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Abstract. Semistable Lévy motions have stationary independent incre-
ments with semistable distributions. They can be realized as scaling limits
of simple random walks, extending the familiar Lévy motions. Generators
of stable semigroups are fractional derivatives, and the semistable gener-
ators provide a new approximation to fractional derivatives. Semistable
Lévy motions and semistable generators may be useful in physics to model
anomalous diffusion.

1. Introduction

Stable Lévy motions are useful in physics and geology to describe anomalous
diffusion, in which a cloud of particles spreads faster than the classical diffu-
sion model predicts [3, 2, 5, 11, 23]. A fractional diffusion equation models
this behavior using fractional derivatives [1, 6, 25]. Fractional derivatives are
also generators of stable semigroups [7, 10]. In this paper, we develop the cor-
responding theory of semistable Lévy motions, semistable generators, and the
corresponding diffusion equations. Semistable Lévy motions have stationary
independent increments with semistable distributions, a natural generalization
of stable distributions [12, 13, 17, 19, 22]. These motions are scaling limits of
random walks, and in some cases they can be used to approximate Lévy mo-
tions. Since a semistable distribution is infinitely divisible, it defines a contin-
uous convolution semigroup, whose generator provides a useful approximation
to the fractional derivative. This new approximation is appealing because,
unlike the fractional difference quotient, it has a nice scaling property. The
resulting semistable diffusion equation may also have applications in physics,
as a more flexible model for anomalous diffusion. At the end of this paper,
we show that fractional difference approximations to fractional derivatives can
also be realized as generators of continuous convolution semigroups associated
with certain infinitely divisible laws.

2. Scaling limits of simple random walks

Let Y be a random variable whose probability distribution ν is strictly (b, c)
semistable for some c > 1. This means that ν is infinitely divisible and νc =
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c1/αν where α = log c/ log b, νt is the t–fold convolution power of the infinitely
divisible law ν, and aν(dx) = ν(a−1dx) is the probability distribution of the
random variable aY . Then necessarily 0 < α ≤ 2. If α = 2 then ν is mean zero
normal, otherwise the variance of Y is infinite, see for example [15] Corollary
7.4.4. Let Z,Z1, Z2, Z3, . . . be independent random variables whose common
distribution µ belongs to the strict domain of semistable attraction of ν. This
means that for some an > 0, and some increasing sequence of positive integers
(kn) such that

(2.1) kn+1/kn → c as n→ ∞
we have

(2.2) an

kn∑

j=1

Zj ⇒ Y

where ⇒ denotes weak convergence. In this case we write µ ∈ DOSA(ν, c). If
(2.2) holds with kn = n we say that µ belongs to the strict domain of attraction
of ν, we write µ ∈ DOA(ν), and the limit law ν is stable with index α, meaning
that ν is infinitely divisible and νt = t1/αν for every t > 0.

A sequence of positive real numbers (bn) is said to vary regularly with index
ρ if b[λn]/bn → λρ as n → ∞ for every λ > 0 [24]. A random variable X
is nondegenerate if it is not almost surely constant. A sequence of random
variables Xn is stochastically compact if for any increasing sequence of positive
integers (ni) there exists a subsequence (nj) and a nondegenerate random
variable X such that Xnj

⇒ X. If µ ∈ DOSA(ν, c) and (Zn) and Y are as
above then for some regularly varying sequence of positive reals (bn) with index
−1/α the sequence of random sums

{
bn

n∑

j=1

Zj : n ≥ 1

}

is stochastically compact with limit set contained in

{Yλ : 1 ≤ λ ≤ c}
where Yλ is a random variable with distribution λ−1/ανλ. In fact, if we let pn =
max{p : kp ≤ n} and λn = n/kpn then for any sequence of positive integers

there exists a subsequence (n′) such that λn′ → λ ∈ [1, c] and bn′
∑n′

j=1 Zj ⇒
Yλ, see [15] Theorem 8.3.18.

Lemma 2.1. For any t > 0 we have:

(a) {b[s]
∑[st]

j=1 Zj : s ≥ 1} is stochastically compact with limit set contained

in {λ−1/ανλt : 1 ≤ λ ≤ c};
(b) bkn

∑[knt]
j=1 Zj ⇒ νt as n→ ∞.



SEMISTABLE LÉVY MOTION 3

Proof. Write [st] = [[s]t] + rs,t so that 0 ≤ rs,t ≤ t for all s ≥ 1. Since the
index of the regularly varying sequence (bn) is negative, bn → 0 and hence

b[s]

[st]∑

j=[[s]t]+1

Zj → 0 in probability

as s→ ∞. Since

b[s]

[st]∑

j=1

Zj = b[s]

[[s]t]∑

j=1

Zj + b[s]

[st]∑

j=[[s]t]+1

Zj

part (a) will follow if we can show that the sequence of random variables

bn

[nt]∑

j=1

Zj



n≥1

is stochastically compact. Since {bn
∑n

j=1Zj} is stochastically compact, any

sequence of positive integers contains a further sequence (n′) along which
bn
∑n

j=1Zj ⇒ Yλ where Yλ has distribution λ−1/ανλ for some λ ∈ [1, c]. An

application of Proposition 3.3.7 of [15] yields (a). Part (b) follows directly
from Proposition 3.3.7 of [15]. �

For any infinitely divisible law ν, there is a corresponding Lévy process
{Y (t) : t ≥ 0}, a stationary independent increment process which is continuous
in law such that Y (t) has distribution νt [4, 13, 20]. If ν is stable then {Y (t)}
is also called a Lévy motion. In the special case where ν is normal, {Y (t)}
is a Brownian motion. If ν is (b, c) semistable for some c > 1 then we call
the corresponding Lévy process {Y (t)} a semistable Lévy motion. The index
α = log c/ log b has more or less the same interpretation as the index of a stable
Lévy motion. In particular, for nonnormal semistable laws with index α < 2
the probability tail P (|Y (t)| > y) diminishes like y−α, so that the moments
E|Y (t)|ρ exist for 0 < ρ < α and diverge for ρ ≥ α.

