(t). The new coordinates unmask
variations in α that would go undetected in the original coordinates.

Example 8.1. We look at a data set of n = 2853 daily exchange rate log-
returns X1(t) for the German Deutsch Mark and X2(t) for the Japanese Yen,
both taken against the US Dollar. We divide each entry by .004 which is the
approximate median for both |X1(t)| and |X2(t)|. This has no effect on the
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eigenvectors but helps to obtain good estimates of the tail thickness. Then we
compute

Mn =
1

n

n∑

t=1

(
X1(t)

2 X1(t)X2(t)
X1(t)X2(t) X2(t)

2

)
=

(
3.204 2.100
2.100 3.011

)

which has eigenvalues λ1 = 1.006, λ2 = 5.209 and associated unit eigenvectors
θ1 = (0.69,−0.72)′, θ2 = (0.72, 0.69)′. Next we compute

α̂1 =
2 ln 2853

ln 2853 + ln 1.006
= 1.998

α̂2 =
2 ln 2853

ln 2853 + ln 5.209
= 1.656

(8.6)

indicating that Z1(t) = 0.69X1(t) − 0.72X2(t) fits a finite variance model but
Z2(t) = 0.72X1(t) + 0.69X2(t) fits a heavy tailed model with α = 1.656. Then
we can model Zt = (Z1(t), Z2(t))

′ as being identically distributed with the
random vector Z = (Z1, Z2)

′ where P (|Z2| > r) ≈ C1r
−1.656 and Var(Z1) <∞.

The simplest model with these properties is to take Z1(t) normal and Z2(t)
stable with index α = 1.656 and independent of Z1(t).

Next we explain the operator stable model based on these estimates. The
random vectors Zt are operator stable with exponent

B =

(
0.50 0
0 0.60

)

since 0.50 = 1/1.998 and 0.60 = 1/1.656. The change of coordinates matrix

P =

(
0.69 −0.72
0.72 0.69

)

so that

Zt =

(
Z1(t)
Z2(t)

)
=

(
0.69 −0.72
0.72 0.69

)(
X1(t)
X2(t)

)
= PXt.

Since

P−1 =

(
0.69 0.72
−0.72 0.69

)

(rounded off to two decimal places) we also have

Xt = P−1Zt =

(
X1(t)
X2(t)

)
=

(
0.69 0.72
−0.72 0.69

)(
Z1(t)
Z2(t)

)

so that

X1(t) = 0.69Z1(t) + 0.72Z2(t)

X2(t) = −0.72Z1(t) + 0.69Z2(t).
(8.7)

Both exchange rates have a common heavy-tailed stable factor Z2(t) and so
both exchange rates have heavy tails with the same tail index α = 1.656. It
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Figure 3. Exchange rates against the US dollar. The new co-
ordinates uncover variations in the tail parameter α.

is tempting to interpret Z2(t) as the common influence of fluctuations in the
US dollar, and the remaining light-tailed factor Z1(t) as the accumulation of
other price shocks independent of the US dollar.

We also take the opportunity to fill in the details of Example 5.4 in this
simple case. The original data Xt = P−1Zt is modeled as operator stable with
exponent

E = PBP−1 =

(
0.55 0.05
0.05 0.55

)
.

In this case, Z1(t) and Z2(t) are independent so the density of Zt is the product
of the two marginal densities, and then the density of Xt can be obtained by
a simple change of variables. The columns of the change of variables matrix
P are the eigenvectors θj of the sample covariance matrix, which estimate the
theoretical coordinate system vectors pj in the spectral decomposition.

Remark 8.2. This exchange rate data in Example 8.1 was also analyzed by
Nolan, Panorska and McCulloch [58] using a multivariable stable model. Since
both marginals X1(t) and X2(t) have heavy tails with the same α, there is
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no obvious reason to employ a more complicated model. However, the change
of coordinates in Example 8.1 uncovers variations in the tail parameter α, an
important modeling insight.

Remark 8.3. Kotz, Kozubowski and Podgórski [34] employ a very different
model for the data in Example 8.1, based on the Laplace distribution. This
distribution, and its multivariable analogues, assume exponential probability
tails for the data. These models have heavier tails than the Gaussian, but they
have moments of all orders.

