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Abstract

Exponential relaxation to equilibrium is a typical property of physical systems, but inhomogeneities are
known to distort the exponential relaxation curve, leading to a wide variety of relaxation patterns. Power
law relaxation is related to fractional derivatives in the time variable. More general relaxation patterns are
considered here, and the corresponding semi-Markov processes are studied. Our method, based on Bernstein
functions, unifies three different approaches in the literature.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Relaxation phenomena in complex systems can deviate from the traditional exponential
model. In a heterogeneous system, a linear combination of exponential curves with varying rates
can lead to power law relaxation, or a variety of other forms. Power law (Cole–Cole) relaxation
and Havriliak–Negami relaxation (transitioning between power laws frequency changes) are
commonly seen in complex materials, including polymers, disordered crystals, supercooled
liquids, and amorphous semiconductors [20,23,52]. The connection between relaxation and
continuous time random walk (CTRW) models is reviewed in [58]. In the CTRW model, particle
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motions Xn are separated by random waiting times Wn , and the long-time limiting particle
density solves an evolution equation that incorporates the relaxation curve. One famous example
is the fractional Fokker–Planck equation for subdiffusive particle motions in a potential well,
where delays in particle motion caused by sticking or trapping with a power law distributed
waiting time lead to a fractional time derivative in the evolution equation for the particle
density [21,30,31,44,54]. More general waiting time distributions lead to a variety of pseudo-
differential operators in time [40] that model general relaxation patterns.

In this paper we apply the theory of Bernstein functions to unify the three main approaches
to relaxation modeling that are exemplified by the work of Meerschaert and Scheffler [40],
Toaldo [55], and Magdziarz and Schilling [32]. We show that all three approaches are equivalent,
and we establish the correspondence between the model evolution equations using conjugate
Bernstein functions [53]. We establish some properties of solutions using regular variation
theory [12,18], and we apply these solutions to construct general semi-Markov (CTRW) particle
models. The forward and backward Kolmogorov equations for Markov processes on a discrete
state space are generalized to the semi-Markov case, and the classification of states into transient
or recurrent is discussed. More general evolution equations, solved by time-changed (relaxed)
semigroups on a Hilbert space, are also considered.

To illustrate the main ideas of this paper, we briefly consider a special case. For 0 < β < 1,
the time-fractional diffusion equation

∂
β
t u(x, t) = ∂2

x u(x, t)

using the Caputo fractional derivative in time [35, Eq. (2.16)] is equivalent to

Dβ
t u(x, t) = ∂2

x u(x, t) + u(x, 0)
t−β

Γ (1 − β)
using the Riemann–Liouville fractional derivative in time [35, Eq. (2.17)] since these two
fractional derivatives are related by ∂

β
t f (t) = Dβ

t f (t) − f (0)t−β/Γ (1 − β) for all 0 < β < 1
[35, Eq. (2.33)]. Applying D1−β

t to both sides yields a third equivalent form

∂t u(x, t) = D1−β
t ∂2

x u(x, t)

using a traditional first derivative on the left-hand side. The first form is compact, the second
highlights the initial condition, and the third is most useful if one wishes to add a forcing term.
Complete details of the equivalence can be found in Example 4.1. Our main goal in this paper is to
establish and understand the corresponding equivalence for a general class of time-nonlocal dif-
fusion equations. The main technical difficulty is to find an appropriate operator to apply to both
sides, to convert the nonlocal time operator to a first derivative in time. It turns out that the key is
to interpret the general case of these three equations in terms of conjugate Bernstein functions.

2. Relaxation patterns

2.1. Some basic facts on Bernstein functions and subordinators

In order to go on with the results we recall basic facts from the theory of Bernstein functions
and subordinators (see Bertoin [9,10]; Schilling et al. [53] for more details). A Bernstein function
f : (0, ∞) ↦→ [0, ∞) is defined to be of class C∞ and such that (−1)n−1 f (n)(φ) ≥ 0 for all
n ∈ N := {1, 2, 3, . . .}. A function f is a Bernstein function if and only if [53, Thm 3.2] it can
be written in the form

f (φ) = a + bφ +

∫
∞

0

(
1 − e−φs) ν(ds), (2.1)
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where a and b are non-negative constants and ν(·) is a measure on (0, ∞) such that the
integrability condition∫

∞

0
(s ∧ 1)ν(ds) < ∞ (2.2)

is fulfilled. The triplet (a, b, ν) is said to be a Lévy triplet. An integration by parts of (2.1) yields

φ−1 f (φ) = b +

∫
∞

0
e−φs ν̄(s)ds, (2.3)

where ν̄(s) = a + ν(s, ∞). It follows from [53, Corollary 3.7 (iv)] that (2.3) is a completely
monotone function, i.e., it is C∞ and such that

(−1)n dn

dφn

(
φ−1 f (φ)

)
≥ 0, for all n ∈ N ∪ {0} . (2.4)

A particular subset of the set of Bernstein functions is the set of special Bernstein functions. A
Bernstein function f is said to be special if f ⋆(φ) = φ/ f (φ) is again a Bernstein function. The
function f ⋆, which is also special, is called the conjugate of f and has the representation

f ⋆(φ) =
φ

f (φ)
= a⋆

+ b⋆φ +

∫
∞

0

(
1 − e−φs) ν⋆(ds), (2.5)

where [53, p. 93]

b⋆
=

⎧⎨⎩0, b > 0,
1

a + ν(0, ∞)
, b = 0,

a⋆
=

⎧⎨⎩
0, a > 0,

1
b +

∫
∞

0 tν(dt)
, a = 0.

(2.6)

In what follows we will also need complete Bernstein functions. A Bernstein function f is said
to be complete [53, Def 6.1] if the density ν(s) of the Lévy measure ν(ds) = ν(s) ds appearing
in (2.1) exists and is a completely monotone function. According to [53, Thm 6.2, (ii)] we have
that a Bernstein function f is complete if and only if φ ↦→ φ−1 f (φ) is a (non-negative) Stieltjes
function, i.e., a function h : (0, ∞) ↦→ [0, ∞) which can be written in the form

h(φ) =
a
φ

+ b +

∫
∞

0

1
φ + s

s(ds), (2.7)

where s is a measure on (0, ∞) such that∫
∞

0
(1 + s)−1s(ds) < ∞. (2.8)

It is also true that f is complete if and only if the conjugate f ⋆(φ) = φ/ f (φ) is complete, and
hence every complete Bernstein function is special [53, Prop 7.1].

Bernstein functions are naturally associated with subordinators which are non-decreasing
Lévy processes. The one-dimensional distributions of a subordinator form a convolution
semigroup of sub-probability measures on [0, ∞), i.e., a family of measures {µt (·)}t≥0 supported
on [0, ∞) such that

(1) µt [0, ∞) ≤ 1,
(2) µt ∗ µs = µt+s for all s, t ≥ 0,
(3) µt → δ0 vaguely as t → 0,

and moreover the Laplace transform

µ̃t (φ) = L [µt (·)] (φ) =

∫
∞

0
e−φxµt (dx) = e−t f (φ), (2.9)
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where f (φ) is a Bernstein function. We will denote by σ f (t), t ≥ 0, the subordinator with
Laplace exponent f . If f is a special Bernstein function then the corresponding subordinator
is also called special. The following facts will be used throughout the paper. A subordinator is
special if and only if [53, Thm 10.3] its potential measure

U σ f
(dt) := E

∫
∞

0
1{σ f (s)∈dt}ds = cδ0(dt) + uσ f (t)dt, (2.10)

for some c ≥ 0 and some non-increasing function uσ f : (0, ∞) ↦→ (0, ∞) satisfying∫ 1
0 uσ f (t)(t)dt < ∞. In particular from [53, Corollary 10.8] we know that if b = 0 and

ν(0, ∞) = ∞ then c = b⋆
= 0, ν⋆(0, ∞) = ∞, and

uσ f (t) = a⋆
+ ν⋆(t, ∞) = ν̄⋆(t). (2.11)

2.2. Relaxation patterns

Meerschaert and Scheffler [40] develop limit theory for the continuous time random walk
(CTRW) model from statistical physics. Given an i.i.d. sequence of jumps Jn and an i.i.d.
sequence of waiting times Wn , a particle jumps to location Sn = J1 + · · · + Jn at time
Tn = W1 + · · · + Wn . Given a convergent triangular array of CTRW models, they show [40,
Theorem 2.1] that the limit process is of the form X (L f (t)) where X (t) is the limiting Lévy
process for the random walk of jumps, time changed by the inverse subordinator

L f (t) = inf
{
s ≥ 0 : σ f (s) > t

}
. (2.12)

Kolokoltsov [28] extended the model to a Markov process limit X (t) by allowing the distribution
of the jumps Jn to vary in space. In both cases (under some mild conditions, see [40, Theorem
4.1] and [28, Theorem 4.2]) the probability densities p(x, t) of the CTRW limit solve a governing
equation

C f (∂t )p(x, t) = Ap(x, t), (2.13)

where A is the generator of the Markov semigroup, and the Caputo-like operator C f (∂t ) is
defined so that

L
[
C f (∂t )u

]
(s) = f (φ)̃u(φ) − φ−1 f (φ)u(0) (2.14)

where L [u] (φ) = ũ(φ) =
∫

∞

0 e−φt u(t) dt is the Laplace transform, see [40, Remark 4.8]. If
the waiting times Wn belong to the domain of attraction of a stable subordinator with Laplace
exponent f (φ) = φβ , then (2.13) specializes to

∂
β
t p(x, t) = Ap(x, t), (2.15)

where ∂
β
t is the Caputo fractional derivative [41, Eq. (2.16)]. Other choices of f lead to

distributed order [39] and tempered [5,13] fractional derivatives (see also Example 4.6).
Let u be a real-valued function on [0, ∞). Toaldo [55, Eq. (2.18)] introduced the operator

D f u(t) = b
d
dt

u(t) +
d
dt

∫ t

0
u(s)ν̄(t − s)ds, (2.16)

where ν̄(s) = a + ν(s, ∞) for a Lévy triplet (a, b, ν), and where s ↦→ ν̄(s) is assumed to be
absolutely continuous on [s, ∞) for any s > 0 (a generalized Riemann–Liouville derivative).
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The operator (2.16) can be regularized by subtracting an “initial condition”, as in [40, Remark
4.8], resulting in a generalization of the regularized Riemann–Liouville derivative