Lévy motions are useful because they are the scaling limits of simple random
walks. For t ≥ 0 let

(2.3) X(t) =

[t]∑

j=1

Zj

where as before Z,Z1, Z2, Z3, . . . are independent random variables with com-
mon distribution µ. If EZ = 0 and σ2 = EZ2 <∞ then

{c−1/2X(ct)} f.d.
=⇒ {Y (t)} as c→ ∞
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where {Y (t)} is a Brownian motion and the notation
f.d.
=⇒ means that for any

0 < t1 < · · · < tn we have

(2.4)
(
c−1/2X(ct1), . . . , c

−1/2X(ctn)
)
⇒ (Y (t1), . . . , Y (tn)) as c→ ∞.

More generally, if µ ∈ DOA(ν) and ν is stable with index 0 < α ≤ 2 then

{b[c]X(ct)} f.d.
=⇒ {Y (t)} as c→ ∞

where {Y (t)} is a stable Lévy motion with index α. In physics, Lévy mo-
tions are used to model anomalous diffusion, which results from the power law
probability tails of the particle jumps (Zn), see for example [23].

Domains of semistable attraction are the most general setting in which the
behavior of sums of independent, identically distributed random variables can
be usefully approximated by a limit distribution, see [15] p. 286. Our next
result shows that a convergence like (2.4) also pertains in this case, but in the
weaker sense of stochastic compactness.

Theorem 2.2. Suppose that Z,Z1, Z2, Z3, . . . are independent random vari-
ables with common distribution µ ∈ DOSA(ν, c) for some c > 1 and that (2.1),
(2.2) and (2.3) hold. Then:

(a) Let {Yλ(t)} be a Lévy process such that Yλ(t) has distribution λ−1/ανλt.
Then for any 0 < t1 < · · · < tm{

b[s] (X(st1), . . . , X(stm)) : s > 0
}

is stochastically compact with limit set contained in

{(Yλ(t1), . . . , Yλ(tm)) : λ ∈ [1, c]} .
In other words, for any sequence sn → ∞ there exists a subsequence
sn′ such that {

bsn′X(sn′t)
} f.d.

=⇒ {Yλ(t)}
for some λ ∈ [1, c];

(b) Let {Y (t)} be a semistable Lévy motion such that Y (t) has distribution
νt. Then for any 0 < t1 < · · · < tm

bkn (X(knt1), . . . , X(kntm)) ⇒ (Y (t1), . . . , Y (tm))

or in other words

{bknX(knt)}
f.d.
=⇒ {Y (t)} .

Remark 2.3. It is easy to check that if ν is strictly (b, c) semistable then so is
λ−1/ανλ, hence {Yλ(t)} is also a semistable Lévy motion with the same index
α. If λ = 1 or λ = c then since ν is (b, c) semistable it follows that

{Yλ(t)}
f.d.
= {Y (t)},
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meaning that for any 0 < t1 < · · · < tm the random vectors (Yλ(t1), . . . , Yλ(tm))
and (Y (t1), . . . , Y (tm)) are identically distributed.

Proof. We only consider the case m = 2, the other cases being similar. Given
0 < t1 < t2 and s > 0 note that [st2] − [st1] = [s(t2 − t1)] + r for some
r ∈ {0, 1, 2}. It follows from Lemma 2.1 (a) that for any sequence sn → ∞ for
some subsequence sn′ and some λ ∈ [1, c] we have

b[sn′ ]µ
[sn′ t] ⇒ λ−1/ανλt

for all t > 0. It follows easily that

(2.5) b[sn′ ]X(sn′t1) ⇒ Yλ(t1) ∼ λ−1/ανλt1

where X ∼ µ means that the random variable X has distribution µ, and

b[sn′ ] (X(sn′t2) −X(sn′t1)) = b[sn′ ]

[sn′ t2]∑

j=[sn′t1]+1

Zj

∼ b[sn′ ]µ
[sn′ t2]−[sn′t1]

= b[sn′ ]µ
[sn′(t2−t1)] ∗ b[sn′ ]µ

r

⇒ λ−1/ανλ(t2−t1) ∼ Yλ(t2) − Yλ(t1).

(2.6)

Since the left hand sides in (2.5) and (2.6) are independent, and likewise for
the right hand sides, it follows that

b[sn′ ] (X(sn′t1), X(sn′t2) −X(sn′t1)) ⇒ (Yλ(t1), Yλ(t2) − Yλ(t1))

and then the continuous mapping theorem yields

b[sn′ ] (X(sn′t1), X(sn′t2)) ⇒ (Yλ(t1), Yλ(t2))

which proves (a). The proof of (b) is similar, using Lemma 2.1 (b) instead of
Lemma 2.1 (a). �

3. Stable and semistable Lévy motions

In this section we elucidate the connection between stable and semistable
Lévy motions. A strictly (b, c) semistable law satisfies νc = c1/αν where α =
log c/ log b, and hence νt = t1/αν whenever t = cn for some integer n. A stable
law satisfies νt = t1/αν for any t > 0. As the scale c > 1 of the semistable law
tends to one, it is reasonable to expect that the behavior of the semistable law
becomes more like that of a stable law.