Remark 8.4. The simplistic model in Example 8.1 assumes that the two factors
Z1 and Z2 are independent. If we assume that Z is operator stable with
Z1 normal and Z2 stable then these components must be independent, in
view of the general characteristic function formula for operator stable laws.
Another alternative is to assume that Z1 is stable with index α = 1.998,
very close to a normal distribution. In this case, the two components can be
dependent. The dependence is captured by the mixing measure or spectral
measure, see Example 4.1. Scheffler [69] provides a method for estimating the
spectral measure from data for an operator stable random vector with a known
exponent. This provides a more flexible model including dependence between
the two factors.

9. Tail estimator proof for dependent random vectors

In this section, we provide a proof that the multivariable tail estimator of
Section 8 is still valid for certain sequences of dependent heavy tailed random
vectors. We say that a sequence (Bn) of invertible linear operators is regularly
varying with index −E if for any λ > 0 we have

B[λn]B
−1
n → λ−E as n→ ∞.

For further information about regular variation of linear operators see [48],
Chapter 4.

In view of Theorem 2.1.14 of [48] we can write Rd = V1 ⊕ · · · ⊕ Vp and E =
E1⊕· · ·⊕Ep for some 1 ≤ p ≤ d where each Vi is E invariant, Ei : Vi → Vi and
Re(λ) = ai for all real parts of the eigenvalues of Ei and some a1 < · · · < ap.
By Definition 2.1.15 of [48] this is called the spectral decomposition of Rd

with respect to E. By Definition 4.3.13 of [48] we say that (Bn) is spectrally
compatible with −E if every Vi is Bn-invariant for all n. Note that in this case
we can write Bn = B1n⊕ · · ·⊕Bpn and each Bin : Vi → Vi is regularly varying
with index −Ei. (See Proposition 4.3.14 of [48].) For the proofs in this section
we will always assume that the subspaces Vi in the spectral decomposition of
Rd with respect to E are mutually orthogonal. We will also assume that (Bn)
is spectrally compatible with −E. Let πi denote the orthogonal projection
operator onto Vi. If we let Pi = πi + · · · + πp and Li = Vi ⊕ · · · ⊕ Vp then
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Pi : Rd → Li is a orthogonal projection. Furthermore, P̄i = π1 + · · ·+πi is the
orthogonal projection onto L̄i = V1 ⊕ · · · ⊕ Vi.

Now assume 0 < a1 < · · · < ap. Since (Bn) is spectrally compatible with
−E, Proposition 4.3.14 of [48] shows that the conclusions of Theorem 4.3.1 of
[48] hold with Li = Vi⊕ · · ·⊕ Vp for each i = 1, . . . , p. Then for any ε > 0 and
any x ∈ Li \ Li+1 we have

(9.1) n−ai−ε ≤ ‖Bnx‖ ≤ n−ai+ε

for all large n. Then

(9.2)
log ‖Bnx‖

logn
→ −ai as n→ ∞

and since this convergence is uniform on compact subsets of Li \ Li+1 we also
have

(9.3)
log ‖πiBn‖

log n
→ −ai as n→ ∞.

It follows that

(9.4)
log ‖Bn‖

logn
→ −a1 as n→ ∞.

Since (B′
n)

−1 is regularly varying with index E ′, a similar argument shows that
for any x ∈ L̄i \ L̄i−1 we have

(9.5) nai−ε ≤ ‖(B′
n)

−1x‖ ≤ nai+ε

for all large n. Then

(9.6)
log ‖(B′

n)
−1x‖

log n
→ ai as n→ ∞

and since this convergence is uniform on compact subsets of L̄i \ L̄i−1 we also
have

(9.7)
log ‖πi(B′

n)
−1‖

log n
→ ai as n→ ∞.

Hence

(9.8)
log ‖(B′

n)
−1‖

log n
→ ap as n→ ∞.

Suppose that Xt, t = 1, 2, . . . are Rd-valued random vectors and let Mn

be the sample covariance matrix of (Xt) defined by (6.3). Note that Mn is
symmetric and positive semidefinite. Let 0 ≤ λ1n ≤ · · · ≤ λdn denote the
eigenvalues of Mn and let θ1n, . . . , θdn be the corresponding orthonormal basis
of eigenvectors.

