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Abstract. Recent advances in time series analysis provide alternative models for river
flows in which the innovations have heavy tails, so that some of the moments do not exist.
The probability of large fluctuations is much larger than for standard models. We survey
some recent theoretical developments for heavy tail time series models and illustrate their
practical application to river flow data from the Salt River near Roosevelt, Arizona. We
also include some simple diagnostics that the practitioner can use to identify when the
methods of this paper may be useful.

1. Introduction

In this paper we will discuss the application of heavy tail
models to hydrology. Since many river flow time series exhibit
occasional sharp spikes, a model that captures this heavy tail
characteristic is important in adequately describing the series.
Typically, a time series with heavy tails is appropriately trans-
formed so that normal asymptotics apply. We propose a new
model that allows a more faithful representation of the river
flow without preliminary transformations. As an application,
we consider the average monthly flow of the Salt River near
Roosevelt, Arizona. The Salt River flow series is periodically
stationary; that is, its mean and covariance functions are peri-
odic with respect to time. We fit a periodic autoregressive
moving average (ARMA) model to the data without moment
assumptions [Anderson and Meerschaert, 1997]. We compare
this model, which has stable asymptotics, to the classical model
presented by Anderson and Vecchia [1993], which has normal
asymptotics after log transforming the data, so that the inno-
vations have finite fourth moment. Regarding the extreme
value behavior of the models, we contrast the classical ap-
proach applied to the logarithms of the flow data to the alter-
native heavy tail approach and demonstrate how the classical
approach seriously understates the probability of large fluctu-
ations. In the concluding remarks of the paper we mention
some simple diagnostics that the practitioner can use to iden-
tify when the methods of this paper may be useful.

We say that a probability distribution has heavy tails if the
tails of the distribution diminish at an algebraic rate (like some
power of x) rather than at an exponential rate. In this case
some of the moments of this probability distribution will fail to
exist. The kth moment of a probability distribution function
F( x) with density f( x) is defined by

mk 5 E xk dF~ x! 5 E xkf~ x! dx . (1)

The mean m and variance s2 are related to the first two mo-
ments by the familiar equations m 5 m1 and s2 5 m2 2 m1

2.

Perhaps the most familiar example of a probability distribution
with heavy tails is the Cauchy distribution. If X is standard
Cauchy, then the density of X is given by

f~ x! 5
1

p~1 1 x2!
, (2)

and the distribution function is F( x) 5 1/2 1 p21 arctan ( x).
Although the bell-shaped graph of the density of the Cauchy
distribution appears to be similar to that of the normal law, the
tails are heavier. While the density of the normal law dimin-
ishes at an exponential rate, for the Cauchy we have f( x) ;
p21x22 as ux u 3 ` . This causes the integral (equation (1))
defining the kth moment to diverge when k $ 1, and hence
the mean and standard deviation of the Cauchy are undefined.

The Cauchy and the normal laws are two examples of stable
probability distributions. The basic properties of stable distri-
butions are given by Feller [1971]. These distributions are the
only probability distributions with the property that the sample
mean of independent and identically distributed (i.i.d.) obser-
vations has the same probability distribution as one of the
observations, after a linear rescaling. If X1, X2, X3, z z z , Xn

are independent random variables with the same stable distri-
bution, then the sum Sn 5 X1 1 z z z 1 Xn as well as the
sample mean X# 5 Sn/n also have a stable distribution. If Xi

are standard normal, then

X1 1 · · · 1 Xn

n1/a (3)

has the same distribution as one of the summands when a 5 2.
If Xi are standard Cauchy, then (3) has the same distribution
as one of the Xi when a 5 1. There are stable distributions for
every value of a [ (0, 2]. For most stable distributions, there
exists no closed form expression for the density function. How-
ever, it is known that when a , 2, we always have f( x) ;
Cqax2a21 as x 3 2` and f( x) ; Cpax2a21 as x 3 1` ,
where C . 0 and 0 # p , q # 1 with p 1 q 5 1. When a 5
2, the distribution is normal, so all moments exist. The mo-
ments mk of a stable distribution with a , 2 exist when k , a
and fail to exist when k $ a .

The normal distribution is widely applicable because of the
central limit theorem, which guarantees that the distribution of
the sum or sample mean of a large number of observations will
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be at least approximately normal. This result depends on the
fact that the individual observations do not have heavy tails, so
that the theoretical mean and standard deviation exist. The
extended central limit theorem states that a similar result holds
for heavy tail observations, except that the limiting distribution
is stable. Mandelbrot [1963] and Fama [1965] argue that fluc-
tuations in stock market prices should be modeled as stable
random variables. Subsequent research by Mandelbrot and
others determined that the sample paths of a stable random
walk are actually random fractals with dimension a. An excel-
lent modern reference on stable laws and processes is by Sam-
orodnitsky and Taqqu [1994]. Janicki and Weron [1994] discuss
practical methods for simulating stable stochastic processes.
Mittnik and Rachev [1995] provide details on stable models in
finance, including recent developments in the theory of option
pricing. Nikias and Shao [1995] focus on applications of stable
models in signal processing.

2. Time Series Models with Heavy Tails
Suppose that {« t} are independent random variables with

common distribution function F( x) 5 P[« t # x]. Regular
variation is a technical condition that is required for the ex-
tended central limit theorem to apply. A nonnegative Borel
measurable function R( x) varies regularly with index r pro-
vided that

lim
x3`

R~lx!

R~ x!
5 lr (4)

for all l . 0. Then for any small d . 0 we always have xr2d ,
R( x) , xr1d for all x sufficiently large, so that R( x) behaves
much like xr for large x . For example, the functions x2a and
x2a log x are both regularly varying with index 2a. If r 5 0, we
say that R( x) is slowly varying.