Theorem 3.1. Fix 0 < α < 2, let νc be a strictly (c1/α, c) semistable law for
each c > 1, and let {Yc(t)} be the associated semistable Lévy motion, so that
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Yc(t) ∼ νtc. If νc ⇒ ν nondegenerate as c → 1 then ν is stable with index α
and

(3.1) {Yc(t)}
f.d.
=⇒ {Y (t)} as c→ 1

where {Y (t)} is a Lévy motion with Y (t) ∼ νt.

Proof. Let [ac, 0, φc] denote the Lévy representation of νc, see for example
[15] Theorem 3.1.11. Then νc ⇒ ν implies that ν is infinitely divisible and
that φc → φ the Lévy measure of ν, see for example [15] Theorem 3.1.15.

Corollary 7.4.4 of [15] implies that φc(t,∞) = t−αθ
(c)
1 (log t) and φc(−∞,−t) =

t−αθ
(c)
2 (log t) where θ

(c)
i are nonnegative periodic functions with period log b

where b = c1/α.

Lemma 3.2. For some θ̄1, θ̄2 ≥ 0 with θ̄1 + θ̄2 > 0 we have θ
(c)
i (x) → θ̄i for all

x > 0 and i = 1, 2 as c→ 1.

Proof. Let Suppose 0 < s < t and write t = sbk(c)λ(c) where k(c) is an integer
and 1 ≤ λ(c) < b. Then for i = 1, 2

t−αθ
(c)
i (log t) ≤ (sbk(c))−αθ

(c)
i (log sbk(c))

= (sbk(c))−αθ
(c)
i (log s)

so that

θ
(c)
i (log t) ≤ tα(sbk(c))−αθ

(c)
i (log s)

= λ(c)αθ
(c)
i (log s)

< bαθ
(c)
i (log s)

= cθ
(c)
i (log s)

and similarly θ
(c)
i (log t) ≥ c−1θ

(c)
i (log s) so that we have

(3.2) c−1θ
(c)
i (log s) ≤ θ

(c)
i (log t) ≤ cθ

(c)
i (log s)

for all c > 1. Choose s > 0 so that φ{−s, s} = 0 and let θ̄1 = sαφ(s,∞) and
θ̄2 = sαφ(−∞,−s). Since ν is nondegenerate with no normal component, we
must have θ̄1 + θ̄2 = sαφ{x : |x| > s} > 0. Since φc → φ as c→ 1 we also have

θ
(c)
1 (log s) = sαφc(s,∞) → sαφ(s,∞) = θ̄1 and similarly θ

(c)
2 (log s) → θ̄2. Now

the lemma follows immediately from (3.2). �
Since φc → φ it follows from Lemma 3.2 that for any t > 0 such that

φ{−t, t} = 0 we have

φc(t,∞) = t−αθ
(c)
1 (log t) → t−αθ̄1 = φ(t,∞)

and similarly φ(−∞,−t) = t−αθ̄2. Since φ{−t, t} = 0 for all but countably
many t > 0 it follows that φ(t,∞) = t−αθ̄1 and φ(−∞,−t) = t−αθ̄2 for all
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t > 0. Then it follows from [15] Corollary 7.3.4 and the uniqueness of the
Lévy representation that ν is a stable law with index α. Hence {Y (t)} is an
α–stable Lévy motion.

Since νc ⇒ ν as c → 1 we also have ν̂c(x) → ν̂(x) for all real x. Then
ν̂c(x)

t → ν̂(x)t as well, and so νtc ⇒ νt as c → 1 for every t > 0. In other
words, Yc(t) ⇒ Y (t) as c→ 1 for each t > 0. Since all of these processes have
independent increments, it follows that for any 0 < t1 < · · · < tm we have

(Yc(t1), . . . , Yc(tm) − Yc(tm−1)) ⇒ (Y (t1), . . . , Y (tm) − Y (tm−1))

and then the continuous mapping theorem implies that

(Yc(t1), . . . , Yc(tm)) ⇒ (Y (t1), . . . , Y (tm))

which finishes the proof. �

4. Generators of semistable semigroups

Suppose again that ν is a (c1/α, c) strictly semistable law. Since ν is infinitely
divisible, we can define a continuous semigroup of linear operators

Tν(t)f(x) = f ∗ νt(x) =

∫
f(x− y)νt(dy)

where t > 0 and f : R → R is any bounded continuous function, see for
example Feller [7] p.294. The infinitesimal generator of this semigroup is a
linear operator defined by

Aνf(x) = lim
t↓0

t−1 (Tν(t)f(x) − f(x))

for all f ∈ D(Aν), the domain of the operator Aν which is the space of all
functions f for which this limit exists. It follows from Theorem 4.1.14 of
[9] that all C2-functions vanishing at infinity belong to D(Aν). If ν is infin-
itely divisible with Lévy representation [a, b, φ] then the characteristic function
ν̂(k) =

∫
eikxν(dx) = eψ(k) where

(4.1) ψ(k) = iak − b

2
k2 +

∫

x 6=0

(
eikx − 1 − ikx

1 + x2

)
φ(dx),

and the generator is given by

(4.2) Aνf(x) = −af ′(x) +
b

2
f ′′(x) +

∫ (
f(x− y) − f(x) +

yf ′(x)

1 + y2

)
φ(dy),

see for example Hille and Phillips [10] Section 23.14. If α < 2 (so that ν has
no normal component) then b = 0.