Basic Assumptions: Assume that for some exponent E with real spectrum
1/2 < a1 < · · · < ap the subspaces Vi in the spectral decomposition of Rd
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with respect to E are mutually orthogonal, and there exists a sequence (Bn)
regularly varying with index −E and spectrally compatible with −E such that:

(A1) The set {n(BnMnB
′
n) : n ≥ 1} is weakly relatively compact.

(A2) For any limit point M of this set we have:
(a) M is almost surely positive definite.
(b) For all unit vectors θ the random variable θ′Mθ has no atom at

zero.

Now let Rd = V1⊕· · ·⊕Vp be the spectral decomposition of Rd with respect to
E. Put di = dimVi and for i = 1, . . . , p let bi = di+· · ·+dp and b̄i = d1+· · ·+di.
Our goal is now to estimate the real spectrum a1 < · · · < ap of E as well as
the spectral decomposition V1, . . . , Vp. In various situation, these quantities
completely describe the moment behavior of the Xt.

Theorem 9.1. Under our basic assumptions, for i = 1, . . . , p and b̄i−1 < j ≤ b̄i
we have

log(nλjn)

2 logn
→ ai in probability as n→ ∞.

The proof of Theorem 9.1 is in parts quite similar to the Theorem 2 in
[46]. See also Section 10.4 in [48], and [70]. We include it here for sake of
completeness.

Proposition 9.2. Under our basic assumptions we have

log(nλdn)

2 logn
→ ap in probability.

Proof. For δ > 0 arbitrary we have

P
{∣∣∣ log(nλdn)

2 logn
− ap

∣∣∣ > δ
}
≤ P{λdn > n2(ap+δ)−1} + P{λdn < n2(ap−δ)−1}.

Now choose 0 < ε < δ and note that by (9.8) we have ‖(B′
n)

−1‖ ≤ nap+ε for
all large n. Using assumption (A1) we obtain for all large n

P{λdn > n2(ap+δ)−1} = P{‖Mn‖ > n2(ap+δ)−1}
≤ P{‖(B′

n)
−1‖2‖nBnMnB

′
n‖ > n2(ap+δ)}

≤ P{‖nBnMnB
′
n‖ > n2(δ−ε)}

and the last probability tends to zero as n→ ∞.
Now fix any θ0 ∈ L̄p \ L̄p−1 and write (B′

n)
−1θ0 = rnθn for some unit vector

θn and rn > 0. Theorem 4.3.14 of [48] shows that every limit point of (θn) lies
in the unit sphere in Vp. Then since (9.5) holds uniformly on compact sets we
have for any 0 < ε < δ that nap−ε ≤ rn ≤ nap+ε for all large n. Then for all
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large n we get

P{λdn < n2(ap−δ)−1} = P
{

max
‖θ‖=1

Mnθ · θ < n2(ap−δ)−1
}

≤ P{Mnθ0 · θ0 < n2(ap−δ)−1}
= P{nBnMnB

′
nθn · θn < r−2

n n2(ap−δ)−1}
≤ P{nBnMnB

′
nθn · θn < n2(ε−δ)}.

Given any subsequence (n′) there exists a further subsequence (n′′) ⊂ (n′)
along which θn → θ. Furthermore, by assumption (A1) there exists another
subsequence (n′′′) ⊂ (n′′) such that nBnMnB

′
n ⇒ M along (n′′′). Hence by

continuous mapping (see Theorem 1.2.8 in [48]) we have

nBnMnB
′
nθn · θn ⇒Mθ · θ along (n′′′).

Now, given any ε1 > 0 by assumption (A2)(b) there exists a ρ > 0 such that
P{Mθ · θ < ρ} < ε1/2. Hence for all large n = n′′′ we have

P{nBnMnB
′
nθn · θn < n2(ε−δ)} ≤ P{nBnMnB

′
nθn · θn < ρ}

≤ P{Mθ · θ < ρ} +
ε1

2
< ε1

Since for any subsequence there exists a further subsequence along which
P{nBnMnB

′
nθn · θn < n2(ε−δ)} → 0, this convergence holds along the entire

sequence which concludes the proof. �

Proposition 9.3. Under the basic assumptions we have

log(nλ1n)

2 logn
→ a1 in probability.

Proof. Since the set GL(Rd) of invertible matrices is an open subset of the
vector space of d × d real matrices, it follows from (A1) and (A2)(a) to-
gether with the Portmanteau Theorem (c.f., Theorem 1.2.2 in [48]) that
limn→∞ P{Mn ∈ GL(Rd)} = 1 holds. Hence we can assume without loss
of generality that Mn is invertible for all large n.