We say that the distribution F( x) belongs to the domain of
attraction of some nondegenerate random variable Y with dis-
tribution G( x) if there exist real constants an . 0 and bn such
that

«1 1 · · · 1 «n 2 nbn

an
f Y , (5)

where f indicates convergence in distribution. The extended
central limit theorem states that (5) holds with Y normal if and
only if the truncated second moment function

m~ x! 5 E
uuu#x

u2 dF~u! (6)

is slowly varying; (5) holds with Y nonnormal if and only if the
tail function T( x) 5 P[ u« tu . x] 5 F(2x) 1 1 2 F( x) varies
regularly with index 2a for some 0 , a , 2 and the tails satisfy
the balancing condition

lim
x3`

1 2 F~ x!

T~ x!
5 p and lim

x3`

F~ 2 x!

T~ x!
5 q (7)

for some 0 # p , q # 1 with p 1 q 5 1; see, for example,
Feller [1971, p. 577]. The norming constants can be chosen to
satisfy nP[ u« tu . an] 3 C and are always of the form an 5
n1/a ,n, where ,n is slowly varying. The domain of normal
attraction, in which we assume that an 5 n1/a, is a strictly
smaller class of distributions. If a . 1, then the mean E« t

exists, and we can take bn 5 E« t. If a , 1, then the mean fails
to exist, the norming constant an 3 ` faster than n 3 ` , and
we can let bn 5 0 for all n . The Pareto distribution F( x) 5
1 2 Cx2a ( x $ C1/a) as well as the type II extreme value
distribution F( x) 5 e2Cx2a

( x $ 0) belong to the stable
domain of attraction when 0 , a , 2. Sums of i.i.d. random
variables with these distributions are approximately stable.

The density of most stable distributions cannot be expressed
in closed form, and it is most convenient to specify the class of
stable distributions in terms of their characteristic functions.
The characteristic function or Fourier transform of a random
variable Y with distribution function G( x) is f(u) 5 EeiuY 5
* eiux dG( x). If Y is stable, then the characteristic function is

f~u! 5 exp $iuz 2 sauu ua@1 2 iu sgn ~u! tan ~pa/ 2!#% (8a)

when a Þ 1 or

f~u! 5 exp $iuz 2 s uu u@1 1 iu ~2/p! sgn ~u! ln uu u#% (8b)

when a 5 1; see, for example, Janicki and Weron [1994] or
Samorodnitsky and Taqqu [1994]. We say that Y is stable with
index a, location parameter z, scale parameter s, and skewness u.
Note that a [ (0, 2], g [ IR, s $ 0, and u [ [21, 1]. If we choose
the norming constants an in (5) to satisfy nP[ u« tu . an] 3 C ,
then the stable limit Y will have scale factor satisfying sa 5
CG(1 2 a) cos (pa/2) when a Þ 1 and s 5 Cp/ 2 when a 5
1. The parameter C is called the dispersion and is sometimes
used as an alternative scale parameter for stable laws. The
parameters in the balance equations (equation (7)) are related
to the skewness of the limit Y by p 5 (1 1 u )/ 2 and q 5
(1 2 u )/ 2. If a . 1 and bn 5 E« t or a , 1 and bn 5 0, then
the location parameter of the limit Y in (5) is z 5 0. If a # 1,
then EY does not exist, but if a . 1, then EY 5 z , and, in
particular, we obtain EY 5 0 when we center to zero expec-
tation. If Yn are i.i.d. stable with the same distribution as Y ,
then ¥ knYn is also stable with the same stable index and
skewness parameters. The location parameter of ¥ knYn is
¥ knz . The scale parameter of ¥ knYn is s(¥ uknua)1/a, and
so, in particular, the scale parameter of kY is ks . The disper-
sion of ¥ knYn is C ¥ uknua.

Example: Use of the dispersion C rather than the scale
factor s is preferable for domains of attraction. Suppose for
example that 0 , a , 2 and that the random variables «t are i.i.d.
Pareto with distribution F(x) 5 1 2 Cx2a. Then P[«t . x] 5
Cx2a, and if we let an 5 n1/a, then nP[« t . an] 5
nC(an)2a 5 C , so that

«1 1 · · · 1 «n 2 nbn

n1/a f Y , (9)

where Y is stable with index a and dispersion C . Since the
random variables are positive, we have p 5 1 and q 5 0 in the
balance equations, so that Y has skewness 1. If a . 1 and we
center to zero expectation, then Y has mean zero. If we sup-
pose instead that the random variables « t are i.i.d. with a type
II extreme value distribution F( x) 5 e2Cx2a

, or more gener-
ally that 1 2 F( x) 5 Cx2a(1 1 o( x)), then we still have
P[« t . x] ; Cx2a, and the same asymptotics apply.

Suppose that the i.i.d. sequence {« t} represents the innova-
tions process of a time series. If « t has a finite fourth moment,
then normal asymptotics apply, but if « t has an infinite fourth
moment, the asymptotics are governed by stable laws. Infinite
fourth moments occur when the tail function T(x) 5 P[u«tu . x]
varies regularly with index 2a for some 0 , a , 4. Then
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T( x) 3 0 about as fast as x2a 3 0 as x 3 ` . A summary of
the basic asymptotic theory for moving averages of random
variables with heavy tails is given by Brockwell and Davis [1991,
pp. 535–545]. Brockwell and Davis [1991, p. 535] advise that
“any time series which exhibits sharp spikes or occasional
bursts of outlying observations suggests the possible use” of
these methods. Kokoszka and Taqqu [1994] and Mikosch et al.
[1995] consider ARMA models with infinite variance innova-
tions, while Kokoszka [1996] and Kokoszka and Taqqu [1996]
discuss prediction and parameter estimation for infinite vari-
ance fractional autoregressive-integrated moving average
(ARIMA) models. Bhansali [1993] gives a general method for
parameter estimation for linear infinite variance processes.
Anderson and Meerschaert [1997] develop the basic asymptotic
theory for periodic moving averages in the case where the
innovations have infinite fourth moment.