D
f
t u(t) = b

d
dt

u(t) +
d
dt

∫ t

0
u(s)ν̄(t − s)ds − ν̄(t)u(0). (2.17)

Use (2.3) to compute the Laplace symbol of (2.17) as

L
[
D

f
t u(t)

]
(φ) = bφũ(φ) − bu(0) + φL [u ∗ ν̄] (φ) −

(
f (φ)
φ

− b
)

u(0)

= bφũ(φ) − bu(0) + φũ(φ)
(

f (φ)
φ

− b
)

−

(
f (φ)
φ

− b
)

u(0)

= f (φ)̃u(φ) − φ−1 f (φ)u(0). (2.18)

This shows that (2.14) and (2.17) are the same operator at least for exponentially bounded
continuously differentiable functions u: indeed the Laplace transforms agree and furthermore
t ↦→ D

f
t u(t) is a continuous function since by [55, Proposition 2.7] we can write

D
f
t u(t) = b

d
dt

u(t) +
d
dt

∫ t

0
u(s)ν̄(t − s)ds − ν̄(t)u(0) (2.19)

= b
d
dt

u(t) +

∫ t

0
u′(s) ν̄(t − s) ds (2.20)

and therefore D f
t u(t) is continuous, since u′ and ν̄ are continuous, hence also u′

∗ ν̄. Hence (2.17)
provides an explicit definition of the operator C f (∂t ) in (2.13). Observe that (2.20) is a general-
ization of the classical Dzerbayshan–Caputo derivative (according to [55, Definition 2.4]).

A third approach was adopted in Magdziarz and Schilling [32]: the authors pointed out that
the distribution (one-dimensional marginal) of B

(
L f (t)

)
, a special case of the CTRW scaling

limit where B is a Brownian motion, is the fundamental solution to the generalized diffusion
equation

∂

∂t
q(x, t) =

1
2
Φt

∂2

∂x2 q(x, t), x ∈ R, t > 0, (2.21)

where Φt is the integro-differential operator

Φt u(t) =
d
dt

∫ t

0
u(s)M(t − s)ds, (2.22)

for a kernel M(t) such that

L [M(t)] (φ) =
1

f (φ)
. (2.23)

A special case of (2.21) called the fractional Fokker–Planck equation, with M(s) = s−α/Γ (1−α)
for some 0 < α < 1, was introduced by Metzler et al. [44] in the physics literature, see also
Henry et al. [21]. The extension to a general waiting time distribution, and hence a general time-
convolution operator Φt , was pioneered by Sokolov and J. Klafter [54] in the context of statistical
physics, see also Magdziarz [30], and in the mathematical literature by Magdziarz [31]. The form
(2.21) of the CTRW limit equation is needed when one wants to add a source/sink term with the
natural units of x/t , see Baeumer et al. [6] for additional discussion.

In this work we place these different approaches in a unifying framework by appealing to
the theory of special Bernstein functions. Let f be the special Bernstein function (2.1) with
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conjugate (2.5) where a⋆ and b⋆ are given by (2.6). Assume that ν(0, ∞) = ∞, so that b⋆
= 0 in

view of (2.6). As in (2.3), an integration by parts in (2.5) yields

φ−1 f ⋆(φ) = b⋆
+

∫
∞

0
e−φs ν̄⋆(s)ds, (2.24)

which implies that

L
[
ν̄⋆(t)

]
(φ) = φ−1 f ⋆(φ) =

1
f (φ)

, (2.25)

since f ⋆(φ) = φ/ f (φ). We may write Φt u(t) =
d
dt Ψt u(t), where

Ψt u(t) =

∫ t

0
u(s)M(t − s)ds, (2.26)

and L[Ψt u(t)] = f (φ)−1ũ(φ) for continuously differentiable functions u. Hence by (2.23) and
(2.25) the operator (2.22) is related to the conjugate Bernstein function f ⋆, while (2.14) and
(2.16) are related to the Bernstein function f . In particular, if b = 0, then L[D f

t u(t)] = f (φ )̃u(φ)
and L[Ψt u(t)] = f (φ)−1ũ(φ), so that D f Ψt u(t) = ΨtD f u(t) for sufficiently smooth functions
u. This shows that the operator (2.26) is the inverse of the operator (2.16) of Toaldo [55],
when b = 0 and M(t) = ν̄⋆(t). Then ΦtD f

=
d
dt ΨtD f

=
d
dt and heuristically (2.21) can be

seen as the result of applying Φt to both sides of (2.13) with A =
1
2

∂2

∂x2 . This will be made
precise in Theorem 2.5. For sufficiently smooth functions u we can use (2.18) to say also that
ΨtD

f u(t) = u(t) + u(0). Finally, note that we also have M(t) = uσ f (t) in view of (2.11).
Next we study the eigenstructure of the operator (2.17), and a corresponding property

for (2.16), by considering solutions t ↦→ q(λ, t) ∈ C1((0, ∞),R), continuous at zero and
exponentially bounded, to the equations⎧⎨⎩

d
dt

∫ t

0
q(λ, s)ν̄(t − s)ds − ν̄(t)q(λ, 0) = λq(λ, t), t > 0,

q(λ, 0) = 1,

(2.27)

and ⎧⎪⎨⎪⎩
d
dt

q(λ, t) = λ
d
dt

∫ t

0
q(λ, s) ν̄⋆(t − s) ds, t > 0,

q(λ, 0) = 1,

(2.28)

where ν̄(s) = a + ν(s, ∞) and ν̄⋆(s) = a⋆
+ ν⋆(s, ∞). Note that in view of the discussion above

the operator on the right-hand side of (2.28) coincides with the operator (2.22) studied in [32]
if ν(0, ∞) = ∞ and M(t) = ν̄⋆(t). The prototype of our solutions is clearly the Mittag-Leffler
function Eα(λtα) :=

∑
∞

k=0(λtα)k/Γ (αk+1), α ∈ (0, 1), which is the eigenfunction of the Caputo
fractional derivative (e.g. [41, p. 36]) and also solves (2.28) when the operator on the right-hand
side is the Riemann–Liouville fractional derivative of order 1 − α (e.g. [33, p. 12]). Furthermore
it is well known that this function is continuous on [0, ∞) and completely monotone (and hence
C1((0, ∞),R)) and it is not differentiable at zero (e.g. [34, Section 3.1]).

In the next theorem, we impose the additional assumption that for some γ ∈ (0, 2), C > 0
and r0 > 0 we have∫ r

0
s2ν(ds) > Crγ for all 0 < r < r0, (2.29)
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as in Orey [47]. For example, (2.29) holds with γ = 2 − α if ν(ds) > Cs−1−αds, for all
0 < s < r0, which is true in all the examples discussed in this paper. Note that Meerschaert and
Scheffler [40], Toaldo [55], and Magdziarz and Schilling [32] all assume that ν(0, ∞) = ∞, and
(2.29) is not much stronger.

Theorem 2.1. Let f be a special Bernstein function having representation (2.1) with b = 0 and
s ↦→ ν̄(s) absolutely continuous on [s, ∞) for any s > 0. Assume that (2.29) holds and that if
γ ∈

[ 3
2 , 2

)
the Lévy measure ν has a bounded density on [s, ∞) for any s > 0. Let f ⋆ be the

conjugate of f having representation (2.5). Let L f (t) be the inverse (2.12) of the subordinator
σ f (t) with Laplace exponent f . Then for any λ ≤ 0 the C1((0, ∞),R), continuous at zero and
exponentially bounded solution to (2.27) is unique and equal to the moment generating function

q(λ, t) = E[eλL f (t)] (2.30)

and furthermore:

(1) The solution (2.30) to (2.27) is also the unique continuous and exponentially bounded
solution to (2.28);

(2) [0, ∞) ∋ θ ↦→ q(−θ, t) is completely monotone for each fixed t ≥ 0, and q(0, t) = 1 for
all t ≥ 0;

(3) t ↦→ q(λ, t) is completely monotone, for each fixed λ ≤ 0, if and only if s ↦→ ν̄(s) is
completely monotone;

(4) if f (φ) is regularly varying at 0+ with some index ρ ∈ [0, 1) then for all λ < 0,

q(λ, t) ∼
ν̄(t)

a − λ
as t → ∞, (2.31)

both t ↦→ q(λ, t) and ν̄(t) vary regularly at infinity with index −ρ, and∫
∞

0
q(λ, t)dt = ∞ for all λ < 0. (2.32)

Proof. First we prove that (2.30) solves (2.27). Since ν(0, ∞) = ∞, [40, Thm 3.1] implies that
L f (t) has a Lebesgue density x ↦→ l(x, t). Now [40, Eq. (3.13)] shows that

L [l(x, ·)] (φ) = L
[

∂

∂x
P {σ (x) ≥ ·}

]
(φ) =

f (φ)
φ

e−x f (φ) (2.33)

and therefore, for θ > 0+, we have [40, Corollary 3.5]˜̃l (θ, φ) = L [L [l(x, t)] (φ)] (θ ) =
f (φ)
φ

1
θ + f (φ)

. (2.34)

By (2.18), with b = 0, we have that

L
[

d
dt

∫ t

0
q(λ, s)ν̄(t − s)ds − ν̄(t)

]
(φ) = f (φ)̃q(λ, φ) −

f (φ)
φ

. (2.35)

Taking Laplace transforms in (2.27) and solving for q̃(λ, φ) then yields

L [q(λ, ·)] (φ) = q̃(λ, φ) =
f (φ)
φ

1
f (φ) − λ

. (2.36)

Comparing (2.34) to (2.36) shows that the moment generating function of L f is∫
∞

0
eλx l(x, t) dx = q(λ, t) = EeλL f (t), λ ≤ 0. (2.37)
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Now we prove that t ↦→ E[eλL f (t)] ∈ C1((0, ∞),R). Since (2.29) holds, it follows from
Orey [47] that t ↦→ P

(
σ f (x) ≤ t

)
has derivatives of all orders. Hence we have that

E[eλL f (t)] =

∫
∞

0
eλx

(
−

∂

∂x
P
(
σ f (x) ≤ t

))
dx

= 1 + λ

∫
∞

0
eλx P

(
σ f (x) ≤ t

)
dx

= 1 + λ

∫ t

0

∫
∞

0
eλxµ(s, x)dxds, (2.38)

where t ↦→ µ(t, x) is the probability density of σ f (x) for any x > 0. Now it suffices to show
that the function