Given any δ > 0 write

P
{∣∣∣ log(nλ1n)

2 logn
− a1

∣∣∣ > δ
}
≤ P{λ1n > n2(a1+δ)−1} + P{λ1n < n2(a1−δ)−1}.

To estimate the first probability on the right hand side of the inequality above
choose a unit vector θ0 ∈ L̄1 and write (B′

n)
−1θ0 = rnθn as above. Then, since

(9.5) holds uniformly on the unit sphere in L̄1 = V1, for 0 < ε < δ we have
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na1−ε ≤ rn ≤ na1+ε for all large n. Therefore for all large n

P{λ1n > n2(a1+δ)−1} ≤ P
{

min
‖θ‖=1

Mnθ · θ > n2(a1+δ)−1
}

≤ P{Mnθ0 · θ0 > n2(a1+δ)−1}
≤ P{nBnMnB

′
nθn · θn > n2(δ−ε)}.

It follows from assumption (A1) together with the compactness of the unit
sphere in Rd and continuous mapping that the sequence (nBnMnB

′
nθn · θn)

is weakly relatively compact and hence by Prohorov’s Theorem this sequence
is uniformly tight. Since δ > ε it follows that P{λ1n > n2(a1+δ)−1} → 0 as
n→ ∞.

Since the smallest eigenvalue of Mn is the reciprocal of the largest eigenvalue
of M−1

n we have

P{λ1n < n2(a1−δ)−1} = P{ 1

λ1n

> n2(δ−a1)+1}

= P
{

max
‖θ‖=1

M−1
n θ · θ > n2(δ−a1)+1

}

= P{‖M−1
n ‖ > n2(δ−a1)+1}

≤ P{‖ 1

n
(B′

n)
−1M−1

n B−1
n ‖ > ‖Bn‖−2n2(δ−a1)}

It follows from (9.4) that for any 0 < ε < δ there exists a constant C > 0
such that ‖Bn‖ ≤ Cn−a1+ε for all n and hence for some constant K > 0 we
get ‖Bn‖−2 ≥ Kn2(a1−ε) for all n. Note that by assumptions (A1) and (A2)(a)
together with continuous mapping the sequence

( 1

n
(B′

n)
−1M−1

n B−1
n

)

is weakly relatively compact and hence by Prohorov’s theorem this sequence
is uniformly tight. Hence

P{‖ 1

n
(B′

n)
−1M−1

n B−1
n ‖ > ‖Bn‖−2n2(δ−a1)}

≤ P{‖ 1

n
(B′

n)
−1M−1

n B−1
n ‖ > Kn2(δ−ε)} → 0

as n→ ∞. This concludes the proof. �

Proof of Theorem 9.1: Let Cj denote the collection of all orthogonal projec-
tions onto subspaces of Rd with dimension j. The Courant-Fischer Max-Min
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Theorem (see [64],p.51) implies that

λjn = min
P∈Cj

max
‖θ‖=1

PMnPθ · θ

= max
P∈Cd−j+1

min
‖θ‖=1

PMnPθ · θ.
(9.9)

Note that P 2
i = Pi and that Bn and Pi commute for all n, i. Furthermore

(PiBn) is regularly varying with index Ei ⊕ · · · ⊕ Ep. Since

n(PiBn)PiMnPi(BnPi)
′ = nPi(BnMnB

′
n)Pi

it follows by projection from our basic assumptions that the sample covariance
matrix formed from the Li valued random variables PiXt satisfies again those
basic assumptions with E = Ei ⊕ · · · ⊕ Ep on Li. Hence if λn denotes the
smallest eigenvalue of the matrix PiMnPi it follows from Proposition 9.3 that

log(nλn)

2 logn
→ ai in probability.

Similarly, the sample covariance matrix formed in terms of the L̄i-valued
random vectors L̄iXt again satisfies the basic assumptions with E = E1 ⊕
· · · ⊕ Ei as above. Then, if λ̄n denotes the largest eigenvalue of the matrix
P̄iMnP̄i it follows from Proposition 9.2 above that

log(nλ̄n)

2 logn
→ ai in probability.