For a > 0 define the dilation operator δaf(x) = f(ax). The next result
shows that the generator of a semistable continuous convolution semigroup
has a pleasant scaling property.
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Proposition 4.1. If ν is (c1/α, c) strictly semistable then cAνf(x) =
Aν(δc1/αf)(c−1/αx).

Proof. From the definition of the generator Aν we have that

cAνf(x) = lim
t↓0

c

t

(
f ∗ νt(x) − f(x)

)

= lim
s↓0

1

s
(f ∗ νcs(x) − f(x)) .

Since νc = c1/αν we obtain

f ∗ νcs(x) = f ∗ (c1/ανs)(x)

=

∫
f(x− y)c1/ανs(dy)

=

∫
f(x− c1/αy)νs(dy)

=

∫
(δc1/αf)(c−1/αx− y)νs(dy)

= (δc1/αf) ∗ νs(c−1/αx)

and hence

cAνf(x) = lim
s↓0

1

s

(
(δc1/αf) ∗ νs(c−1/αx) − (δc1/αf)(c−1/αx)

)

= Aν(δc1/αf)(c−1/αx)

which finishes the proof. �

Recall from Section 3 that

(4.3) φ(t,∞) = t−αθ1(log t) and φ(−∞,−t) = t−αθ2(log t)

where θi are nonnegative periodic functions with period log b where b = c1/α.
Then since ν has no normal component, the generator Aν is given by

Aνf(x) = −af ′(x)

−
∫ ∞

0

(
f(x− y) − f(x) +

yf ′(x)

1 + y2

)
d
(
y−αθ1(log y)

)

−
∫ ∞

0

(
f(x+ y) − f(x) − yf ′(x)

1 + y2

)
d
(
y−αθ2(log y)

)
.

(4.4)
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Proposition 4.2. If ν is (c1/α, c) semistable with index 0 < α < 1 and Lévy
measure (4.3) then for some ã ∈ R

Aνf(x) = ãf ′(x) −
∫ ∞

0

f ′(x− y)y−αθ1(log y)dy

+

∫ ∞

0

f ′(x+ y)y−αθ2(log y)dy.

(4.5)

Proof. Let [a, 0, φ] be the Lévy representation of ν, and define

ã = −a−
∫ ∞

0

y

1 + y2
d
(
y−αθ1(log y)

)
+

∫ ∞

0

y

1 + y2
d
(
y−αθ2(log y)

)
.

Note that these two integrals converge since 0 < α < 1 and θi(x) is bounded.
Then Aνf(x) = ãf ′(x) + I1 + I2 where

I1 = −
∫ ∞

0

(f(x− y) − f(x)) d
(
y−αθ1(log y)

)

= −
∫ ∞

0

f ′(x− y)y−αθ1(log y)dy

via integration by parts using the fact that by Taylor’s formula we have f(x−
y)−f(x) = O(|y|) as |y| → 0. Since 0 < α < 1 and θ1 is bounded, this integral
converges if f ′ is bounded and f ′(x) = O(x−1) as |x| → ∞. Similarly

I2 = −
∫ ∞

0

(f(x + y) − f(x)) d
(
y−αθ2(log y)

)

=

∫ ∞

0

f ′(x + y)y−αθ2(log y)dy

which completes the proof. �

Proposition 4.3. Suppose ν is (c1/α, c) semistable with index 1 < α < 2 and
Lévy measure (4.3), and let

hi(y) = −
∫ ∞

y

t−αθi(log t)dt

for i = 1, 2. Then for some ã ∈ R

Aνf(x) = ãf ′(x) −
∫ ∞

0

f ′′(x− y)h1(y)dy −
∫ ∞

0

f ′′(x + y)h2(y)dy(4.6)

for any f ∈ C2
b (R).
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Proof. Let [a, 0, φ] be the Lévy representation of ν, and define

ã = −a +

∫ ∞

0

(
y − y

1 + y2

)
d
(
y−αθ1(log y)

)

−
∫ ∞

0

(
y − y

1 + y2

)
d
(
y−αθ2(log y)

)

which converges since 1 < α < 2 and θi(x) is bounded. Then Aνf(x) =
ãf ′(x) + I1 + I2 where

I1 = −
∫ ∞

0

(f(x− y) − f(x) + yf ′(x)) d
(
y−αθ1(log y)

)

=

∫ ∞

0

(−f ′(x− y) + f ′(x)) y−αθ1(log y)dy

= −
∫ ∞

0

f ′′(x− y)h1(y)dy

since h′i(y) = y−αθi(log y). Since θi is bounded, yα−1h1(y) is bounded, so the
integral converges if f ′′ is bounded and f ′′(x) = O(x−1) as |x| → ∞. Similarly

I2 = −
∫ ∞

0

(f(x+ y) − f(x) − yf ′(x)) d
(
y−αθ2(log y)

)

=

∫ ∞

0

(f ′(x + y) − f ′(x)) y−αθ2(log y)dy

= −
∫ ∞

0

f ′′(x + y)h2(y)dy

which completes the proof. �

5. Fractional derivatives and semistable approximations

Generators of stable semigroups can also be written in terms of fractional
derivatives. Fractional derivatives are almost as old as ordinary derivatives,
see Miller and Ross [18] for a brief history. Fractional derivatives are most
easily understood in terms of the Fourier transform

f̂(k) =

∫ ∞

−∞
eikxf(x)dx.

The positive fractional derivative dαf(x)/dxα has Fourier transform

(−ik)αf̂(k), extending the well known formula where α is a positive integer,
see for example Samko, Kilbas and Marichev [21]. It is also useful to define
the negative fractional derivative dαf(x)/d(−x)α which has Fourier transform

(ik)αf̂(k).
Fractional derivatives are intimately related to stable Lévy motions [1, 6].