I (s) :=

∫
∞

0
eλxµ(s, x)dx (2.39)

is continuous. Since we assume (2.29) we have that the density µ(s, x) can be represented via
the inversion formula

µ(s, x) = (2π )−1
∫
R

e−iξse−xϕ(ξ )dξ (2.40)

where ϕ(ξ ) = f (−iξ ) is the characteristic exponent of the Lévy process σ f and further
|e−xϕ(ξ )

| ≤ e−Cx/4|ξ |
2−γ

for sufficiently large |ξ | (see Orey [47] at the beginning of page
937). Hence we have by the dominated convergence theorem that µ(s, x) is continuous on
(s, x) ∈ (0, ∞)×(0, ∞). What is more, it is bounded on (s, x) ∈ (0, ∞)×(δ, ∞) for every δ > 0.
Therefore if sn → s0 > 0, as n → ∞, we have by the dominated convergence theorem that∫

∞

δ

eλxµ(sn, x) dx →

∫
∞

δ

eλxµ(s0, x) dx as n → ∞. (2.41)

Also, by (2.11), we have for all s ≥ s ′ > 0,∫
∞

0
µ(s, x)dx = ν̄⋆(s) ≤ ν̄⋆(s ′) < ∞. (2.42)

Thus, given ϵ > 0 there is δ > 0 such that∫ δ

0
µ(s0, x)dx <

ϵ

2
. (2.43)

We now show a similar inequality, for λ < 0,

lim sup
n→∞

∫ δ

0
µ(sn, x)dx ≤ lim sup

n→∞

e−λδ

∫ δ

0
eλxµ(sn, x) dx

≤ lim sup
n→∞

e−λδ

(∫
∞

0
µ(sn, x)dx −

∫
∞

δ

eλxµ(sn, x)dx
)

=e−λδ

(∫
∞

0
µ(s0, x)dx −

∫
∞

δ

eλxµ(s0, x)dx
)

= e−λδ

(∫
∞

0

(
1 − eλx)µ(s0, x) dx +

∫ δ

0
eλxµ(s0, x) dx

)
, (2.44)

where in the first equality above we used (2.41) and the continuity of the function uσ f (s) :=∫
∞

0 µ(s, x)dx which follows, with our assumptions on the Lévy measure, from [24, Theorem 5.2]
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(see also the comments following that result). Now we take λ ↑ 0 (use (2.42) to justify the
dominated convergence theorem) and we get that

lim sup
n→∞

∫ δ

0
µ(sn, x) dx ≤

∫ δ

0
µ(s0, x) dx <

ϵ

2
. (2.45)

Finally the continuity follows since using (2.41), (2.43) and (2.45), we obtain

lim sup
n→∞

⏐⏐⏐⏐∫ ∞

0
eλxµ(sn, x) dx −

∫
∞

0
eλxµ(s0, x)dx

⏐⏐⏐⏐ ≤ ϵ. (2.46)

Hence (2.38) is continuous on [s0, ∞) for all s0 > 0, and therefore t ↦→ EeλL f (t) is an element
of C1((0, ∞),R).

Now we can write
d
dt
EeλL f (t)

= λ

∫
∞

0
eλxµ(t, x)dx . (2.47)

Then it follows from the uniqueness of the Laplace transform (e.g., see Feller [18, Theorem 1,
p. 430]) that (2.30) is the unique C1((0, ∞),R) and exponentially bounded solution to the
problem (2.27), which proves the first part of the theorem.

Next we prove Item (1). For a C1 and exponentially bounded solution, by [1, Corollary 1.6.6],
we can take Laplace transforms in (2.28) to get

φq̃(λ, φ) − 1 = λφL
[
q ∗ ν̄⋆

]
(φ)

= λφ
(
φ−1 f ⋆(φ) − b⋆

)
q̃(λ, φ). (2.48)

Since f ⋆(φ) = φ/ f (φ), and b⋆
= 0 in view of (2.6), (2.48) can be rewritten

ũ(λ, φ) =
f (φ)/φ

f (φ) − λ
(2.49)

which coincides with (2.36). This proves that (2.30) is also the unique C1 and exponentially
bounded solution to (2.28), since they have the same Laplace transform.

Next we prove Item (2). Since the assumptions imply that ν(0, ∞) = ∞, the subordinator
σ f (t) is strictly increasing [50, Theorem 21.3], and hence L f (0) = 0 a.s. Then we also have
q(λ, 0) = EeλL f (0)

= 1. Since θ ↦→ q(−θ, t) is the Laplace transform of x ↦→ l(x, t), it is
completely monotone for each fixed t ≥ 0.

Next we prove Item (3). If the function s ↦→ ν̄(s) is completely monotone, we have that for
some measure m(·) on (0, ∞) and some non-negative constant a

ν̄(s) = a +

∫
∞

0
e−swm(dw) = a +

∫
∞

s

∫
∞

0
w e−yw m(dw) dy (2.50)

and therefore the function

y ↦→ v(y) =

∫
∞

0
e−yw w m(dw) (2.51)

is the completely monotone density of the Lévy measure ν(dy). This implies that f is a complete
Bernstein function. Now [53, Thm 6.2 (vi)] implies that

ϕ(z) =
z

z − λ
(2.52)
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is a complete Bernstein function for λ ≤ 0, and therefore ϕ ◦ f is a complete Bernstein function
in view of [53, Corollary 7.9]. Therefore we have for some measure k(·) on (0, ∞) that

ϕ ◦ f (φ) = c + dφ +

∫
∞

0

(
1 − e−φt) ∫ ∞

0
e−tsk(ds) dt (2.53)

and therefore, integrating by parts in (2.53), one has

1
φ

(ϕ ◦ f ) =

∫
∞

0
e−φt

(
c + dφ +

∫
∞

t

∫
∞

0
e−ws k(ds) dw

)
dt

=

∫
∞

0
e−φt

(
c + dφ +

∫
∞

0
s−1e−st k(ds)

)
dt

= d +

∫
∞

0
e−φt

(
c +

∫
∞

0
s−1e−st k(ds)

)
dt. (2.54)

The constant d in (2.54) is equal to zero. This can be ascertained by observing that

1
φ

(ϕ ◦ f ) =
1
φ

f (φ)
f (φ) − λ

→ d

as φ → ∞ by [53, p. 23, Item (iv)] and that f ≥ 0, f ′
≥ 0, and −λ ≥ 0. Then since⏐⏐⏐⏐ 1

φ

f (φ)
f (φ) − λ

⏐⏐⏐⏐ ≤
1
φ

→ 0 (2.55)

as φ → ∞, it follows that d = 0. Since by (2.36) we also have

1
φ

(ϕ ◦ f ) =

∫
∞

0
e−φt q(λ, t)dt, (2.56)

and since t ↦→ c+
∫

∞

t

∫
∞

0 e−ws k(ds) dw is obviously continuous, it follows from the uniqueness
theorem for Laplace transforms that

q(λ, t) = c +

∫
∞

0
s−1e−st k(ds). (2.57)

This proves that t ↦→ q(λ, t) is completely monotone, which establishes the direct half of
Item (3).

Now we prove the converse implication. By assumption we have

q(λ, t) = c +

∫
∞

0
e−tuµ(du), (2.58)

for c ≥ 0 and a measure µ(·) on (0, ∞). In view of (2.36) we have

1
φ

f (φ)
f (φ) − λ

=

∫
∞

0
e−φt q(λ, t) dt (2.59)

and hence

G(φ) :=
1
φ

f (φ)
f (φ) − λ

=

∫
∞

0
e−φt

(
c +

∫
∞

0
e−tsµ(ds)

)
dt

=
c
φ

+

∫
∞

0

1
φ + s

µ(ds), (2.60)

which is a Stieltjes function provided that
∫

∞

0 (1 + s)−1 µ(ds) < ∞. But such an integral
converges since by Item (1), continuity of t ↦→ q(λ, t) and the fact that q(λ, 0) = 1, it must
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be true that

1 = q(λ, 0) = c +

∫
∞

0
µ(ds) (2.61)

and therefore µ(ds) is integrable. Now note that F(φ) = 1/G(φ) is a complete Bernstein
function by [53, Thm 7.3]. Then φ/F(φ) = φG(φ) is also complete by [53, Proposition 7.1]. It
follows that

1
φG(φ)

=
f (φ) − λ

f (φ)
= 1 −

λ

f (φ)
is a Stieltjes function in view of [53, Thm 7.3]. Let g(φ) := 1 − λ/ f (φ) and use (2.7) to write

g(φ) =
a

φ
+ b +

∫
∞

0

1
φ + s

k(ds), (2.62)

then

− λ/ f (φ) = g(φ) − 1 =
a

φ
+ b − 1 +

∫
∞

0

1
φ + s

k(ds) (2.63)

and since we know that −λ/ f (φ) is non-negative (recall that f (φ) ≥ 0 and λ ≤ 0) also (2.63)
must be non-negative for all φ ∈ (0, ∞). In particular by letting φ → ∞ we deduce that b ≥ 1.
We have thus proved that −λ/ f (φ) is a Stieltjes function. Therefore by applying again [53,
Thm 7.3] to the Stieltjes function −λ/ f we deduce that f (φ) is a complete Bernstein function
and therefore

f (φ) = a +

∫
∞

0

(
1 − e−φs) ν(s)ds with ν(s) =

∫
∞

0
e−stm(dt), (2.64)

for some measure m and some a ≥ 0 (since we are assuming b = 0). From (2.64) we get that

ν̄(s) = a +

∫
∞

s
ν(w)dw = a +

∫
∞

0
e−st m(dt)

t
, (2.65)

and this proves that s ↦→ ν̄(s) is completely monotone, which establishes the converse part of
Item (3).