Anderson and Vecchia [1993] employ a periodic ARMA
model for time series in which both the mean and the covari-
ance structure of the process vary with the season. We will say
that X̃ t follows a PARMAn( p , q ) model (a periodic
ARMA( p , q) model with period n) if there exists an i.i.d.
sequence {« t} such that

Xt 2 O
j51

p

f t~ j! Xt2j 5 s t« t 2 O
j51

q

u t~ j!s t2j« t2j (10)

holds almost surely for all t , where Xt 5 X̃t 2 m t. The model
parameters m t, f t( j), u t( j), and s t are all assumed to be
periodic with the same period n. Anderson and Vecchia obtain
asymptotic results for the sample autocovariances and sample
autocorrelations of periodic ARMA processes in the case
where the sequence {« t} has finite fourth moment. Some of
these results can also be obtained from the work of Tjostheim
and Paulsen [1982] by rewriting the process as a stationary
vector time series of dimension n. Adams and Goodwin [1995]
discuss parameter estimation for the periodic ARMA model
with finite fourth moments. Although the periodic ARMA can
be rewritten as a stationary vector ARMA process, the predic-
tion problem is not the same. For example, monthly data can
be used to form a vector of yearly observations, but the one-
step prediction should be based on the data from previous
months of the same year as well as the data from previous
years. Forecasting for the periodic model including the multi-
variate case is considered by Ula [1993]. Gardner and Spooner
[1994] include an extensive review of results on periodic time
series models with finite fourth moments and their applications
in signal processing. Tiao and Grupe [1980] demonstrate the
pitfalls of ignoring seasonal behavior in time series modeling.
Seasonal variations in the mean of time series data can easily
be removed by a variety of methods. However, when the vari-
ance (or dispersion, in the infinite variance case) as well as the
mean varies with the season, then the use of periodic time
series models is indicated.

Anderson and Meerschaert [1997] compute the asymptotic
distribution of the sample autocovariance and sample autocor-
relation function for periodic moving averages of i.i.d. random
variables with heavy tails. Any periodic ARMA process can be
expressed in terms of a periodic moving average

Xt 5 O
j52`

`

c t~ j!« t2j, (11)

where the moving average parameters c t( j) are all assumed to
be periodic with the same period n. Suppose that {« t} are i.i.d.
and that their common distribution F( x) has regularly varying
tails with index 2a for some a . 2. Then s2 5 E« t

2 , ` , and
the autocovariance and autocorrelation at season i and lag ,
are

g i~,! 5 s2 O
j

c i~ j!c i1,~ j 1 ,!
(12)

r i~,! 5
g i~,!

Îg i~0!g i1,~0!
5

O j c i~ j!c i1,~ j 1 ,!

ÎO j c i~ j!2 O j c i1,~ j!2
.

The sample mean at season i and the sample autocovariance
and sample autocorrelation at season i and lag , are

m̂ i 5 N21 O
n50

N21

Xnn1i

ĝ i~,! 5 N21 O
n50

N21

~Xnn1i 2 m̂ i!~Xnn1i1, 2 m̂ i1,! (13)

r̂ i~,! 5
ĝ i~,!

Îĝ i~0!ĝ i1,~0!
.

When n 5 1, all of these formulas reduce to the more familiar
case of a stationary moving average in which the c weights do
not vary with the season. The periodic moving average model
(equation (11)) is nonstationary, but it is mathematically equiv-
alent to a stationary vector moving average. If we let Zt 5
(« tn, z z z , «(t11)n21)9 , then the random vectors Zt are i.i.d.
with mean zero and covariance matrix s2I , where I is the n 3
n identity matrix and s2 5 E« t

2 , ` for a . 2. If we let Yt 5
(Xtn, z z z , X(t11)n21)9 , then we can rewrite (11) in the form

Yt 5 O
j52`

`

C jZt2j, (14)

where C t is the n 3 n matrix with ij entry c i(tn 1 i 2 j), and
we number the rows and columns 0, 1, z z z , n 2 1 for ease of
notation. We define the sample autocovariance by Ĝ(h) 5
N21 ¥ t50

N21 (Yt 2 m̂)(Yt1h 2 m̂)9 , where m̂ 5 N21 ¥ t50
N Yt

is the sample mean, and the autocovariance matrix by G(h) 5
E(Yt 2 m)(Yt1h 2 m)9 , where m 5 EYt. Note that the ij
entry of G(h) is g i(hn 1 j 2 i) and likewise for Ĝ(h). The
autocorrelation matrix R(h) has ij entry equal to ri(hn 1 j 2 i)
and likewise for the sample autocorrelation matrix R̂(h). The
ij term of R(h) is also called the cross correlation of the i and
j components of the vector process at lag h . In this application
it represents the correlation between season i at year t and
season j at year t 1 h .

We will say that the i.i.d. sequence {«t} is RV(a) if P[u«tu . x]
varies regularly with index 2a and P[« t . x]/P[ u« tu . x] 3
p for some p [ [0, 1]. If « t is RV(a), then Zt has i.i.d.
components with regularly varying tails, and we will also say
that Zt is RV(a). If a . 2, then Zt belongs to the domain of
attraction of a multivariate normal law whose components are
i.i.d. univariate normal. Loretan and Phillips [1994] find that
the price fluctuations of currency exchange rates and stock
market prices often follow an RV(a) model with 2 , a , 4. In
this case, s2 5 E« t

2 , ` , but E« t
4 5 ` . Since the innovations
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« t have a finite variance, the sample autocorrelations for the
stationary moving average model are asymptotically normal;
see, for example, Brockwell and Davis [1991, proposition 7.3.8].
The following result shows that when 2 , a , 4, the sample
autocorrelations of the periodic moving average model are
asymptotically stable.