Now apply (9.9) to see that

λn ≤ λjn ≤ λ̄n

whenever b̄i−1 < j ≤ b̄i. The result now follows easily. �
After dealing with the asymptotics of the eigenvalues of the sample covari-

ance in Theorem 9.1 above we now investigate the convergence of the unit
eigenvectors of Mn. Recall that πi : Rd → Vi denotes the orthogonal projec-
tion onto Vi for i = 1, . . . , p. Define the random projection

πin(x) =

b̄i∑

j=b̄i−1+1

(x · θjn)θjn.

Theorem 9.4. Under the basic assumptions we have π1n → π1 and πpn → πp
in probability as n→ ∞.

Again the proof is quite similar to the proof of Theorem 3 in [46] and The-
orem 10.4.8 in [48]. See also [70]. We include here a sketch of the arguments.

Proposition 9.5. Under our basic assumptions we have: If j > b̄p−1 and
r < p then

πrθjn → 0 in probability.
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Proof. Since πrθjn = (πrMn/λjn)θjn we get

‖πrθjn‖ ≤ ‖πrMn/λjn‖

≤ ‖πrB−1
n ‖‖nBnMnB

′
n‖‖(B′

n)
−1‖

nλjn
.

By assumption (A1) together with continuous mapping it follows from Pro-
horov’s theorem that (n‖BnMnB

′
n‖) is uniformly tight. Also, by (9.7), (9.8)

and Theorem 9.1 we get

log(‖πrB−1
n ‖‖nBnMnB

′
n‖‖(B′

n)
−1‖)/(nλjn)

logn

=
log ‖πrB−1

n ‖
log n

+
log ‖(B′

n)
−1‖

logn
− log(nλjn)

log n

→ ar + ap − 2ap < 0 in probability.

Hence the assertion follows. �

Proposition 9.6. Under our basic assumptions we have: If j ≤ b̄1 and r > 1
then

πrθjn → 0 in probability.

Proof. Since πrθjn = (πrM
−1
n λjn)θjn we get

‖πrθjn‖ ≤ ‖πrM−1
n λjn‖

≤ ‖πrB′
n‖‖

1

n
(B′

n)
−1M−1

n B−1
n ‖‖Bn‖(nλjn)

As in the proof of Proposition 9.3 the sequence ( 1
n
(B′

n)
−1M−1

n B−1
n ‖) is uni-

formly tight and now the assertion follows as in the proof of Proposition
9.5. �
Proof of Theorem 9.4. The proof is almost identical to the proof of Theorem
3 in [46] or Theorem 10.4.8 in [48] and therefore omitted. �

Corollary 9.7. Under our basic assumptions, if p ≤ 3 then πin → πi in
probability for i = 1, . . . , p.

Proof. Obvious. �

Example 9.8. Suppose that Z,Z1,Z2, . . . is a sequence of independent and
identically distributed (IID) random vectors with common distribution µ. We
assume that µ is regularly varying with exponent E. That means that there
exists a regularly varying sequence (An) of linear operators with index −E
such that

(9.10) n(Anµ) → φ as n→ ∞.

For more information on regularly varying measures see [48], Chapter 6.
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Regularly varying measures are closely related to the generalized central
limit theorem discussed in Section 3. Recall that if

(9.11) An(Z1 + · · ·+ Zn − nbn) ⇒ Y as n→ ∞
for some nonrandom bn ∈ Rd, we say that Z belongs to the generalized domain
of attraction of Y and we write Z ∈ GDOA(Y ). Corollary 8.2.12 in [48] shows
that Z ∈ GDOA(Y ) and (9.11) holds if and only if µ varies regularly with
exponent E and (9.10) holds, where the real parts of the eigenvalues of E
are greater than 1/2. In this case, Y has an operator stable distribution
and the measure φ in (9.10) is the Lévy measure of the distribution of Y .
Operator stable distributions and Lévy measures were discussed in Section 4,
where (9.10) is written in the equivalent form nP (AnZ ∈ dx) → φ(dx). The
spectral decomposition was discussed in Section 5. Theorem 8.3.24 in [48]
shows that we can always choose norming operators An and limit Y in (9.11)
so that Y is spectrally compatible with Z, meaning that An varies regularly
with some exponent −E, the subspaces Vi in the spectral decomposition of
Rd with respect to E are mutually orthogonal, and these subspaces are also
An-invariant for every n. In this case, we write Z ∈ GDOAc(Y ).