Finally we prove Item (4). We say that a Borel measurable function f : (0, ∞) ↦→ [0, ∞)
varies regularly at infinity with index ρ ∈ R if

lim
x→∞

f (cx)
f (x)

= cρ, (2.66)

for any c > 0, see for example Bingham et al. [12, p. 1]. It follows that, for any ε > 0, for some
x0 > 0, we have [18, Lemma VIII.8.2]

xρ−ε < f (x) < xρ+ε for all x ≥ x0. (2.67)

If ρ = 0, we say that f is slowly varying. If f (1/x) is regularly varying at infinity with index −ρ,
then we say that f is regularly varying at zero with index ρ. Suppose that U (x) is a nondecreasing
right-continuous function on [0, ∞) with Laplace transform

Ũ (s) =

∫
∞

0
e−sxU (dx)

for all s > 0. The Karamata Tauberian Theorem [18, Thm XIII.5.2] states that

U (x) ∼
xρ L(x)
Γ (1 + ρ)

as x → ∞ ⇐⇒ Ũ (s) ∼ s−ρ L(1/s) as s → 0, (2.68)

where L(x) is slowly varying at infinity and ρ ≥ 0.
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Suppose that f (φ) varies regularly at φ = 0 with index ρ = 1 − β for some β ∈ (0, 1].
Note that if f varies regularly at zero, we must have ρ = 1 − β for some β ∈ [0, 1] due to the
Lévy–Khintchine representation (2.1) [10, Proposition 1.5]. If ρ > 0, it follows from (2.67) that
we must have f (0+) = 0, and hence a = 0 in (2.1). If ρ = 0, then a > 0 is possible, in which
case f (0+) = a. In either case, from (2.36) we have

q̃(λ, φ) =
f (φ)
φ

1
f (φ) − λ

∼
f (φ)
φ

1
a − λ

as φ → 0 + ,

where λ < 0, and then it is easy to check that φ ↦→ q̃(λ, φ) varies regularly at φ = 0+ with
index −β. Define

Q(λ, t) =

∫ t

0
q(λ, s) ds

so that

q̃(λ, φ) =

∫
∞

0
e−φt Q(λ, dt).

Apply the Karamata Tauberian Theorem to see that t ↦→ Q(λ, t) varies regularly at infinity with
index β, and furthermore that

Q(λ, t) ∼
t f (1/t)

Γ (1 + β)(a − λ)
as t → ∞.

Now apply the Monotone Density Theorem [12, Thm 1.7.2] to see that t ↦→ q(λ, t) varies
regularly at infinity with index β − 1, and furthermore tq(λ, t)/Q(λ, t) → β as t → ∞, so that

q(λ, t) ∼
β f (1/t)

Γ (1 + β)(a − λ)
as t → ∞. (2.69)

Next observe that (2.3), along with the fact that b = 0, implies that f (φ)/φ is the Laplace
transform of ν̄(t). Then another application of the Karamata Tauberian Theorem shows that

ν̄(t) ∼
β f (1/t)
Γ (1 + β)

as t → ∞. (2.70)

Combining (2.69) and (2.70) shows that (a − λ)q(λ, t) ∼ ν̄(t) as t → ∞, which proves the first
statement of Item (4).

Finally, since t ↦→ Q(λ, t) varies regularly at infinity with index β > 0, it follows from (2.67)
that Q(λ, t) → ∞ as t → ∞, which proves the second statement of Item (4). □

Remark 2.2. If s ↦→ ν̄(s) is completely monotone, then we showed in the proof above that

ν̄(s) = a +

∫
∞

0
e−swm(dw) = a +

∫
∞

s

∫
∞

0
w−1e−yw m(dw) dy

and therefore the Lévy density of ν is also completely monotone. The corresponding Bernstein
function f is thus a complete Bernstein function. Therefore the adjoint f ⋆ is also complete
(Proposition 7.1 in [53]) and has a Lévy density which is completely monotone with tail

ν̄⋆(s) = a⋆
+

∫
∞

s

∫
∞

0
e−twm⋆(dw) dt

= a⋆
+

∫
∞

0
w−1e−sw m⋆(dw),
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for some measure m. Therefore s ↦→ ν̄⋆(s) is a completely monotone function and Item (3) of
Theorem 2.1 may be restated as: the function t ↦→ q(λ, t) is completely monotone if and only
if s ↦→ ν̄⋆(s) is completely monotone. That is, ν̄ is completely monotone if and only if ν̄⋆ is
completely monotone.

Remark 2.3. It follows from [40, Theorem 3.1] that the inverse subordinator (2.12) has a
probability density

l(x, t) =

∫ t

0
ν̄(t − s)µ(ds, x)

for any t > 0, where µ(ds, x) is the probability distribution of the subordinator σ f (x) with
Laplace symbol (2.1), and ν̄(s) = a + ν(s, ∞). It follows that we can also write

q(λ, t) =

∫ t

0

∫
∞

0
eλx ν̄(t − s)µ(ds, x) dx (2.71)

in view of (2.30).

Generalized relaxation equations and patterns have been also examined in [25–27,57,58].
Kochubei [27] considered operators similar to that appearing in (2.27) but with different kernels
of convolution. By making assumptions on the Laplace transform of such kernels he determined
sufficient conditions for the complete monotonicity of the solution. In [25,26] he also studied
distributed-order relaxation patterns, i.e., the solution to∫ 1

0

∂α

∂tα
u µ(α)dα = λu, λ < 0, (2.72)

where µ is a non-negative continuous function on [0, 1]. He pointed out that in this case the
relaxation pattern is completely monotone. Observe that (2.72) is a particular case of (2.28)
(see [56] for details on this point). An important application of (2.72) is to ultraslow relaxation
where f (φ) is slowly varying at φ = 0, see [39] for more details.

Remark 2.4. The proof of [39, Theorem 3.9] provides a partial converse of Item (4) in
Theorem 2.1 in the case of ultraslow diffusion. If the tail of the Lévy measure is of the form

ν̄(t) =

∫ 1

0
t−η p(η)dη,

where p varies regularly at zero with some index α > −1, then ν̄(t) is slowly varying [39,
Lemma 3.1], and then it follows that the Laplace symbol

φ ↦→ f (φ) =

∫ 1

0
Γ (1 − η) φη p(η)dη

is also slowly varying [39, Eq. (3.18)].

2.3. Time-changed processes

Theorem 2.1 and the discussion above suggests how the approaches of Meerschaert and
Scheffler [40], Toaldo [55], and Magdziarz and Schilling [32] may be rearranged under a unifying
framework, by resorting to special Bernstein functions. Now we extend the Eqs. (2.27) and (2.28)
to a more general form. Suppose that A is a self-adjoint, dissipative operator that generates a
C0-semigroup of operators Tt on the (complex) Hilbert space (H, ⟨·, ·⟩), and consider the
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generalized abstract Cauchy problem

d
dt

∫ t

0
g(s) ν̄(t − s)ds − ν̄(t)g(0) = Ag(t), t > 0, (2.73)

or equivalently (as we will show in Theorem 2.5)

d
dt

g(t) =
d
dt

∫ t

0
Ag(s) ν̄⋆(t − s) ds, t > 0. (2.74)

Observe that if A = λ ≤ 0 (then g : [0, ∞) ↦→ R) the Eqs. (2.73) and (2.74) reduce to that
studied in Theorem 2.1. In Theorem 2.5 below we will investigate solutions to (2.73) and (2.74),
i.e., functions of the form g : [0, ∞) ↦→ H with g ∈ C1 ((0, ∞),H), g(t) continuous at zero,
g(t) ∈ Dom(A) for any t ≥ 0 and such that (2.73) and (2.74) are true. If A =

1
2

∂2

∂x2 then (2.74)
with g(t) = q(x, t) reduces to Eq. (2.21) in Magdziarz and Schilling [32].

We follow Kolokoltsov [29, Section 1.9] and Schilling et al. [53, Chapter 12] for the basic
theory of semigroups and generators. See Jacob [22, Chapter 2] or [53, Chapter 11] for a
nice summary of the classical theory of linear self-adjoint operators on Hilbert spaces. By the
definition of a C0-semigroup we have for all u ∈ H that

(1) T0u = u
(2) Tt Tsu = Tt+su
(3) limt→0 ∥Tt u − u∥H = 0.

Note that since A is a self-adjoint generator and it is dissipative we have that the spectrum is
non-positive, i.e., for any u ∈ Dom(A) we have ⟨Au, u⟩ ≤ 0 [53, Proposition 11.2 and formula
(11.4)], and we can apply the spectral theorem [53, Thm 11.4]. Therefore we know that there
exists an orthogonal projection-valued measure

E(B) :=

∫
B

E(dλ) (2.75)

for Borel sets B ⊆ R, supported on the spectrum of A and therefore in this case on a subset of
(−∞, 0], such that given a function

Ξ : (−∞, 0] ↦→ R (2.76)

we may write [53, Eq. (11.10)]

Ξ (A)u =

∫
(−∞,0]

Ξ (λ)E(dλ)u, (2.77)

for u ∈ Dom(Ξ (A)), where by [53, Eq. (11.11)] we have

Dom(Ξ (A)) =

{
u ∈ H :

∫
(−∞,0]

|Ξ (λ)|2⟨E(dλ)u, u⟩ < ∞

}
. (2.78)

Therefore given any u ∈ H we can write

Tt u = eAt u =

∫
(−∞,0]

eλt E(dλ)u. (2.79)

Then for all u ∈ H we have

∥Tt u∥H =

∫
(−∞,0]

eλt E(dλ)u

H

≤

∫
(−∞,0]

E(dλ)u

H

= ∥u∥H , (2.80)
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so that Tt is a contraction semigroup (e.g., see [53, Example 11.5]). Since Tt is a C0-semigroup
we also know that for u ∈ Dom(A) we have [29, Thm 1.9.1]

d
dt

Tt u = ATt u = Tt Au, (2.81)

and that the map t ↦→ Tt u is the unique classical solution to the abstract Cauchy problem [17,
Proposition 6.2]{ d

dt
g(t) = Ag(t),

g(0) = u.
(2.82)

Theorem 2.5. Let f and q(λ, t) be as in Theorem 2.1 under the same assumptions on ν. Let
x ↦→ l(x, t) be the density of inverse process (2.12) of the subordinator σ f (t) with Laplace
symbol f . Let Tt be a C0-semigroup on the Hilbert space (H, ⟨·, ·⟩) whose generator A is
self-adjoint and dissipative. The unique C1 ((0, ∞),H), continuous at zero and exponentially
bounded solution to (2.73), subject to g(0) = u ∈ Dom(A) coincides with the C1 ((0, ∞),H),
continuous at zero and exponentially bounded solution of (2.74). This solution is the function
q(A, t)u defined in the sense of (2.77) for all u ∈ H, and we also have

q(A, t)u =

∫
∞

0
Tsu l(s, t) ds, (2.83)

a Bochner integral on H.