Theorem: Suppose that Xt is a periodic moving average
of the RV(a) sequence « t with 2 , a , 4 and that
P[« t . x]/P[ u« tu . x] 3 p for some p [ [0, 1]. Then
s2 5 E« t

2 , ` , m̂ i, ĝ i(,), r̂ i(,) are consistent estimators of
m i, g i(,), r i(,), respectively, and

N21/ 2~m̂ 2 m! f W , (15)

where W is a Gaussian random vector with mean zero and
covariance s2(¥ j C j)(¥ j C j)9; for some aN 3 ` we have

NaN
22@ĝ i~,! 2 g i~,!# f Ci, 5 O

r50

n21

Cr~i , ,!Sr

(16)

NaN
22@ r̂ i~,! 2 r i~,!# f Di, 5 O

r50

n21

Dr~i , ,!Sr

jointly in i 5 0, z z z , n 2 1 and , 5 0, z z z , h , where

Dr~i , ,! 5
r i~,!

g i~,!
Cr~i , ,! 2

r i~,!

2g i~0!
Cr~i , 0!

2
r i~,!

2g i1,~0!
Cr~i 1 , , 0! (17)

and Cr(i , ,) 5 ¥ j c i( jn 1 i 2 r)c i1,( jn 1 i 1 , 2 r). We
can always choose aN so that NP[ u« tu . aN] 3 C for some
C . 0. Then S0, S1, z z z , Sn21 are i.i.d. a/2 stable with mean
zero, skewness 1, and dispersion Ci Ci, is a/2 stable with mean
zero, skewness 1, and dispersion C ¥r uCr(i , ,) ua/ 2; and Di,

is a/2 stable with mean zero, skewness 1, and dispersion
C ¥r uDr(i , ,) ua/ 2.

Proof. Since a . 2, we have s2 5 E« t
2 , `; see, for

example, Feller [1971, XVII.5]. Then we can apply Brockwell
and Davis’s [1991] theorem 11.2.2 to the vector process (equa-
tion (14)) to obtain (15), where the form of the covariance
follows from the fact that Zt has covariance matrix s2I . Since
N1/ 2 3 ` , it follows that m̂ 3 m in probability, and hence
m̂ i 3 m i in probability for each i 5 0, 1, z z z , n 2 1. Then
m̂i is a consistent estimator of mi. Theorem 2.2 and corollaries 2.3
and 2.4, along with the remark following the proof of theorem
2.2, from Anderson and Meerschaert [1997] yield the first con-
vergence in (16), and then theorem 3.1 and corollaries 3.2 and
3.3 in the same paper yield the second convergence. Anderson
and Meerschaert [1997] show that in (16) we can always choose
NP[ u« tu . aN] 3 1, and then the random variables Sr in the
limit are i.i.d. stable with mean zero, index a/2, skewness 1, and
dispersion 1. Choose C . 0 and define ãN 5 C21/aaN. Then

NP@ u« tu . ãN# 5
P@ u« tu . C21/aaN#

P@ u« tu . aN#

z NP@ u« tu . aN#3 ~C21/a!2a z 1 5 C (18)

using the fact that T( x) 5 P[ u« tu . x] varies regularly with
index 2a. Recall from section 2 that if Yn are i.i.d. stable with
mean zero, index a/2, skewness 1, and dispersion C , then
¥ knYn is also stable with mean zero, index a/2, skewness 1,

and dispersion C ¥ uknua/ 2, and, in particular, kYn is stable
with mean zero, index a/2, skewness 1, and dispersion C uk ua/ 2.
If we replace aN with ãN in (16), then we multiply the random
variables Sr in the limit by (C21/a)22 5 C2/a, and so the
resulting random variables have dispersion (C2/a)a/ 2 5 C .
Then the dispersion of the first limit in (16) is C ¥ruCr(i, ,)ua/2, and
the dispersion of the second limit is C ¥ruDr(i , ,) ua/ 2. Feller
[1971, XVII.5] shows that aN varies regularly with index 1/a,
and then Feller [1971, VIII.8] shows that for any d . 0 we have
N1/a2d , aN , N1/a1d for all large N . Then N122/a2d ,
NaN

22 , N122/a1d for all large N . Since a . 2, we have 1 2
2/a 2 d . 0 for all d . 0 sufficiently small, and so NaN

22 3 ` .
Then it follows from (16) that ĝ i(,) 3 g i(,) and r̂ i(,) 3
r i(,) in probability. This concludes the proof.

3. Detecting Heavy Tails in Time Series Data
In this section we consider the general problem of detecting

heavy tails in time series data and estimating the tail parameter
a. We illustrate the general problem with a data set represent-
ing monthly river flows. The simplest probability model with
heavy tails is the Pareto random variable X , whose distribution
function is defined by F( x) 5 1 2 Cx2a, where a . 0, C .
0, and x $ C1/a. If a [ (0, 2), then X is in the domain of
attraction of a stable law with index a; otherwise, X is attracted
to a normal law. Since a stable law X with index a and disper-
sion C satisfies P(X . x) ; Cpx2a and P(X , 2x) ;
Cqx2a as x 3 ` , it is reasonable to model a stable law as
having Pareto tails. Unfortunately, the MLE for the Pareto
distribution parameters a , C is undefined. Hill [1975] solves
this problem by computing the maximal likelihood estimator
(MLE) of the conditional distribution of the r largest-order
statistics of X given that they all exceed some fixed number D .
Hill calculates that

Ĥr 5 r21 O
i51

r

ln X ~i! 2 ln X ~r11! (19)

is the conditional maximum likelihood estimator of 1/a condi-
tional on X(r11) $ D , where X(1) $ X(2) $ z z z are the order
statistics of a random sample X1 z z z Xn. We can approximate
a by âr 5 1/Ĥr. Resnick and Stărică [1995] show that this
procedure yields a consistent estimator of the tail index a for
stationary moving average models where the innovations have
regularly varying probability tails with index 2a. Their result
can be understood by noting that since the largest observations
in a heavy tail time series model tend to be widely spaced in
time, they resemble i.i.d. observations.