If ν is stable with index α < 2 then its Lévy measure is of the form (4.3)
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with θi(t) = θ̄i constant for i = 1, 2. Since y−αI(y > 0) has Fourier transform
Γ(1 − α)(−ik)α−1, the convolution

dαf(x)

dxα
=

1

Γ(1 − α)

∫ ∞

0

f ′(x− y)y−αdy

has Fourier transform (−ik)αf̂(k), and similarly for 1 < α < 2 we have

dαf(x)

dxα
=

1

Γ(2 − α)

∫ ∞

0

f ′′(x− y)y1−αdy.

If g(x) = f(−x) then ĝ(k) = −f̂(−k), and then it follows by an easy compu-
tation that the negative fractional derivative dαf(x)/d(−x)α = dαg(−x)/dxα
so that

dαf(x)

d(−x)α
=

−1

Γ(1 − α)

∫ ∞

0

f ′(x + y)y−αdy

for 0 < α < 1 and

dαf(x)

d(−x)α
=

1

Γ(2 − α)

∫ ∞

0

f ′′(x+ y)y1−αdy

for 1 < α < 2. Then it follows from Propositions 4.2 and 4.3 that the generator
A = Aν of the convolution semigroup (Tν) is of the form

(5.1) A = ã
∂

∂x
+ qa

∂α

∂(−x)α + pa
∂α

∂xα

for some real constant a. If 0 < α < 1 then a = −(θ̄1 + θ̄2)Γ(1 − α) < 0,
and if 1 < α < 2 then a = −(θ̄1 + θ̄2)Γ(2 − α)/(1 − α) > 0. In both cases
p = θ̄1/(θ̄1 + θ̄2) and q = 1 − p.

Given ν infinitely divisible, let {Y (t)} be the associated Lévy process, so that
Y (t) has distribution νt. The distribution functions F (x, t) = P (Y (t) ≤ x) for
t > 0 solve the abstract Cauchy problem

(5.2)
∂F (x, t)

∂t
= AF (x, t); F (x, 0) = I(x ≥ 0)

where A = Aν is the generator given by (4.2), see Hille and Phillips [10]. If
ν is stable with index 0 < α < 1 or 1 < α < 2 then (5.1) holds, and (5.2)
is called the fractional diffusion equation. This equation is useful in physics
and hydrology to describe anomalous diffusion, in which particles spread faster
than the classical Brownian motion model predicts [3, 2, 25].

Now suppose that the situation of Theorem 3.1 pertains, so that νc is strictly
(c1/α, c) semistable law for each c > 1, and νc ⇒ ν nondegenerate as c →
1. Then ν is stable with index α, and if Ac, A are the generators of νc, ν
respectively, then Acf(x) → Af(x) as c→ 1 for all x ∈ R, see [8]. This result
can be used to obtain an approximation to the fractional diffusion equation,
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which may be useful for numerical solutions. Now we develop the simplest
such approximation.

Lemma 5.1. Let 0 < α < 1, c > 1, and b = c1/α. Define a measure φc
concentrated on {bn : n ∈ Z} by setting φ{bn} = c−n(c− 1). Then φc is a Lévy
measure, and if we let

ac =

∫ (
y

1 + y2

)
φc(dy)

then the infinitely divisible law νc with Lévy representation [ac, 0, φc] is strictly
(b, c) semistable.

Proof. For any r > 0 we have

φc(r,∞) =
∑

n:bn>r

c−n(c− 1) =
∑

n:cn/α>r

c−n(c− 1)

=

∞∑

n=[α log r/ log c]+1

c−n(c− 1) = c−[α log r/ log c] = r−αθ
(c)
1 (log r)

where θ
(c)
1 (t) = c

αt
log c

−[ αt
log c ] is periodic with period log b = α−1 log c. Then φc

is the Lévy measure of a unique (b, c) strictly semistable law νc with index

α = log c/ log b. Furthermore, since 1 ≤ θ
(c)
1 (t) ≤ c for all t > 0 we also have

θ
(c)
1 (t) → 1 so that φc(r,∞) → r−α as c→ 1.
Now

ac =

∫ (
y

1 + y2

)
φc(dy) = I1 + I2

where

I1 =

∫ ∞

ε

(
y

1 + y2

)
φc(dy)
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exists since the integrand is bounded and φc(ε,∞) is finite. Also since α =
log c/ log b < 1 we have 1 < c < b = c1/α so that

I2 =

∫ ε

0

(
y

1 + y2

)
φc(dy) ≤

∫ ε

0

y φc(dy)

=
∑

bn<ε

bnc−n(c− 1)

= (c− 1)
∑

n>− log ε/ log b

(c/b)n

≤ (c/b)− log ε/ log b c− 1

1 − (c/b)

= ε1−α c− 1

1 − c1−1/α

→ ε1−α
(

α

1 − α

)
as c ↓ 1.

(5.3)

Then ac exists and we can define an infinitely divisible law νc with Lévy rep-
resentation [ac, 0, φc]. In view of (4.1) the infinitely divisible law νc has char-
acteristic function ν̂c(k) = eψc(k) where

ψc(k) =

∫

x 6=0

(
eikx − 1

)
φc(dx)

and since φc(b
−1dx) = c · φc(dx) it is easy to check that νc is strictly (b, c)

semistable. �

Lemma 5.2. Let 0 < α < 1 and let νc be the semistable law from Lemma 5.1.
Then νc ⇒ ν as c ↓ 1 where ν is stable with characteristic function eψ(k) with
ψ(k) = −Γ(1 − α)(−ik)α.