Proof. Using the “functional calculus” approach introduced above we define

q(A, t)u =

∫
(−∞,0]

q(λ, t)E(dλ)u. (2.84)

Now we recall from Theorem 2.1 that the function [0, ∞) ∋ θ ↦→ q(−θ, t) is completely
monotone and may be written as the Laplace transform of the density x ↦→ l(x, t) of the inverse
process (2.12) of the subordinator σ f (t) with Laplace symbol f .

Therefore (2.84) becomes

q(A, t)u =

∫
(−∞,0]

q(λ, t)E(dλ)u

=

∫
(−∞,0]

∫
∞

0
eλs l(s, t) ds E(dλ)u

=

∫
∞

0

∫
(−∞,0]

eλs E(dλ)u l(s, t) ds

=

∫
∞

0
Tsu l(s, t)ds (2.85)

by (2.79) and the Fubini–Tonelli Theorem used under the scalar product ⟨·, ·⟩ = ∥·∥
2
H, by a

simple polarization argument.
Note that (2.85) holds for any function u ∈ H: indeed [53, Example 11.5]

∥q(A, t)u∥H =

∫ ∞

0
Tsu l(s, t)ds


H

≤

∫
∞

0
∥Tsu∥H l(s, t)ds ≤ ∥u∥H (2.86)

using (2.80) along with
∫

∞

0 l(s, t)ds = 1. The fact that q(A, t) maps Dom(A) into itself may
be ascertained by using [49, p. 364, formula (15)] to say that q(A, t)A ⊆ Aq(A, t) and then
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[49, p. 364, formula (10)], together with the fact that q(A, t) is a bounded operator, to say that
Dom (q(A, t)A) = Dom(A) ⊆ Dom (Aq(A, t)) = {u : q(A, t)u ∈ Dom(A)}.

The function t ↦→ q(λ, t) is a monotone non-increasing function (see (2.38)) continuous on
[0, ∞) and continuously differentiable on (0, ∞) with derivative q ′(λ, t) which is bounded on
t ∈ [t0, ∞) for any t0 > 0. Hence continuity and differentiability properties of t ↦→ q(A, t) (in
the Hilbert space topology) are direct consequences of continuity and differentiability of q(λ, t)
and of the representations

∥q(A, t) − q(A, s)∥2
H =

∫
(−∞,0]

(q(λ, t) − q(λ, s))2
⟨E(dλ)u, u⟩, (2.87)q(A, t)u − q(A, s)u

t − s
− q ′(A, t)

2

H

=

∫
(−∞,0]

(
q(λ, t) − q(λ, s)

t − s
− q ′(λ, t)

)2

⟨E(dλ)u, u⟩, (2.88)

taken as s → t . In particular the second equality, for strictly positive t , shows that (d/dt)q(A, t)
= q ′(A, t) since q ′(A, t)u exists in H for all u ∈ Dom(A) and t > 0:q ′(A, t)u


H

≤

∫
∞

0
∥ATx u∥H µ(t, x) dx ≤ uσ f (t) ∥Au∥H < ∞. (2.89)

The fact that q(A, t) solves (2.73) and (2.74) can be ascertained as follows. Since (d/dt)
q(A, t) = q ′(A, t), defined in the sense of (2.76), then for the Caputo type operator D f

t holds that

D
f
t q(A, t) =

∫
(−∞,0]

D
f
t q(λ, t) E(dλ)u. (2.90)

By using (2.17) and Theorem 2.1 we have that

D
f
t q(A, t) =

∫
(−∞,0]

d
dt

∫ t

0
q(λ, s) ν̄(t − s) ds E(dλ) −

∫
(−∞<,0]

ν̄(t)q(λ, 0)E(dλ)

=

∫
(−∞,0]

(
d
dt

∫ t

0
q(λ, s) ν̄(t − s) ds − ν̄(t)q(λ, 0)

)
E(dλ)

=

∫
(−∞,0]

λq(λ, t)E(dλ)

= Aq(A, t), (2.91)

and this proves (2.73). The same arguments can be also applied to the function (−∞, 0] ∋ λ ↦→

q ′(A, t) since (d/dt)q(A, t) = q ′(A, t), which is of the form (2.76), and thus by using again
Theorem 2.1 we get

q ′(A, t) =

∫
(−∞,0]

q ′(λ, t) E(dλ)u

=

∫
(−∞,0]

d
dt

∫ t

0
λq(λ, s) ν̄⋆(t − s)ds E(dλ)u

=
d
dt

∫ t

0
Aq(A, s)ν̄⋆(t − s) ds. (2.92)

Finally we prove uniqueness. From [55, Eq. (5.13)] it follows that, for any u ∈ Dom(A), the
solution q(t) of the generalized Cauchy problem

D
f
t q = Aq, q(0) = u, (2.93)
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has Laplace transform (t ↦→ λ)

q̃(λ) = ( f (λ) − A)−1 f (λ)
λ

u. (2.94)

In view of (2.17) the generalized Cauchy problem (2.93) is another way to write (2.73), and
hence (2.94) also holds for any exponentially bounded solution to (2.73), for any u ∈ Dom(A).
The remainder of the argument is due to Remark 3.1 in Baeumer et al. [3]. Since A generates
a C0-semigroup, the resolvent ( f (λ) − A)−1 is a bounded operator for all f (λ) in the right half
plane. In particular ( f (λ) − A)−10 = 0 and hence by the uniqueness of the Laplace transform,
we have q = 0 for initial data u = 0. Then, given two exponentially bounded solutions q1, q2 to
(2.93), their difference q = q1 − q2 solves (2.93) with u = 0, and hence q1 = q2. Therefore, the
exponentially bounded solution to (2.73) is unique. An argument similar to (2.49) shows that the
exponentially bounded solution to (2.74) for any u ∈ Dom(A) has the same Laplace transform
(2.94), hence it is also unique. □

Remark 2.6. Fractional Cauchy problems of the form (2.15) with p(x, 0) = f (x) ∈ Dom(A)
were considered by Bazhlekova [7] and Baeumer and Meerschaert [4]. In this case, we have
f (φ) = φβ for some 0 < β < 1. Distributed order fractional Cauchy problems with

f (φ) =

∫ 1

0
φβ p(β)dβ,

were considered by Mijena and Nane [45] and Bazhlekova [8]. Solutions to the generalized
Cauchy problem (2.13), which is equivalent to (2.73) or (2.74), were developed by Toaldo [55].

3. Semi-Markov dynamics

In this section we construct a semi-Markov process (3.6) on a countable state space whose
dynamics are governed by the operator equations

d
dt

∫ t

0
g(s) ν̄(t − s) ds − ν̄(t)g(0) = Ag(t) (3.1)

and
d
dt

g(t) =
d
dt

∫ t

0
Ag(s) ν̄⋆(t − s)ds (3.2)

where A is an |S| × |S| matrix (we allow a countably infinite state space |S| = ∞) and
g(t) = q(A, t) is the operator of Theorem 2.5 defined by (2.84) using functional calculus. We
will work all throughout this section under the following assumptions.

(A1) X (t) is a continuous-time Markov chain with countable state-space S , generated by A and
associated to the semigroup of matrices {Pt }t≥0. We assume that A is symmetric, and that
for its elements ai, j it is true that sup

{
−ai,i

}
< ∞. The assumption sup

{
−ai,i

}
< ∞

implies that X (t) is non explosive [46, Thm 2.7.1]. Furthermore within such a framework
it is true that Pt solves the so-called Kolmogorov backward equation [46, Thm 2.8.3]

d
dt

Pt = APt , (3.3)

and also the forward one [46, Thm 2.8.6]
d
dt

Pt = Pt A, (3.4)
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both subject to P0 = 1. If S is finite then A is a finite matrix (hence A is bounded) and the
representation Pt = eAt is true. Since we do not assume that S is finite (but only countable)
we can use the fact that A is symmetric and therefore the representation Pt = eAt is true
in the sense of (2.77) which becomes in this case

Pt = eAt
=

∑
j

eλ j tv jv
′

j , (3.5)

where λ j are the eigenvalues of A and the v j are a orthonormal basis of eigenvectors of A.
(A2) Yn is a (homogeneous) discrete-time Markov chain on the countable state space S with

symmetric transition matrix H and we denote by hi, j the elements of H .
(A3) The r.v.’s Ji are i.i.d. with c.d.f. FJ (t) = 1 − q(λ, t) for some λ < 0, where t ↦→ q(λ, t)

is completely monotone by Theorem 2.1. Assume also that the conditions of Item (4) are
fulfilled. We define Tn =

∑n
i=1 Ji and

Y (t) = Yn, for Tn ≤ t < Tn+1 (3.6)

and assume that the i.i.d. r.v.’s Ji are also independent from Yn and therefore Tn and Yn are
independent. By (2.31) and (2.50) we have that

lim
t→∞

FJ (t) = 1 − lim
t→∞

ν̄(t)
a − λ

= 1 −
a

a − λ
, (3.7)

and hence we will assume that a = 0.
(A4) With σ f (t) we denote the subordinator with Laplace exponent (2.1) for b = 0. Since in

(A3) we assumed that t ↦→ q(λ, t) is that of Theorem 2.1 (and is completely monotone)
we must have that ν(0, ∞) = ∞ and that s ↦→ ν̄(s) is completely monotone. Given a
subordinator σ f (t), t ≥ 0, with Laplace symbol f we denote the inverse process (2.12)
by L f (t), t ≥ 0. Furthermore we assume that f (φ) is regularly varying at 0+ for some
index ρ ∈ [0, 1) and therefore by Item (4) of Theorem 2.1 the functions t ↦→ ν̄(t) and
t ↦→ q(λ, t) are regularly varying at infinity with index −ρ, and EJi = ∞ for all i .