Figure 1 shows a time series plot for 72 years of river flow
data from October 1912 to September 1983. The data mea-
sures the average monthly flow rate of the Salt River near
Roosevelt, Arizona, in cubic feet per second (historical stream-
flow data are available on the Web at http://water.usgs.gov).
The graph shows occasional sharp spikes characteristic of
heavy tail data. We applied Hill’s [1975] estimator to the larg-
est r 5 10 order statistics of the Salt River data and obtained
a 5 3.182, and for r 5 20 we get a 5 3.023. This indicates that
the Salt River data have heavy tails with infinite fourth mo-
ment but finite variance. Hall [1982] shows that Hill’s estimator
is consistent and asymptotically normal with variance approx-
imately a2/r . For r 5 20 and a 5 3.023 we obtain s 5 0.676,
and a z test of H0 ; a 5 4 versus Ha ; a , 4 or H0 ; a 5 2
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versus Ha ; a . 2 has p value 0.07. Increasing r yields a
smaller standard deviation, but Hall’s theorem assumes that
r/n 3 0 as n 3 ` , so that one should base Hill’s estimator on
a vanishingly small percentage of the data. We do not expect
that the data are exactly Pareto, just that the tails are approx-
imately Pareto, so using only the largest few order statistics is
appropriate. Hill’s estimator for C is given by

Ĉr 5
r 1 1

n X ~r11!
âr . (20)

For the raw Salt River data r 5 10 we obtain C 5 1.3546 3
1010, and for r 5 20 we obtain C 5 3.34 3 109.

We will now consider three alternative estimators for the tail
index a, including the robust estimator of Meerschaert and
Scheffler [1998]. These alternate estimation methods also sug-
gest that the true value of a is around 3.0 for the Salt River
data. Hosking and Wallis [1987] discuss the generalized Pareto
(GP) model and its applications to hydrology. If U is standard
exponential, then X 5 a(1 2 e2kU)/k is GP. Here k [ IR
and a . 0, and it is not hard to compute that P(X . x) 5
(1 2 kx/a)1/k for x $ 0. If k , 0, then X 2 a/k is Pareto
with a 5 21/k and C 5 (2k/a)1/k. If k 5 0, we let P(X .
x) 5 e2x/a, which makes the distribution function continuous
at k 5 0. If k . 0, then X [ [0, a/k]. For the Salt River raw
data the MLE for the GP parameters is a 5 618.951 and k 5
20.315618, so that the data fit a Pareto model with a 5 3.168
and C 5 2.8 3 1010. Smith [1984] shows that this MLE
estimate of k is consistent and asymptotically normal with
variance approximately equal to (1 2 k)2/n . For the raw Salt
River data, (1 2 k)2/n 5 0.0015227, so the standard devi-
ation is 0.0390. A z test based on this statistic comparing H0 ;

k 5 20.25 versus Ha ; k , 20.25 (that is, H0 ; a 5 4
versus Ha ; a , 4) rejects H0 at the 95% level. Similarly, we
can reject a 5 2 in favor of a . 2 with z 5 4.72 and p 5
0.000. Note that these standard deviations are much smaller
than for Hill’s [1975] estimator, and the p values are much
smaller, because we are using all of the data.

Mandelbrot [1963] uses a kind of probability plot to demon-
strate graphically that the fluctuations in certain cotton ex-
change prices have heavy tails with a ' 1.7. Suppose that
X1, z z z , Xn are i.i.d. Pareto with distribution function F( x).
Then F( x) 5 P[X . x] 5 Cx2a, and so log F( x) 5 log C 2
a log x . Ordering the data as before so that X(1) $ X(2)

$ z z z $ X(n), we should have approximately that x 5 X(r)

when F( x) 5 r/n . Then a plot of log X(r) versus log (r/n)
should be approximately linear with slope 2a. Figure 2 uses
this method to illustrate the heavy tail distribution of the Salt
River data. It shows the Salt River data along with the line that
fits a Pareto model with parameters a 5 3.023 and C 5
3.34 3 109 (from Hill’s [1975] estimator with r 5 20). The
graph indicates that the true a lies between 2.9 and 3.1.

Meerschaert and Scheffler [1998] propose a robust estimator
of 1/a given by

ĝn 5

ln O
i51

n ~Xi 2 X# !2 2 2 ln 2

2 ln n 1 g 1 ln p 2 2 ln 2 , (21)

where g 8 0.5772 is Euler’s constant. Here X1, z z z , Xn is the
(unsorted) data, and X# n is the sample mean. When 0 , a , 2,
this formula yields a consistent estimator for 1/a for a broad
range of time series models, including periodic moving aver-
ages, whose innovations have regularly varying tails with index
a. If a . 2, then the estimator ĝn 3

1
2

in probability as n 3
` . Since we believe that 2 , a , 4, we apply the estimator to
the squared data, which has tail index a/2. The Meerschaert and
Scheffler [1998] estimator is unbiased when the data are Pa-
reto-like with C 5 1. For a Pareto this can be accomplished by
dividing by C1/a, and so we divided the raw data by C1/a 5
1413, obtained from Hill’s [1975] estimator with r 5 20. Then
we applied the above estimator of a and doubled the result
(since the index of the squared data is a/2) to get 3.104 as the
Meerschaert-Scheffler estimate of a for the raw Salt River
data. Since the results of Hill’s estimator are consistent with
the estimates obtained by a variety of alternative methods, we
are fairly confident that the Salt River flow has heavy tails with
a near 3.