Proof. Let φ be a Lévy measure on (0,∞) with φ(r,∞) = r−α for all r > 0,
and let ν be infinitely divisible with Lévy representation [a, 0, φ] where

a =

∫ (
y

1 + y2

)
φ(dy).

Since the integrand is O(y) as y → 0 and O(y−1) as y → ∞ it is easy to check
that a exists. In view of (4.1) the infinitely divisible law ν has characteristic
function ν̂(k) = eψ(k) where

ψ(k) =

∫

x 6=0

(
eikx − 1

)
φ(dx) = −Γ(1 − α)(−ik)α

by a straightforward computation, see for example [15] Lemma 7.3.7. Then it
is easy to check that ν is strictly stable with index α.
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We have already shown in the proof of Lemma 5.1 that φc → φ as c → 1.
Now we want to show that ac → a as c → 1. Proposition 1.2.19 in [15], the
Portmanteau theorem for Lévy measures, shows that

∫ ∞

ε

(
y

1 + y2

)
φc(dy) →

∫ ∞

ε

(
y

1 + y2

)
φ(dy)

as c → 1. Then using (5.3) and the fact that a exists, it follows easily that
ac → a. Then Theorem 3.1.16 of [15], the standard convergence criteria for
infinitely divisible laws, implies that νc ⇒ ν as c→ 1. �

Theorem 5.3. If 0 < α < 1 then

(5.4) lim
c↓1

1 − c

Γ(1 − α)

∞∑

n=−∞

(
f(x− cn/α) − f(x)

)
c−n =

dαf(x)

dxα
.

Proof. Let νc, ν be as in Lemma 5.2. It follows from (5.1) with θ̄1 = 1 and
θ̄2 = 0 that the generator A = Aν is given by

Af(x) = −Γ(1 − α)
dαf(x)

dxα
.

Then

Acf(x) =

∫ ∞

0

(f(x− y) − f(x))φc(dy)

=

∞∑

n=−∞

(f(x− bn) − f(x)) c−n(c− 1)

→ Af(x) = −Γ(1 − α)
dαf(x)

dxα

as c→ 1, and (5.4) follows easily. �

Corollary 5.4. If 0 < α < 1 then

(5.5) lim
c↓1

1 − c

Γ(1 − α)

∞∑

n=−∞

(
f(x+ cn/α) − f(x)

)
c−n =

dαf(x)

d(−x)α
.

Proof. Since the negative fractional derivative dαf(x)/d(−x)α = dαg(−x)/dxα
where g(x) = f(−x), the result follows immediately from Theorem 5.3. �

Remark 5.5. Since νc ⇒ ν in Lemma 5.2, Theorem 3.1 implies that (3.1)
also holds, so that the approximation of the fractional derivative is intimately
related to the approximation of a Lévy motion by a semistable Lévy motion.
We could also obtain the formula (5.5) by repeating the arguments above with
φ{−bn} = c−n(c− 1) so that φc is supported on (−∞, 0). Then we again have
νc ⇒ ν so that (5.5) also relates to the approximation of a Lévy motion by a
sequence of semistable Lévy motions.
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Remark 5.6. The following heuristic argument illustrates how the new frac-
tional derivative approximation developed in this section can be viewed as an
approximating sum for the integral defining the fractional derivative. Partition
(0,∞) at the points yn = c−n so that ∆yn = yn−1 − yn = c−n(c− 1). Then the
left hand side of (5.4) is the Riemann sum approximation

−1

Γ(1 − α)

∞∑

n=−∞

(
f(x− cn/α) − f(x)

)
c−n(c− 1)

=
−1

Γ(1 − α)

∞∑

n=−∞

(
f(x− y−1/α

n ) − f(x)
)
∆yn

≈ −1

Γ(1 − α)

∫ ∞

0

(
f(x− y−1/α) − f(x)

)
dy

=
−1

Γ(1 − α)

∫ ∞

0

(f(x− y) − f(x))αy−α−1dy

=
1

Γ(1 − α)

∫ ∞

0

f ′(x− y)y−αdy

which is an integral form of the fractional derivative dαf(x)/dxα.

Now we develop a similar approximation formula for the case 1 < α < 2.

Lemma 5.7. Let 1 < α < 2, c > 1, and b = c1/α. Define a measure φc
concentrated on {bn : n ∈ Z} by setting φ{bn} = c−n(c− 1). Then φc is a Lévy
measure, and if we let

ac =

∫ (
y

1 + y2
− y

)
φc(dy)

then the infinitely divisible law νc with Lévy representation [ac, 0, φc] is strictly
(b, c) semistable.

Proof. It follows exactly as in the proof of Lemma 5.1 that φc is the Lévy
measure of a unique (b, c) strictly semistable law νc with index α = log c/ log b,
and that φc(r,∞) → r−α as c→ 1.

Now

−ac =

∫ (
y − y

1 + y2

)
φc(dy) = I1 + I2 + I3

where

I1 =

∫ M

ε

(
y − y

1 + y2

)
φc(dy)
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exists since the integrand is bounded and φc(ε,M) is finite. Also since α =
log c/ log b > 1 we have 1 < b = c1/α < c < b3 so that

I2 =

∫ ε

0

(
y − y

1 + y2

)
φc(dy)

=

∫ ε

0

(
y3

1 + y2

)
φc(dy)

≤
∫ ε

0

y3φc(dy)

=
∑

bn<ε

b3nc−n(c− 1)

= (c− 1)
∑

n>− log ε/ log b

(c/b3)n

≤ (c/b3)− log ε/ log b c− 1

1 − (c/b3)

= ε3−α c− 1

1 − c1−3/α

→ ε3−α
(

α

3 − α

)
as c ↓ 1.