Recall from Section 6 that, since the real parts of the eigenvalues of E are
greater than 1/2,

(9.12) nAnMnA
′
n ⇒ W as n→ ∞

where Mn is the uncentered sample covariance matrix

Mn =
1

n

n∑

i=1

ZiZ
′
i

andW is a random d×dmatrix whose distribution is operator stable. Theorem
10.2.9 in [48] shows that W is invertible with probability one, and Theorem
10.4.2 in [48] shows that for all unit vectors θ ∈ Rd the random variable θ ·Wθ
has a Lebesgue density. Then the basic assumptions of this section hold, and
hence the results of this section apply.

The tail estimator proven in this section approximates the spectral index
function α(x) defined in (5.2). This index function provides sharp bounds on
the tails and radial projection moments of Z. Given a d-dimensional data set
Z1, . . . ,Zn with uncentered covariance matrix Mn, let 0 ≤ λ1n ≤ · · · ≤ λdn
denote the eigenvalues of Mn and θ1n, . . . , θdn the corresponding orthonormal
basis of eigenvectors. Writing xj = x · θj we can estimate the spectral index
α(x) by

α̂(x) = max{α̂j : xj 6= 0}
where

α̂j =
2 logn

log(nλjn)
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using the results of this section. Hence the eigenvalues are used to approximate
the tail behavior, and the eigenvectors determine the coordinate system to
which these estimates pertain. A practical application of this tail estimator
appears in Example 8.1.

Example 9.9. The same tail estimation methods used in the previous example
also apply to the moving averages considered in Section 7. This result is
apparently new. Given a sequence of IID random vectors Z,Zj whose common
distribution µ varies regularly with exponent E, so that (9.10) holds, we define
the moving average process

(9.13) Xt =

∞∑

j=−∞

CjZt−j

where we assume that the d× d matrices Cj fulfill for each j either Cj = 0 or
Cj is invertible and AnCj = CjAn for all n. Moreover if ap denotes the largest
real part of the eigenvalues of E we assume further

(9.14)

∞∑

j=−∞

‖Cj‖δ <∞

for some δ < 1/ap with δ ≤ 1. Recall from Section 7 that under those con-
ditions Xt is almost surely well defined, and that if the real parts of the
eigenvalues of E are greater than 1/2 we have that

(9.15) nAnΓ̂n(0)A′
n ⇒M =

∞∑

j=−∞

CjWC ′
j as n→ ∞.

where the sample covariance matrix Γ̂n(h) is defined by (7.6) and W is a
random d × d matrix whose probability distribution is operator stable. Sup-
pose that the norming operators An are chosen so that (9.11) holds and
Z ∈ GDOAc(Y ). Then in view of our basic assumptions (A1) and (A2) it
remains to show:

Lemma 9.10. Under the assumptions of the paragraph above the limiting ma-
trix M in (9.15) is a.s. positive definite and for any unit vector θ the random
variable Mθ · θ has no atom at zero.

Proof. Since W in (9.12) is a.s. positive definite we have for any θ 6= 0 that
CjWC ′

jθ · θ = WC ′
jθ ·C ′

jθ ≥ 0 for all j and strictly greater that zero for those
j with Cj 6= 0. Hence

Mθ · θ =
∞∑

j=−∞

CjWC ′
jθ · θ > 0

for any θ 6= 0 so M is positive definite.
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Moreover if for a given unit vector θ we set zj = C ′
jθ then zj0 6= 0 for at

least one j0. Since W is almost surely positive definite we have

P{Mθ · θ < t} = P
{ ∞∑

j=−∞

Wzj · zj < t
}
≤ P{Wzj0 · zj0 < t} → 0

as t→ 0 using the fact that Wzj0 · zj0 has a Lebesgue density as above. Hence
Mθ · θ has no atom at zero. �

It follows from (9.15) together with Lemma 9.10 that the Xt defined above
fulfill the basic assumptions of this section. Hence it follows from Theorem 9.1
and Theorem 9.4 that the tail estimator used in Example 9.8 also applies to
time-dependent data that can be modeled as a multivariate moving average.
We can also utilize the uncentered sample covariance matrix (6.3), which has
the same asymptotics as long as EZ = 0 (c.f. Theorem 10.6.7 and Corollary
10.2.6 in [48]). In either case, the eigenvalues can be used to approximate the
tail behavior, and the eigenvectors determine the coordinate system in which
these estimates apply.