4. A Periodic ARMA Model for the Salt River
In this section we illustrate the application of heavy tail time

series methods by fitting a periodic ARMA model to the Salt
River flow data. Let X̃t denote the average flow rate in cubic
feet per second t months after October 1912 of the Salt River
near Roosevelt, Arizona. The tail parameter a dictates our
modeling approach. If a . 4, then the time series has finite
fourth moments, and the classical approach based on normal
asymptotics is appropriate. If a , 2, then both the autocovari-
ance and autocorrelation of the time series are undefined.
Preliminary estimates of the tail index a in section 3 indicate

Figure 1. Monthly streamflow for the Salt River near Roos-
evelt, Arizona, from October 1912 to September 1983 (1 cfs 5
2.8317 3 1022 m3s).

Figure 2. Probability plot for the Salt River showing Pareto
tail with a near 3.0.
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that 2 , a , 4, so the probability distribution of X̃t has heavy
tails, with a finite variance but infinite fourth moment. Since
both the mean and the correlation structure of the process vary
significantly by month, we will fit a periodic ARMA model. We
find that a PARMA12(1, 0) model is sufficient to capture the
most important features of the data. The model is

Xt 2 f tXt21 5 s t« t, (22)

where Xt 5 X̃t 2 m t is the mean-standardized process, « t is
the standardized heavy-tailed innovations process, and the
model parameters m t, f t, and s t are all periodic with the same
period n 5 12, so that for example we have m tn1i 5 m i for all
t . Since a . 2, the theorem given in section 2 implies that the
sample mean m̂ i, sample autocovariance function ĝ i(,), and
the sample autocorrelation function r̂ i(,) are consistent esti-

mators of the true mean, autocovariance, and autocorrelation.
We first estimate the mean flow m i for month i 5 0, 1, z z z ,
11 by the sample mean m̂ i on the basis of N 5 72 years of flow
data. We adapt the procedure of Brockwell and Davis [1991, p.
407] to obtain simultaneous 95% confidence intervals for
m0, z z z , m11. By the theorem given in section 2 we have
N21/ 2(m̂ i 2 m i) f Wi, where Wi is normal with mean zero
and variance

v i 5 2pf i~0! 5 O
j52`

`

g i~ j! , (23)

where fi(v) is the spectral density for the ith seasonal com-
ponent. The lag window estimator

2p f̂~0! 5 O
uhu#r

S 1 2
uh u
r D ĝ i~h! (24)

is consistent when r 5 rn 3 ` in such a way that rn/n 3 0.
Then, with probability 1 2 d,

um̂ i 2 m iu # F12d/~2n!Î2p f̂ i~0!/N i 5 0, 1, · · ·, 11 (25)

is approximately true for large r and N . Here Fp is the p
percentile of a standard normal distribution. We apply this
formula with r 5 10 and d 5 0.05 (n 5 12 and N 5 72) to
obtain the confidence bands in Figure 3. Even by this extremely
conservative method we are able to reject the hypothesis that
the seasonal means are equal, since, for example, the confi-
dence intervals for months 6 and 8 do not overlap. Since the
seasonal means differ significantly, we mean correct the data
by season. Next we compute the sample autocorrelation func-

Figure 3. Monthly sample means for the Salt River, includ-
ing 95% confidence bands.

Figure 4. Monthly autocorrelations for the Salt River, including 95% confidence bands.
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tion r̂ i(,), which is displayed in Figure 4 along with the ap-
propriate 95% confidence bands, for the first few lags. By the
theorem given in section 2 we have NaN

22[ r̂ i(,) 2 r i(,)] f
Di,, where Di, is stable with index a/2, mean zero, skewness 1,
and dispersion di, 5 ¥ruDr(i , ,) ua/ 2. Since the dispersion
depends on the model parameters, it is necessary to fit a model
before constructing confidence intervals. Using consistent es-
timators (discussed below) of the model parameters, we com-
pute the dispersion di,. The scale factor for Di, is given by
s i,

a/ 2 5 di,G(2 2 a/ 2) cos(pa/4)/(1 2 a/ 2). Then, with
probability 1 2 d,

r̂ i~,! 1 sd/~2n!s i,aN
2 /N # r i~,! # r̂ i~,! 1 s12d/~2n!s i,aN

2 /N (26)

i 5 0, 1, · · ·, 11

is approximately true for large N and fixed ,. Here sp is the p
percentile of a stable distribution with mean zero, skewness 1,
and scale factor 1, which can be obtained from the accurate
tables of McCulloch and Panton [1996]. Notice that the stable
confidence intervals are asymmetric because of the skewness of
the limit Di,. We apply this formula with (n 5 12 and N 5 72)
d 5 0.05 and aN 5 (CN)1/a, where a and C are obtained
from Hill’s [1995] estimator with r 5 20, to obtain the confi-
dence bands in Figure 4. Since both the mean and the auto-
correlation function vary significantly by month, it is appropri-
ate to employ a periodic ARMA model. We have not been able
to find any simple transformation of the data, such as differ-
encing, which would allow the use of a stationary time series
model. Note also that although the mean- and variance-
standardized data appear to fit an AR(1) model quite well on
the basis of the partial autocorrelation function (graph not
shown), this is misleading because the autocorrelation function
of this series is the same as for the original data and clearly
shows a seasonal pattern to the covariance structure. Failure to
consider the possibility of seasonal variations in the covariance
structure can easily lead to a misspecified model, which is quite
serious in this case since a stationary AR(1) model has normal
asymptotics for the autocovariance function (ACF), while a
periodic AR(1) model has stable asymptotics for the ACF.