(5.6)

Finally

I3 =

∫ ∞

M

(
y − y

1 + y2

)
φc(dy)

≤
∫ ∞

M

y φc(dy)

=
∑

bn>M

bnc−n(c− 1)

= (c− 1)
∑

n>logM/ log b

(b/c)n

≤ (b/c)logM/ log b c− 1

1 − (b/c)

= M1−α c− 1

1 − c1/α−1

→M1−α
(

α

α− 1

)
as c ↓ 1.

(5.7)
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Then ac exists and we can define an infinitely divisible law νc with Lévy rep-
resentation [ac, 0, φc]. In view of (4.1) the infinitely divisible law νc has char-
acteristic function ν̂c(k) = eψc(k) where

ψc(k) =

∫

x 6=0

(
eikx − 1 − ikx

)
φc(dx)

and since φc(b
−1dx) = c · φc(dx) it is easy to check that νc is strictly (b, c)

semistable. �
Lemma 5.8. Let 1 < α < 2 and let νc be the semistable law from Lemma 5.7.
Then νc ⇒ ν as c ↓ 1 where ν is stable with characteristic function eψ(k) with
ψ(k) = (−ik)αΓ(2 − α)/(α− 1).

Proof. Let φ be a Lévy measure on (0,∞) with φ(r,∞) = r−α for all r > 0,
and let ν be infinitely divisible with Lévy representation [a, 0, φ] where

a =

∫ (
y − y

1 + y2

)
φ(dy).

Since the integrand is O(y3) as y → 0 and O(y) as y → ∞ it is easy to check
that a exists. In view of (4.1) the infinitely divisible law ν has characteristic
function ν̂(k) = eψ(k) where

ψ(k) =

∫

x 6=0

(
eikx − 1 − ikx

)
φ(dx) = (−ik)αΓ(2 − α)/(α− 1)

by a straightforward computation, see for example [15] Lemma 7.3.8. Then it
is easy to check that ν is strictly stable with index α.

We have already shown in the proof of Lemma 5.7 that φc → φ as c → 1.
Now we want to show that ac → a as c → 1. Proposition 1.2.13 in [15], the
Portmanteau theorem for finite measures, shows that

∫ M

ε

(
y − y

1 + y2

)
φc(dy) →

∫ ∞

ε

(
y − y

1 + y2

)
φ(dy)

as c→ 1. Then using (5.6) and (5.7) along with the fact that a exists, it follows
easily that ac → a. Then Theorem 3.1.16 of [15], the standard convergence
criteria for infinitely divisible laws, implies that νc ⇒ ν as c→ 1. �
Theorem 5.9. If 1 < α < 2 then
(5.8)

lim
c↓1

α− 1

Γ(2 − α)

∞∑

n=−∞

(
f(x− cn/α) − f(x) + cn/αf ′(x)

)
c−n(c− 1) =

dαf(x)

dxα
.

Proof. Let νc, ν be as in Lemma 5.8. It follows from (5.1) that the generator
A = Aν is given by

Af(x) =
Γ(2 − α)

α− 1

dαf(x)

dxα
.
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Then

Acf(x) =

∫ ∞

0

(f(x− y) − f(x) + yf ′(x))φc(dy)

=
∞∑

n=−∞

(f(x− bn) − f(x) + bnf ′(x)) c−n(c− 1)

→ Af(x) =
Γ(2 − α)

α− 1

dαf(x)

dxα

as c→ 1, and (5.8) follows. �

Corollary 5.10. If 1 < α < 2 then
(5.9)

lim
c↓1

α− 1

Γ(2 − α)

∞∑

n=−∞

(
f(x+ cn/α) − f(x) − cn/αf ′(x)

)
c−n(c− 1) =

dαf(x)

d(−x)α .

Proof. The proof is the same as Corollary 5.4 �

Remark 5.11. As in the case of Theorem 5.3, the convergence in (5.8) corre-
sponds to the convergence (3.1) of semistable Lévy motions to a Lévy motion.
We could also obtain (5.9) by starting with φ{−bn} = c−n(c− 1) so that φc is
supported on (−∞, 0), and then (3.1) again holds. In view of Proposition 4.1
we also have cAcf(x) = Ac(δc1/αf)(c−1/αx), so that all of the fractional deriva-
tive approximations in this section have a nice scaling property. If A is the gen-
erator of a strictly stable law with index α, then tAf(x) = A(δt1/αf)(t−1/αx)
for all t > 0. In other words, the approximations developed here have the
same sort of scaling as the fractional derivative operator itself, but only along
a geometric sequence of scales.

Remark 5.12. When A is the generator of a semistable semigroup, we call
(5.2) the semistable diffusion equation. Solutions to the semistable diffusion
equation are of the form F (x, t) = P (Y (t) ≤ x) for t > 0 where {Y (t)}
is a semistable Lévy motion. The semistable diffusion equation extends the
fractional diffusion equation for Lévy motion, and may be useful in physics as a
more flexible model of anomalous diffusion. The fractional diffusion equation
has recently been extended to several dimensions [14, 16]. Solutions to the
multidimensional diffusion equation are vector stable Lévy motions, or more
generally, operator stable Lévy motions. It should be possible to extend the
results of this paper to multiple dimensions as well, using vector semistable or
operator semistable Lévy motions. The basic theory of (operator) semistable
random vectors can be found in [15].