Note that Eqs. (3.1) and (3.2) generalize the Kolmogorov backward equation (3.3) to semi-
Markov processes. The corresponding generalizations of (3.4) are

d
dt

∫ t

0
g(s) ν̄(t − s) ds − ν̄(t)g(0) = g(t)A (3.8)

and
d
dt

g(t) =
d
dt

∫ t

0
g(s)A ν̄⋆(t − s)ds. (3.9)

Corollary 3.1. Let A be as in (A1). The matrix q(A, t), defined in the sense of (2.77), where
q(λ, t) is the function of Theorem 2.1 (under the same assumptions on ν) is the unique solution
to (3.1) and (3.8) as well as (3.2) and (3.9) with initial datum g(0) = 1 (identity matrix).
Furthermore we have, using the Bochner integral, that

q(A, t) =

∫
∞

0
Ps l(s, t)ds. (3.10)

Proof. This Corollary is a direct consequence of Theorem 2.5. To clarify the arguments, here
we provide some details where the proof becomes simpler in the present case. Observe that now
the generator A is a matrix with non-positive eigenvalues and, for an orthonormal basis v j of
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eigenvectors of A, the spectral representation (2.77) here is the matrix

Ξ (A) =

∑
j

Ξ (λ j )v jv
′

j . (3.11)

The function q(A, t) is therefore the matrix

q(A, t) =

∑
j

q(λ j , t)v jv
′

j

=

∑
j

∫
∞

0
eλ j sl(s, t)ds v jv

′

j

=

∫
∞

0
Ps l(s, t)ds. (3.12)

It is clear that Eq. (3.8) is also satisfied since Pt A = APt . In our case this may be easily checked

Aq(A, t) =

∑
j

λ jv jv
′

j

∑
i

∫
∞

0
eλi sl(s, t)ds viv

′

i

=

∫
∞

0

∑
j

∑
i

λ j eλi sv jv
′

jviv
′

i l(s, t)ds

=

∑
j

∫
∞

0
λ j eλ j sv jv

′

j l(s, t)ds

=

∑
j

∫
∞

0
eλ j sv jv

′

j l(s, t)ds
∑

i

λiviv
′

i

= q(A, t)A (3.13)

which finishes the proof. □

Theorem 3.2. The process Y (t) introduced in (A3) is semi-Markov and such that the |S| × |S|

matrix with elements

qi, j (t) = P {Y (t) = j |Y (0) = i} (3.14)

satisfies (3.1) and (3.8) as well as (3.2) and (3.9) with initial datum g(0) = 1 for A = −λ(H −1),
where H is the transition matrix of the discrete-time Markov chain Yn on S introduced in (A2).
Furthermore(

qi, j (t)
)

i, j = q(A, t) =

∫
∞

0
e−λ(H−1)sl(s, t) ds, (3.15)

where q(A, t) is the function of Theorem 2.5 and s ↦→ l(s, t) is the density of the process L f (t)
in (A4).

Proof. First note that since Y (t) = Yn , for Tn ≤ t < Tn+1, we have that Y (t) = YN ν̄ (t) where

N ν̄(t) = max {n ∈ N : Tn ≤ t} , (3.16)

and therefore Y (t) is a semi-Markov process since

P (Yn = j, Jn ≤ t | (Y0, T0) · · · (Yn−1, Tn−1))

= P (Yn = j |Yn−1 = i) (1 − q(λ, t)) , (3.17)
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due to the independence between the r.v.’s Ji and the chain Yn . Therefore the qi, j satisfy the
(backward) renewal equation [15, Chapter 10, formula (5.5)]

qi, j (t) = q(λ, t)δi, j +

∑
l∈S

hi,l

∫ t

0
ql, j (s) fJ (t − s)ds (3.18)

where hi, j are the elements of the symmetric transition matrix H of the discrete-time chain and

fJ (t) =
d
dt

(1 − q(λ, t)) . (3.19)

Next we prove that t ↦→ qi, j (t) is continuous. Since t ↦→ q(λ, t) is completely monotone
under (A3), we can write

q(λ, t) =

∫
∞

0
e−tw m(dw)

w
(3.20)

for some measure m(dw), and hence we also have

fJ (t) =

∫
∞

0
e−twm(dw) (3.21)

and this means that also t ↦→ fJ (t) is completely monotone. Then (3.18) yields for any i, j ∈ S
and t, h > 0⏐⏐qi, j (t) − qi, j (t + h)

⏐⏐
≤ |q(λ, t) − q(λ, t + h)| +

⏐⏐⏐⏐⏐
∫ t

0

∑
l∈S

hi,lql, j (s) (fJ (t − s) − fJ (t + h − s)) ds

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ t+h

t

∑
l∈S

hi,lql, j (s)fJ (t + h − s)ds

⏐⏐⏐⏐⏐
≤ q(λ, t) − q(λ, t + h) +

∫ t

0
(fJ (t − s) − fJ (t + h − s)) ds +

∫ h

0
fJ (s)ds (3.22)

where we used that
⏐⏐∑

l∈Shi,lql, j (s)
⏐⏐ ≤

∑
l∈Shi,l = 1. Then the first and the last terms in (3.22)

go to zero as h → 0+ since t ↦→ q(λ, t) and t ↦→ fJ (t) are completely monotone functions. For
the integral we can use (3.21) to say that

(fJ (t − s) − fJ (t + h − s)) ≤ fJ (t − s) (3.23)

and
∫ t

0 fJ (t − s)ds < ∞ for all t > 0. Therefore the integral in (3.22) goes to zero as h → 0+

by dominated convergence theorem. For h < 0 the argument is similar. Hence t ↦→ qi, j (t) is
continuous.

Therefore the qi, j (t), i, j ∈ S, are the unique continuous functions whose Laplace transforms
satisfy (we here use (2.35) and (3.18))

q̃i, j (φ) =
f (φ)/φ

f (φ) − λ
δi, j −

∑
l∈S

hi,l q̃l, j (φ)
λ

f (φ) − λ
. (3.24)

Now multiply by f (φ) − λ on both sides of (3.24) and subtract qi, j (0) = δi, j to get

f (φ)̃qi, j (φ) −
f (φ)
φ

qi, j (0) = −λ

(∑
l∈S

q̃l, j (φ)hi,l − q̃i, j (φ)

)
. (3.25)
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Now multiply by f ⋆(φ) = φ/ f (φ) to get

φq̃i, j (φ) − qi, j (0) = −λ f ⋆(φ)

(∑
l∈S

q̃l, j (φ)hi,l − q̃i, j (φ)

)
. (3.26)

By Laplace inversion of (3.25) and (3.26) we have using (2.3) that qi, j (t) satisfies for all i, j ∈ S⎧⎪⎨⎪⎩
d
dt

∫ t

0
qi, j (s) ν̄(t − s)ds − ν̄(t)qi, j (0) = −λ

(∑
l∈S

ql, j (t)hi,l − qi, j (t)

)
,

qi, j (0) = δi, j ,

(3.27)

and ⎧⎪⎨⎪⎩
d
dt

qi, j (t) = −λ
d
dt

∫ t

0

(∑
l∈S

ql, j (s)hi,l − qi, j (s)

)
ν̄⋆(t − s)ds,

qi, j (0) = δi, j .

(3.28)

Note that the solution to the matrix problem, for A = −λ(H − 1),⎧⎨⎩
d
dt

∫ t

0
q(A, s) ν̄(t − s)ds − ν̄(t)q(A, 0) = Aq(A, t),

q(A, 0) = 1,

(3.29)

is a matrix such that each entry satisfy the backward equation (3.27). The backward equation
therefore is proved.

The forward equation follows by (3.13). To verify in this special case, since H is symmetric
then so is H − 1 and the eigenvalues of H − 1 are non-positive since H is a transition matrix.
Therefore we can write as in (3.12)

q−λ(H−1)(t) =

∫
∞

0
e−λ(H−1)sl(s, t)ds, (3.30)

and we know that

− λ(H − 1)q(−λ(H − 1), t) = q(−λ(H − 1), t)(−λ)(H − 1), (3.31)

in view of (3.13). □

If we interpret the i.i.d. r.v.’s Ji as waiting times between events in some point process
then the sequence Ji is a renewal process and the r.v. Tn is the instant of the nth event. The
process counting the number of events occurred up to a certain time t is the counting process
N ν̄(t) = max {n ∈ N : Tn ≤ t}. Clearly if one considers exponentially distributed waiting times
then the corresponding counting process is the Poisson process. When the waiting times are
Mittag-Leffler distributed, i.e., P {J > t} = Eα(λtα), α ∈ (0, 1), λ < 0, a particular semi-
Markov model on a graph have been considered in [19,48]. The authors showed that the
governing equation is time-fractional. In general if the i.i.d waiting times Ji have finite mean
µJ then one has by a simple argument using the strong law of large numbers that a.s.

lim
t→∞

N ν̄(t)
t

=
1

µJ
, (3.32)

and the elementary renewal theorem [2, Proposition 1.4] states that

lim
t→∞

EN ν̄(t)
t

=
1

µJ
. (3.33)
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These facts may be interpreted as an equivalence (in the long time behavior) between the Poisson
process and a general renewal process with finite-mean waiting times. Note that (3.32) and (3.33)
means that if EJi < ∞ then as t → ∞ we have, a.s., N (t) ∼ N ν̄(t). This heuristically means
that a renewal process with finite mean waiting times is indistinguishable after a “long time”
from the Poisson process. Therefore when you observe the process Y (t) defined in (A3) with
sojourn times Jn = Tn+1 − Tn having finite mean then, after a transient period it behaves like the
case in which Tn+1 − Tn are exponential r.v.’s.

We have here introduced a class of renewal processes associated with waiting times J such
that P {J > t} = q(λ, t) and under (A3) we know that EJ = ∞. Therefore they never behave as
a Poisson process. Corollary 3.1 and Theorem 3.2 implies that the time-changed Markov chain
X
(
L f (t)

)
, t ≥ 0, may be equivalently constructed starting from an embedded Markov chain Yn

and by inserting between jumps the heavy-tailed waiting times Ji .
In Eq. (3.6) we defined the renewal process Y (t) that jumps to the state Yn for the underlying

discrete time Markov process at the arrival time Tn of the renewal process with waiting time
distribution P[J > t] = q(λ, t). Then we have Y (t) = YN ν̄ (t), a time change using the renewal
process (3.16). Next we show that the same process can also be constructed by a time change
using the inverse subordinator (2.12).