We estimate the model parameters using the method of
moments. A simple calculation shows that for a PARMA12(1, 0)
model,

f t 5 r t21~1! Îg t~0!/g t21~0!
(27)

s t 5 Îg t~0!~1 2 r t21~1!2! ,

and since a . 2, we can substitute ĝ i(0) and r̂ i(1) to obtain
consistent estimators of the model parameters. Table 1 shows
the resulting model parameter estimates. It follows from (22)
that s t« t 5 Xt 2 f tXt21, where Xt 5 X̃t 2 m t is the mean
standardized process. Then the estimated residuals can be ob-
tained using

«̂ t 5
X̃t 2 f̂ tX̃ t21 2 m̂ t 1 f̂ tm̂ t21

ŝ t
. (28)

Figure 5 shows a time series plot of the standardized residuals.
Figure 6 plots the autocorrelation function for the estimated
residuals. Since a . 2, the usual normal asymptotics apply
here, and so the 95% confidence band at 1.96(Nn)21/ 2 is
appropriate. Although a few of the autocorrelations lie slightly
outside of this band, there is no periodic pattern in the auto-
correlations, and we consider the model fit to be adequate. The
stable index a which appears in the asymptotics of the auto-
covariance and autocorrelation of the raw time series data is
the same as for the innovations « t. If we apply Hill’s [1975]
estimator to the absolute residuals, we should get approxi-
mately the same value of a as for the raw data. In fact, an
application of Hill’s estimator with r 5 14 yields â 5 3.067
(and Ĉ 5 0.0397), which is similar to the estimates obtained
above using the raw data and well within the asymptotic con-
fidence intervals for those estimates. Naturally, the appropri-
ate value of r is somewhat smaller for the residuals, since one
large innovation in a linear time series model can result in

Figure 5. Residual plot for PARMA12(1, 0) model for the
Salt River.

Figure 6. Residual autocorrelation function for
PARMA12(1, 0) model for the Salt River.

Table 1. Model Parameters

i ĝ i(0)1/ 2 r̂ i(1) f̂ i ŝ i

0 796.92 0.31630 0.33978 788.82
1 361.33 0.74372 0.14341 342.88
2 1290.12 0.27360 2.75546 862.43
3 2055.65 0.35421 0.43595 1977.22
4 1792.86 0.48316 0.30891 1676.53
5 1950.48 0.67288 0.52567 1707.71
6 1566.30 0.85675 0.54035 1158.67
7 1060.65 0.93832 0.58017 547.00
8 303.17 0.29441 0.26821 104.82
9 397.33 0.34682 0.38585 379.72

10 483.83 0.42057 0.42231 453.80
11 333.63 0.14225 0.29001 302.79
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several large observations. Using the same value of r for the
residuals yields a somewhat smaller estimate of a, but this is
misleading. Applying the quadratic estimator of Meerschaert
and Scheffler [1998] to the residuals yields â 5 3.20, which is
also consistent with our results obtained from the raw data.
Since the residuals are standardized, there is no need to
rescale. The MLE for the generalized Pareto model applied to
the positive residuals yields â 5 2.83, which is also within the
confidence bands.

5. Extreme Values
Suppose that {« t} are independent random variables with

common distribution function F( x) 5 P[« t # x]. The same
technical condition of regular variation required for the ex-
tended central limit theorem is also relevant for extreme val-
ues. We say that the distribution F( x) belongs to the extremal
domain of attraction of some nondegenerate random variable
Z with distribution H( x) if there exist real constants an . 0
and bn such that

max $«1, · · ·, «n% 2 nbn

an
f Z , (29)

wheref indicates convergence in distribution. For probability
distributions with heavy tails the possible limit distributions are
called the type II max-stable distributions. They are of the form
H( x) 5 exp (2Cx2a) for some C . 0 and a . 0. The
probability distribution F( x) belongs to the extremal domain
of attraction of this type II max-stable law if and only if the tail
1 2 F( x) varies regularly with index 2a. In this case we can
take an to satisfy nP[« t . an] 3 C and bn 5 0. The norming
constants always satisfy an 5 n1/a,n, where ,n is slowly vary-
ing. The limit Z is called max-stable because if Zn are i.i.d. with
the same distribution as Z , then max{Z1, z z z , Zn} has the
same distribution as Z after a linear rescaling. Since the largest
observations in the Salt River data are widely spaced in time,
they should resemble i.i.d. observations. In this section we will
use the model (equation (29)) to predict the extreme value
behavior of the Salt River flow.

In section 3 we use Hill’s [1975] estimator with r 5 20 to
obtain estimates of a 5 3.023 and C 5 3.34 3 109 for the Salt
River data. Then for large n the maximum flow Mn over n
consecutive months has approximately the same distribution as
n1/a Z , where Z has a type II max-stable distribution with
parameters a and C . The p percentile of this distribution is
given by P[n1/aZ # p] 5 h( p), where

h~ p! 5 S nC
2ln pD

1/a

, (30)

and, in particular, the median of the maximum flow over n
months is 1595n1/a. The predicted maximum flows for 10, 50,
100, and 500 years are 7800, 13,000, 17,000, 28,000 cfs (1 cfs 5
2.8317 3 1022 m3/s). Note that the predicted maximum in-
creases algebraically with n because of the heavy tails. For the
Salt River data the largest observation over this 72 year period
was 15,990 cfs, which is between the 50 year flood level and the
100 year flood level. There was one observation above the 50
year flood level and six observations above the 10 year flood
level in 72 years. The probability distribution of Mn also has
heavy tails, so that a value far above the median would not be
surprising. For example, the 75th percentile of the 100 year

maximum flow is over 22,000 cfs, and the 90th percentile is
over 30,000 cfs.

A lognormal model gives a much poorer fit to the data.
Leadbetter et al. [1980] show that if X1, X2, X3, z z z are inde-
pendent normal random variables with mean m and variance s2

and Mn 5 max{X1, z z z , Xn}, then

Mn 2 s Îlog n3 m (31)

in probability, so Mn ' m 1 s=log n for large n . Taking Xt

to be the natural logarithm of the Salt River flow at month t ,
the maximum flow over n consecutive months is exp(Mn) '
exp (m 1 s=log n). We compute m ' X# 5 6.2139 and s '
s 5 0.9954, and then the predicted maximum flows for 10, 50,
100, and 500 years are 4400, 6200, 7000, and 9400 cfs. In 72
years, there were two observations exceeding 9400 and six
observations exceeding 7000, indicating that the lognormal
model seriously understates the probability of major floods.