Example 9.11. Suppose now that Z1,Z2, . . . are IID Rd-valued random vec-
tors with common distribution µ. We assume that µ is ROV∞(E, c), meaning
that there exist (An) regularly varying with index −E, a sequence (kn) of
natural numbers tending to infinity with kn+1/kn → c > 1 such that

(9.16) kn(Aknµ) → φ as n→ ∞.

See [48], Section 6.2 for more information on R-O varying measures.
R-O varying measures are closely related to a generalized central limit the-

orem. In fact, if µ is ROV∞(E, c) and the real parts of the eigenvalues of E
are greater than 1/2 then (9.16) is equivalent to

Akn(Z1 + · · ·+ Zkn − knbn) ⇒ Y as n→ ∞,

where Y has a so called (cE, c) operator semistable distribution. See [48],
Section 7.1 and Section 8.2 for details. Once again, a judicious choice of
norming operators and limits guarantees that Y is spectrally compatible with
Z, so that An varies regularly with some exponent −E, the subspaces Vi in the
spectral decomposition of Rd with respect to E are mutually orthogonal, and
these subspaces are also An-invariant for every n. It follows from Theorem 8.2.5
of [48] that Z has the same moment and tail behavior as for the generalized
domain of attraction case considered in Section 5. In particular, there is a
spectral index function α(x) taking values in the set {a−1

1 , . . . , a−1
p } where

a1 < · · · < ap are the real parts of the eigenvalues of E. Given x 6= 0, for any
small δ > 0 we have

r−α(x)−δ < P (|Z · x| > r) < r−α(x)+δ
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for all r > 0 sufficiently large. Then E(|Z · x|β) exists for 0 < β < α(x) and
diverges for β > α(x).

Now let

Mn =
1

n

n∑

i=1

ZiZ
′
i

denote the sample covariance matrix of (Zi). Then it follows from Theorem
10.2.3, Corollary 10.2.4, Corollary 10.2.6, Theorem 10.2.9, and Lemma 10.4.2
in [48] that Mn fulfills the basic assumptions (A1) and (A2) of this section.
Hence, by Theorem 9.1 and Theorem 9.4 we rediscover Theorem 10.4.5 and
Theorem 10.4.8 of [48]. See also [70]. In other words, the approximation α̂(x)
from Example 9.8 still functions in this more general case, which represents the
most general setting in which sums of IID random vectors can approximated
in distribution via a central limit theorem.

10. Conclusions

If one believes that asset price changes (or log-returns) have heavy tails,
then there is ample reason to seek a model where the tail thickness parame-
ter α varies with the asset. Operator stable random vectors provide such a
model, and are justified by a central limit theorem. Matrix-scaled sums of
independent, identically distributed random vectors can only converge (in a
distributional sense) to an operator stable limit. Such random vectors have
regularly varying probability distributions whose tails are governed by a ma-
trix exponent. Time dependent models can be constructed by taking moving
averages of these random vectors. If Xi is the price change in the ith asset
then the vector of price changes X = (X1, . . . , Xd)

′ can be described by such
models. If θi measures the amount of the ith asset in a portfolio, price changes
for this portfolio are of the form X · θ = X1θ1 + · · ·+Xdθd. The probability of
large jumps in price depends on the mix according to a tail index function α(θ).
If 2 < α(θ) < 4 we have a finite variance model with infinite fourth moments.
Then the sample covariance matrix plays the usual role as a descriptor of de-
pendence between assets, but its asymptotics are operator stable. If α(θ) < 2
indicating heavy tails with infinite variance, the sample covariance matrix still
provides some useful information. In particular, the coordinate system that
diagonalizes this matrix also identifies the portfolios with the best or worst tail
behavior.
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[35] Kozubowski, T. J., A. K. Panorska and S. T. Rachev (2001) Statistical issues in mod-
eling multivariate stable portfolios, this volume.

[36] Leadbetter, M., G. Lindgren and H. Rootzén (1980) Extremes and related properties of
random sequences and processes. Springer-Verlag, New York.

[37] Loretan, M. and P. Phillips (1994) Testing the covariance stationarity of heavy tailed
time series. J. Empirical Finance 1, 211–248.

[38] Mandelbrot, B. (1963) The variation of certain speculative prices. J. Business 36, 394–
419.