Proposition 3.3. Let N (t) be a homogeneous Poisson process with rate θ = −λ. The time-
changed process N

(
L f (t)

)
and the process N ν̄(t) are the same process. Hence the semi-Markov

process (3.6) is the same process as the time-changed Markov chain YN(L f (t)).

Proof. This is a consequence of [35, Thm 4.1] since P {Ji > t} = q(λ, t) for any i and in view
of Theorem 2.1 it is true that q(λ, t) = EeλL f (t). □

3.1. Classification of states

We here investigate whenever a state i is transient or recurrent for the semi-Markov process
Y (t), by making assumptions on the embedded chain Yn . We recall that a state i is recurrent if

P (the set {t ≥ 0 : Y (t) = i} is unbounded | Y (0) = i) = 1, (3.34)

and is transient if the probability in (3.34) is zero. Since we take the probability of a tail event, 0
and 1 are the only possibilities. We have the following result.

Theorem 3.4. Under (A2), (A3), and (A4) it is true that

(1) If the state i is recurrent for Yn then it is recurrent for Y (t)
(2) If the state i is transient for Yn then it is transient for Y (t)
(3)

∫
∞

0 qi,i (t)dt = ∞ independently from the fact that the state i is transient or recurrent.

We recall that qi,i (t) = P {Y (t) = i | Y (0) = i} = P i {Y (t) = i}.

Proof. Note that in view of Proposition 3.3 we can write

Y (t) = YN ν̄ (t) = YN(L f (t)). (3.35)

Since t ↦→ σ f (t) is a.s. right-continuous, unbounded, and strictly increasing, it follows from the
change of variable formula in Meerschaert and Straka [43, p. 1707] that
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∞

0
1{t≥0:Y (t)=i}dt =

∫
∞

0
1{

t≥0:YN(L f (t))=i
} dt

=

∫
∞

0
1{t≥0:YN (t)=i}dσ f (t)

=

∑
n

1{Yn=i}

∑
τn≤t<τn+1

e(t), (3.36)

where e(t) is the Poisson point process underlying the subordinator σ f with characteristic
measure ν(s)ds. Note that if the state i is recurrent for Yn then

P (Yn = i for infinitely many n) = 1 (3.37)

and the number of summands in (3.36) is a countable infinity. Furthermore the sequence∑
τn≤t<τn+1

e(t) (3.38)

is a sequence of i.i.d. r.v.’s since e(s) is a Poisson point process. Therefore (3.36) is the sum of a
countable infinity of i.i.d. positive r.v.’s. which diverges with probability one. This proves Item 1.
If instead the state i is transient, then the number of summands in (3.36) is finite, and since our
subordinators are here assumed to be not subject to killing, it is true that for all 0 ≤ t1 < t2 < ∞

0 <
∑

t1≤s≤t2

e(s) < ∞ a.s. (3.39)

and the sum (3.36) is finite since it is the sum of a finite number of finite summands. This proves
2. Observe now that∫

∞

0
qi,i (t) dt =Ei

∫
∞

0
1{Y (t)=i} dt

≥Ei J1 = ∞ (3.40)

and this proves Item 3. □

It is instructive to compare Part (3) of Theorem 3.4 with the well-known characterization of
transient and recurrent states in a semi-Markov process with finite mean waiting time between
jumps, using the occupation measure (or 0-potential) [15]. The semi-Markov process is formed
by inserting a random waiting time Ji before jumping from state Yi−1 to state Yi in the underlying
Markov chain. Hence the number of times the process returns to its starting point is not affected.
Hence the state is recurrent for the semi-Markov process if and only if it is recurrent for the
underlying Markov chain. If the occupation times (waiting times) in each state have a finite mean,
then the total expected occupation time in the starting state is proportional to the number of visits.
This happens if and only if

∫
∞

0 qi,i (t)dt = ∞. However, when the waiting times between state
transitions are heavy-tailed with infinite mean, the mean time spent in the starting point by the
process is always infinite.

4. Examples

In this section, we provide some practical examples, to illustrate the application of the results
in this paper.

Example 4.1. Consider a CTRW with i.i.d. particle jumps Xn independent of the i.i.d. waiting
times Wn . Then a particle arrives at location S(n) = X1 + · · · + Xn at time Tn = W1 + · · · + Wn .
If E[Xn] = 0 and E[X2

n] < ∞, then n−1/2S([nt]) ⇒ B(t), a Brownian motion, by Donsker’s
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Theorem [16, Theorem 8.7.5]. If P[Wn > t] = t−β/Γ (1 − β) for some 0 < β < 1, then
n−1/β T[nt] ⇒ σ

f
t , a β-stable subordinator with Laplace symbol f (φ) = φβ [41, Theorem 3.41].

The number of jumps by time t > 0 is Nt = max{n ≥ 0 : Tn ≤ t} and a simple argument
[38, Theorem 3.2] shows that this inverse process has an inverse limit n−β Nnt ⇒ L f

t where the
inverse stable subordinator L f

t is defined by (2.12). Then we have

n−β/2S(Nnt ) ≈ (nβ)−1/2S(nβ
· n−β Nnt ) ≈ (nβ)−1/2S(nβ L f

t ) ≈ B(L f
t ),

as n → ∞, see [38, Theorem 4.2] for a rigorous argument. The probability density p(x, t) of
the limit process B(L f

t ) solves the time-fractional diffusion equation (2.13) with C f (∂t ) = ∂
β
t ,

a Caputo fractional derivative of order 0 < β < 1, and A = D∂2
x where D = E[X2

n]/2, see
[38, Theorem 5.1] and [41, Eq. (1.8)]. Since the Caputo fractional derivative [41, Eq. (2.16)]

∂
β
t p(x, t) =

1
Γ (1 − β)

∫ t

0

∂

∂t
p(x, t − u)u−βdu

is related to the Riemann–Liouville fractional derivative [41, Eq. (2.17)]

Dβ
t p(x, t) =

1
Γ (1 − β)

∂

∂t

∫ t

0
p(x, t − u)u−βdu

by [41, Eq. (2.33)]

Dβ
t p(x, t) − p(x, 0)

t−β

Γ (1 − β)
= ∂

β
t p(x, t), (4.1)

we can also write the governing equation (2.13) in the form

Dβ
t p(x, t) − p(x, 0)

t−β

Γ (1 − β)
= A p(x, t). (4.2)

The Laplace symbol f (φ) = φβ can be computed directly from (2.1) with a = b = 0
and ν(dt) = βt−β−1dt/Γ (1 − β) using integration by parts and the definition of the Gamma
function [41, Proposition 3.10]. Then ν̄(t) = t−β/Γ (1 − β) and the operator D f of Toaldo [55]
defined by (2.16) reduces to the Riemann–Liouville fractional derivative. Similarly, the operator
D

f
t of [55] defined by (2.17) reduces to the Caputo fractional derivative. Then the governing

equation (2.73) of Toaldo [55] with g(t) = p(x, t) reduces to (4.2). Since the conjugate Bernstein
function f ⋆(φ) = φ/ f (φ) = φ1−β , the same calculation as for f shows that ν̄⋆(t) = tβ−1/Γ (β),
and then the operator Φt of Magdziarz and Schilling [32] defined by (2.22) with M(t) = ν̄⋆(t) is
the Riemann–Liouville fractional integral

Iβt p(x, t) =
1

Γ (β)

∫ t

0
p(x, t − u)uβ−1du =

1
Γ (β)

∫ t

0
p(x, u)(t − u)β−1du

of order β [41, p. 250]. Then the governing equation (2.74) of Magdziarz [32] with g(t) = p(x, t)
reduces to

d
dt

p(x, t) =
1

Γ (β)
d
dt

∫ t

0
Ap(x, s) (t − s)β−1 ds =

d
dt

A Iβt p(x, t). (4.3)

Since d
dt I

β
t = D1−β

t we can also write (4.3) in the form

d
dt

p(x, t) = D1−β
t A p(x, t) = AD1−β

t p(x, t),

which is commonly seen in applications [21,44]. The heuristic derivation of (4.3) is to simply
apply the operator D1−β

t to both sides of (4.2), or the equivalent form ∂
β
t p = Ap, but the initial

condition requires some care.
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Example 4.2. Replacing the i.i.d. jumps Xn in Example 4.1 with a convergent triangular
array, we obtain a limit B(L f

t ) where B(t) is an arbitrary Lévy process [40, Theorem 3.6] with
generator A given by the Lévy–Khintchine formula [37, Theorem 3.1.11]. Then all the results
of Example 4.1 hold with A = D∂2

x replaced by this Lévy generator, in R1 or in Rd for any
finite dimension d [40, Theorem 4.1]. The same is true more generally for Markov generators A,
where the jump distribution depends on the current state [28, Theorem 4.2].

Example 4.3. For a CTRW with deterministic particle jumps Xn = 1, and the same waiting
times Wn as in Example 4.1, we have S(n) = n and the CTRW S(Nt ) = Nt converges to
the inverse stable subordinator: n−β Nnt ⇒ L f

t . The probability density l(x, t) of L f
t solves

the time-fractional equation (2.13) with C f (∂t ) = ∂
β
t and A = −∂x [42, Eq. (5.7)]. Several

equivalent governing equations for the inverse stable subordinator L f
t are also discussed in [42],

including Eq. (2.73) of Toaldo [55] (see [42, Eq. (5.9)]) and Eq. (2.74) of Magdziarz [32] (see [42,
Eq. (5.18)]) with g(t) = l(x, t) and A = −∂x . In this case, the moment generating function (2.30)
can be written explicitly as q(λ, t) = Eβ(λtβ) in terms of the Mittag-Leffler function

Eβ(z) =

∞∑
j=0

z j

Γ (1 + β j)
, (4.4)

for any λ ≤ 0, see Bingham [11]. The function q(λ, t) solves (2.27), which can be rewritten in
this case as

Dβ
t q(λ, t) −

t−β

Γ (1 − β)
= λq(λ, t),

or equivalently, using (4.1), as

∂
β
t q(λ, t) = λq(λ, t).

That is, the moment generating function of the inverse stable subordinator is an eigenfunction of
the Caputo fractional derivative. The function q(λ, t) also solves (2.28), which can be rewritten
in this case as

d
dt

q(λ, t) = λD1−β
t q(λ, t).