Also of interest is the number of exceedances over a given
level L . 0 over a given period. For large m the number of
observations in m months that exceeds L is approximately
Poisson with mean mCL2a; see, for example, Leadbetter et al.
[1980, theorem 3.1.1]. If we take L to be the p percentile of the
maximum flow over a period of n months, then the mean
number of exceedances in m months is

m 5 mCF S nC
2ln pD

1/aG 2a

5 ~m/n!~2ln p! , (32)

which indicates, for example, that the probability of a river flow
exceeding its N year flood level (defined as the median of the
probability distribution of the maximum flow over N years)
more than once in any given N year period is only 0.15, and the
probability of exceeding its N year flood level more than twice
is only 0.03. The expected number of exceedances of the 10
year flood level over a 72 year period is 7.2 ln 2, which is
embarrassingly close to the actual number of six exceedances
observed in 72 years of data.

6. Concluding Remarks
Hydrologic streamflows can exhibit both heavy tails and non-

stationarity. Data analysis should include an examination of
the seasonal mean and standard deviation. If the seasonal
standard deviation varies significantly, removing the seasonal
mean is insufficient to produce a stationary time series, and a
periodic ARMA model may be appropriate. We advise screen-
ing for heavy tails whenever a streamflow exhibits annual or-
der-of-magnitude fluctuations. Occasional sharp spikes in a
time series plot, numerous outliers, or a histogram can also
indicate heavy tails. When heavy tails arise, the tail parameter
a should be estimated using one or more of the methods
mentioned in this paper. This parameter governs the extreme
behavior (i.e., flood levels), and if a , 4, it also determines the
rate of convergence of the sample autocorrelations. Taking
logarithms removes the heavy tail but may distort flood level
predictions.

The difficulty in estimating the tail parameter a seems to lie
at the heart of an ongoing controversy in finance. Mandelbrot
[1963] and Fama [1965] argue that variations in stock market
prices and currency exchange rates follow a stable distribution
with 0 , a , 2, while Loretan and Phillips [1994] and Jansen
and de Vries [1991] use Hill’s [1975] estimator to compute that
these price fluctuations have heavy tails with 2 , a , 4.
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McCulloch [1995] points out that Hill’s estimator often gives
very poor estimates of a when the data is actually stable with
a [ (1.5, 2.0). The authors verified McCulloch’s claim by
computing Hill’s estimator for the largest 5% of 1000 simu-
lated stable random variables with a 5 1.8. We used the sim-
ulation method of Chambers et al. [1976] as implemented by
John Nolan (personal communication, 1997); see also Weron
[1996]. In repeated simulations the resulting estimates were
near 3.0 in most trials. Of course, it is possible that some
economic time series have a , 2 and others have 2 , a , 4,
but the discrepancy thus far seems more a matter of modeling
assumptions. Maximum likelihood estimation of the stable in-
dex will always yield 0 , a # 2 since the model assumes that
a lies in this range. On the other hand, although the tails of a
stable model have Pareto-like tails, it is not clear that this
proportion of the data is large enough to allow accurate esti-
mation of the tail index by methods such as Hill’s estimator.
Further research is needed to establish the asymptotic theory
of the various a estimators in this case, especially for nonsta-
tionary time series models. For the hydrologic data we exam-
ined, the existing a estimators seem to be adequate.

The PARMA12(1,0) used in this paper is not intended to
represent the best possible model for the Salt River stream-
flow. This model does remove most of the serial correlation
(see Figure 6), and our moment estimates for the model pa-
rameters are easily obtained. Our primary goal for this model
was to check the tail estimates of the a parameter for the
model residuals, which can be assumed to be i.i.d. The fact that
the a estimates for the residuals agree with the estimates for
the raw data suggests that heavy tails can be detected prior to
time series modeling. This is important in practice, since the
asymptotics of the sample moments depend on the tail behav-
ior (see the theorem and the discussion preceeding it in section
2). In a forthcoming paper (P. Anderson et al., manuscript in
preparation, 1998) we establish the consistency of an innova-
tions algorithm for periodic time series data, and we use this
algorithm to obtain a better model fit for the monthly Salt
River data. It would be interesting to compare the model fit
and forecasting performance of that model with the lognormal
model used by Anderson and Vecchia [1993].

The Salt River data were aggregated from daily averages. It
would also be possible to fit the daily data using a
PARMA365( p , q) model, but this involves significantly more
parameters. Monthly averages allow a more parsimonious
model, and it seems unlikely that day of the week or month
effects are significant in this hydrologic time series. For other
applications where the number of periods per cycle n is large,
it seems reasonable to employ discrete Fourier transform
methods as done by Anderson and Vecchia [1993] to reduce the
number of parameters. Their paper also includes a test for
detecting hidden periodicities. Long-term variations in river
flow, including El Niño effects, could be addressed by fitting a
model where the period is more than 1 year.

Davis and Resnick [1985] show that if {« t} belongs to the
extremal domain of attraction of some type II max-stable law,
then the stationary moving average process Xt 5 ¥ cj« t2j also
belongs to the same extremal domain of attraction (assuming
that some mild conditions on the moving average parameters
cj are met). Their point process argument highlights the Pois-
son nature of the extreme order statistics. Since the largest
observations in a heavy tail time series model tend to be widely
spaced in time, they should resemble i.i.d. observations. Estab-
lishing the appropriate asymptotic theory for nonstationary

time series models remains an open question. For the hydro-
logic data we examined, the model (29) seems to provide a
reasonable fit.
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