[39] Mandelbrot, B. (1982) The Fractal Geometry of Nature. W. H. Freeman, San Francisco.
[40] McCulloch, J. (1996) Financial applications of stable distributions. Statistical Methods

in Finance: Handbook of Statistics 14, G. Madfala and C. R. Rao, Eds., Elsevier,
Amsterdam, 393–425.

[41] McCulloch, J. (1997) Measuring tail thickness to estimate the stable index α: A critique.
J. Business Econ. Statist. 15, 74–81.

[42] Meerschaert, M. (1990) Moments of random vectors which belong to some domain of
normal attraction. Ann. Probab. 18, 870–876.

[43] Meerschaert, M. (1991) Regular variation in Rk and vector-normed domains of attrac-
tion. Stat. Prob. Lett. 11, 287–289.

[44] Meerschaert, M. and H. P. Scheffler (1998) A simple robust estimator for the thickness
of heavy tails. J. Statist. Plann. Inf. 71, 19–34.

[45] Meerschaert, M. and H. P. Scheffler (1999) Sample covariance matrix for random vectors
with heavy tails. J Theoret. Probab. 12, 821–838.

[46] Meerschaert, M. and H. P. Scheffler (1999) Moment estimator for random vectors with
heavy tails. J. Multivariate Anal. 71, 145–159.

[47] Meerschaert, M. and H. P. Scheffler (2000) Moving averages of random vectors with
regularly varying tails. J. Time Series Anal. 21, 297–328.



PORTFOLIO MODELING WITH HEAVY TAILS 43

[48] Meerschaert, M. and H. P. Scheffler (2001) Limit Theorems for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice. Wiley, New York.

[49] Meerschaert, M. and H. P. Scheffler (2001) Limit Theorems for continuous time random
walks. preprint.

[50] Mittnik, S. and S. Rachev (1993) Reply to comments on Modeling asset returns with
alternative stable distributions, and some extensions. Econometric Rev. 12, 347–389.

[51] Mittnik, S., S. Rachev, T. Doganoglu and D. Chenyao (1999) Maximum likelihood
estimation of stable paretian models. Math. Comput. Modelling 29, 275–293.

[52] Mittnik, S., T. Doganoglu and D. Chenyao (1999) Computing the probability density
function of the stable paretian distribution. Math. Comput. Modelling 29, 235–240.

[53] Modarres, R. and J.P. Nolan (1994) A method for simulating stable random vectors.
Comput. Statist. 9, 11–19.

[54] Nikias, C. and M. Shao (1995) Signal Processing with Alpha Stable Distributions and
Applications. Wiley, New York.

[55] Nolan, J. P. and A. Panorska (1997) Data analysis for heavy tailed multivariate samples.
Heavy tails and highly volatile phenomena. Comm. Statist. Stochastic Models 13, 687–
702.

[56] Nolan, J. P. (1997) Numerical calculation of stable densities and distribution functions.
Heavy tails and highly volatile phenomena. Comm. Statist. Stochastic Models 13, 759–
774.

[57] Nolan, J. P. (2001) Maximum likelihood estimation of stable parameters. Levy
Processes. O. Barndorff-Nielsen, T. Mikosch and S. Resnick, Eds., Birkhauser, Boston.

[58] Nolan, J. P., Panorska A. and J. H. McCulloch (2001) Estimation of stable spectral
measures. Math. Comput. Modelling, to appear.

[59] Nolan, J. P. (2002) Stable Distributions: Models for Heavy Tailed Data. Birkhauser,
Boston.

[60] Press, S. J. (1982) Applied Multivariate Analysis. 2nd ed., Robert E. Krieger, Malabar.
[61] Press, W., B. Flannery, S. Teukolsky and W. Vetterling (1987) Numerical Recipes.

Cambridge University Press, New York.
[62] Rachev, S. and S. Mittnik (2000) Stable Paretian Models in Finance, Wiley, Chichester.
[63] Rachev, S. and S. Han (2000) Portfolio management with stable distributions. Math.

Methods Oper. Res. 51, no. 2, 341–352.
[64] Rao, C. R. (1965) Linear Statistical Inference and Its Applications. Wiley, New York.
[65] Resnick, S. and P. Greenwood (1979) A bivariate characterization and domains of at-

traction. J. Multivariate Anal. 9, 206–221.
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