Here f (φ) = φβ varies regularly at zero with index β, ν̄(t) = t−β/Γ (1 − β) varies regularly at
infinity with index −β, and Item (4) of Theorem 2.1 shows that t ↦→ q(λ, t) also varies regularly
at infinity with index −β, with q(λ, t) ∼ λ−1t−β/Γ (1 − β) as t → ∞, compare Scalas [51,
Eq. (24)]. The potential measure U σ f

(dt) has Laplace–Stieltjes transform 1/ f (φ) = φ−β [53,
Eq. (5.12)], and inverting [41, Eq. (2.25)] shows that (2.10) holds with c = 0 and uσ f (t) =

tβ−1/Γ (β). Then it follows from [53, Thm 10.3] that f is a special Bernstein function. In fact
f ⋆(φ) = φ1−β from (2.5) with a⋆

= b⋆
= 0 and ν⋆(dt) = (1 − β)tβ−2dt/Γ (β) concentrated on

t > 0. Note also that [53, Eq. (10.9)] uσ f (t) = ν̄⋆(t).

Example 4.4. Let ν(dt) = βt−β−1e−ct dt/Γ (1−β) for some 0 < β < 1 and c > 0 and compute

f (φ) = cβ
+

∫
∞

0

(
1 − e−φt) ν(dt) = (φ + c)β (4.5)

using integration by parts, compare [41, Eq. (7.9)]. Then σ
f

t is a tempered stable subordina-
tor [41, Section 7.2] killed at rate cβ : If D(t) is a tempered stable subordinator with E[e−s D(t)] =
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exp[−t{(φ + c)β − cβ
}] and S is an exponential random variable independent of D(t) with

P[S > t] = exp[−cβ t], then we can let

σ
f

t =

{
D(t), if t < S,

∞, if t > S,

and it is easy to check that f is the Laplace symbol of this process. Now

ν̄(t) = a + ν(t, ∞) = cβ
+

β

Γ (1 − β)

∫
∞

t
s−β−1e−csds (4.6)

involves the incomplete Gamma function, which cannot be written in closed form. It is well
known that φβ ũ(φ) is the Laplace transform of Dβ

t u(t) [41, p. 39]. Using the shift property
ũ(φ + c) = L[e−ct u(t)] twice, it follows that the tempered fractional derivative Dβ,c

t u(t) =

e−ctDβ
t (ect u(t)) has Laplace symbol f , i.e., L[Dβ,c

t u(t)] = (φ+c)β ũ(φ), see [41, p. 209]. If u, u′

are in L1(R) then one can write the tempered fractional derivative explicitly as [36, Theorem 2.9]

Dβ,c
+ u(t) = cβ f (t) +

β

Γ (1 − β)

∫ t

−∞

f (t) − f (u)
(t − u)β+1 e−c(t−u)du.

It follows from (2.18) that D f u(t) = Dβ,c
t u(t), and hence the governing equation (2.73) of Toaldo

can be written in the form

Dβ,c
t g(t) − ν̄(t)g(0) = Ag(t).

Recall that L[tβ−1/Γ (β)] = φ−β , and use the shift property again, along with (2.23), to see that

M(t) = L−1[(φ + c)−β] =
1

Γ (β)
tβ−1e−ct .

Then the operator Φt of Magdziarz and Schilling [32] defined by (2.22) can be written as

Φt u(t) =
d
dt

1
Γ (β)

∫ t

0
u(s)M(t − s)ds =

d
dt

Iβ,c
t u(t),

where the tempered fractional integral [36] given by

Iβ,c
t u(t) :=

1
Γ (β)

∫ t

0
u(t − s)sβ−1e−csds,

appears. Hence the governing equation (2.74) of Magdziarz and Schilling [32] reduces to

d
dt

g(t) =
1

Γ (β)
d
dt

∫ t

0
Ag(t − s) sβ−1e−cs ds =

d
dt

A Iβ,c
t g(t). (4.7)

The potential measure U σ f
(dt) has Laplace–Stieltjes transform 1/ f (φ) = (φ + c)−β [53,

Eq. (5.12)], and inverting shows that (2.10) holds with c = 0 and uσ f (t) = M(t) = ν̄⋆(t) =

tβ−1e−ct/Γ (β). Then it follows from [53, Thm 10.3] that f is a special Bernstein function. It is
easy to check that f (φ) = (φ + c)β varies regularly at zero with index β = 0, and then Item (4)
of Theorem 2.1 shows that both ν̄(t) and t ↦→ q(λ, t) are slowly varying at infinity.

Example 4.5. The (unkilled) tempered stable subordinator D(t) related to the Bernstein function
(c + φ)β − cβ is also included in our framework. The Lévy density in this case is

ν(t) =
βt−β−1e−ct

Γ (1 − β)
=

β

Γ (1 − β)
e−ct

∫
∞

0
e−st sβ

Γ (1 + β)
ds. (4.8)
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Since (4.8) is the product of two completely monotone functions, it is completely monotone
[53, Corollary 1.6]. This means that

φ ↦→ (φ + c)β − cβ
=

∫
∞

0

(
1 − e−φt) βt−β−1e−ct

Γ (1 − β)
dt (4.9)

is a complete Bernstein function by [53, Def 6.1] and therefore it is also special by [53, Prop 7.1].
The tail of the Lévy measure here is similar to (4.6), but without the constant term:

ν̄(t) =
β

Γ (1 − β)

∫
∞

t
s−β−1e−csds. (4.10)

Now (2.23) becomes

M(t) = L−1
[(

(c + φ)β − cβ
)−1
]

(t), (4.11)

which seems difficult to invert in closed form. Since a⋆
= 0 in view of (2.6), we get from (2.11)

that

ν̄⋆(t) = ν⋆(t, ∞) = uσ f (t) (4.12)

where uσ f (t) is the potential density of the tempered stable subordinator. Since f is special, its
conjugate f ⋆(φ) = φ[(φ + c)β − cβ]−1 is the Laplace symbol of some subordinator σ ⋆(t).

Example 4.6. Distributed order fractional derivatives are also included in our framework. Let
(0, 1) ∋ y ↦→ α(y) be a function strictly between zero and one and let p(·) be a measure on
(0, 1). Choose α(y) and p in such a way that, for s > 0, it is true that∫

∞

0
(s ∧ 1)

∫ 1

0

α(y)s−α(y)−1

Γ (1 − α(y))
p(dy) ds

=

∫ 1

0

∫
∞

0
(s ∧ 1)

α(y)s−α(y)−1

Γ (1 − α(y))
ds p(dy) < ∞. (4.13)

Under (4.13)

ν(s) =

∫ 1

0

α(y)s−α(y)−1

Γ (1 − α(y))
p(dy) (4.14)

is a Lévy density and therefore

f (φ) =

∫
∞

0

(
1 − e−sφ) ν(ds) =

∫ 1

0
φα(y) p(dy) (4.15)

is a Bernstein function. The operator D f
t corresponding to (4.15) may be viewed as a distributed

order fractional derivative [56, Remark 4.3] since here

ν̄(s) =

∫ 1

0

s−α(y)

Γ (1 − α(y))
p(dy) (4.16)

and therefore

D
f
t u(t)

=
d
dt

∫ t

0
u(s)

∫ 1

0

(t − s)−α(y)

Γ (1 − α(y))
p(dy) ds − u(0)

∫ 1

0

t−α(y)

Γ (1 − α(y))
p(dy)

=

∫ 1

0

1
Γ (1 − α(y))

d
dt

∫ t

0
u(s)(t − s)−α(y)ds p(dy) − u(0)

∫ 1

0

t−α(y)

Γ (1 − α(y))
p(dy)
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=

∫ 1

0
Dβ(y)

t u(t)p(dy) − u(0)
∫ 1

0

t−α(y)

Γ (1 − α(y))
p(dy). (4.17)

The traditional form of the distributed order derivative is the special case α(y) = y. Now note
that the function t ↦→ t−α(y) is completely monotone for each fixed y since it is the Laplace
transform of the measure sα(y)−1ds/Γ (α(y)). Therefore, when α(y) and p(·) are such that (4.13)
is fulfilled, also the function

ν̄(t) =

∫ 1

0

1
Γ (1 − α(y))

∫
∞

0
e−ts sα(y)−1

Γ (α(y))
ds p(dy)

=

∫
∞

0
e−ts

∫ 1

0

1
Γ (1 − α(y))

sα(y)−1

Γ (α(y))
p(dy) ds (4.18)

is completely monotone. Therefore (4.18) is the tail of a Lévy measure with a completely
monotone density by Remark 2.2. This implies that f is a complete Bernstein function [53,
Def 6.1] and therefore it is also special [53, Prop. 7.1]. Hence

f ⋆(φ) =
φ∫ 1

0 φα(y) p(dy)
(4.19)

is a (special) Bernstein function, and there exists a subordinator σ ⋆(t) with Fourier symbol f ⋆.
From (2.11) we have

ν̄⋆(t) = ν⋆(t, ∞) = uσ p (t), (4.20)

where uσ p (t) is the potential density of the subordinator with Laplace exponent (4.15). Then
observe that Items (1), (2) and (3) of Theorem 2.1 apply to this case. In particular Item (3) here is
in accordance with [25, Thm 2.3]. Item (4) applies if p and α are such that f (φ) =

∫ 1
0 φα(y) p(dy)

is regularly varying at 0+. For example, if α(y) = y and p(dy) = p0(y)dy where p0 is regularly
varying at zero with some index γ > −1, then f is slowly varying [39, Lemma 3.1], and hence
ν̄(t) and q(λ, t) are slowly varying at t = ∞. This is a model for ultraslow diffusion [39] where
a plume of particles spreads at a logarithmic rate in time. Here the kernel of Magdziarz and
Schilling [32] can be computed from

M(t) = L−1

[
1∫ 1

0 φα(y) p(dy)

]
(t). (4.21)

In the special case f (φ) = p1φ
β1 + p2φ

β2 (retarding subdiffusion) one can write

M(t) = p−1
2 tβ2 Eβ2−β1,β2+1

(
−

p1

p2
tβ2−β1

)
,

where the two parameter Mittag-Leffler function

Es,t (z) =

∞∑
n=0

zn

Γ (sn + t)
,

compare Chechkin et al. [14, Eq. (16)].
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