SEMISTABLE LÉVY MOTION 19

6. Fractional differences

Another discrete approximation to the fractional derivative dαf(x)/dxα is
given by the fractional difference quotient ∆α

hf(x)/hα where

∆α
hf(x) =

∞∑

m=0

(−1)m
(
α
m

)
f(x−mh)

and

(6.1)

(
α
m

)
=

(−1)m−1αΓ(m− α)

Γ(1 − α)Γ(m+ 1)
,

see for example [21]. To illuminate the connection with (4.2) we write the
difference operator in integral form.

Lemma 6.1. For any h > 0 and 0 < α < 1 we have

(6.2) h−α∆α
hf(x) = −

∫
(f(x− y) − f(x))φh(dy)

where the measure φh is concentrated on {mh : m ≥ 1} with

(6.3) φh{mh} = (−1)m−1

(
α
m

)
h−α.

Proof. Note that
(
α
0

)
= 1 and

(
α
m

)
= (−1)m

(−α)(−α + 1) · · · (−α +m− 1)

m!

so that

(−1)m−1

(
α
m

)
> 0 for all m ≥ 0.

It is well known that

(6.4) (1 + z)α =
∞∑

m=0

(
α
m

)
zm

for any complex |z| ≤ 1 and any α > 0. Using (6.4) with z = −1 we get

∞∑

m=1

φh{mh} = −h−α
∞∑

m=1

(
α
m

)
(−1)m

= −h−α
(

∞∑

m=0

(
α
m

)
(−1)m − 1

)

= h−α

(6.5)

and the result follows easily. �
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Now we will construct an infinitely divisible law νh such that Ah = −h−α∆α
h

is the generator of the semigroup associated with νh. Then we will show that
νh ⇒ ν as h → 0, where ν is stable with index α, and A = −dα/dxα is the
generator of the semigroup associated with ν.

Lemma 6.2. For any 0 < α < 1 the measure φh defined by (6.3) is Lévy
measure, and if we let

(6.6) ah =

∫ (
y

1 + y2

)
φh(dy)

then there exists a unique infinitely divisible law νh with Lévy representation
[ah, 0, φh].

Proof. In view of (6.5), φh is a finite measure on (0,∞) and hence a Lévy
measure. Furthermore, we have

ah =

∫ (
y

1 + y2

)
φh(dy)

≤ 1

2

∫
φh(dy)

=
1

2
h−α

(6.7)

so that ah exists. Then the result follows from the Lévy representation theo-
rem, see for example [15] Theorem 3.1.11. �

In view of (4.1) the infinitely divisible law νh has characteristic function
ν̂h(k) = eψh(k) where

ψh(k) =

∫

x 6=0

(
eikx − 1

)
φ(dx)

and the generator Ah = Aνh
is

Ahf(x) =

∫
(f(x− y) − f(x))φh(dy)

so that Ah = −h−α∆α
h by Lemma 6.1.

Theorem 6.3. Let 0 < α < 1 and let νh be the infinitely divisible law defined
in Lemma 6.2. Then νh ⇒ ν as h ↓ 0, where ν is stable with index α and
characteristic function ν̂(k) = eψ(k) where ψ(k) = −(−ik)α.

Proof. Let φ be concentrated on (0,∞) with φ(r,∞) = r−α/Γ(1−α). Then it
is easy to check that φ is a Lévy measure. Now let

a =

∫ (
y

1 + y2

)
φ(dy).
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Since the integrand is O(y) as y → 0 and O(y−1) as y → ∞ it is easy to
check that a exists. Then there exists a unique infinitely divisible law ν with
Lévy representation [a, 0, φ]. In view of (4.1) the infinitely divisible law ν has
characteristic function ν̂(k) = eψ(k) where

ψ(k) =

∫

x 6=0

(
eikx − 1

)
φ(dx) = −(−ik)α

by a straightforward computation, see for example [15] Lemma 7.3.7. Then it
is easy to check that ν is strictly stable with index α.

Now in order to show that νh ⇒ ν we could show that ah → a and φh → φ,
but in this case it is easier to verify directly that

ψh(k) =

∫

x 6=0

(
eikx − 1

)
φh(dx)

=
∞∑

m=1

eikmh(−1)m−1

(
α
m

)
h−α −

∫

x 6=0

φh(dx)

= −
∞∑

m=1

eikmh(−1)m
(
α
m

)
h−α − hα

= −h−α
∞∑

m=0

(−1)m
(
α
m

)
(eikh)m

= −h−α(1 − eikh)α

→ −(−ik)α = ψ(k) as h→ 0

(6.8)

using (6.5), (6.4) with z = −eikh, and the fact that eikh = 1 + ikh +O(h2) as
h→ 0. Then ν̂h(k) → ν̂(k) for all k, and hence νh ⇒ ν by the Lévy continuity
theorem. �

Since νh ⇒ ν, we also have Ahf(x) → Af(x) for all x as h→ 0, or in other
words

(6.9) lim
h↓0

∆α
hf(x)

hα
=
dαf(x)

dxα
.

This result is well known, see for example [21] p.373. In addition, if {Yh(t)}
is a Lévy process such that Yh(t) has distribution νth, and {Y (t)} is a Lévy
motion such that Y (t) has distribution νt, then

(6.10) {Yh(t)}
f.d.
=⇒ {Y (t)} as h→ 0

by an argument similar to Theorem 3.1. In summary, the usual difference
approximation to the fractional derivative corresponds to a Lévy process gen-
erator, and these processes converge to the Lévy motion connected with the
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fractional derivative. However, these difference operators do not have the nice
scaling properties of the semistable generators.

As in Remark 5.6, fractional difference approximations may also be viewed as
Riemann sum approximations to the integral defining the fractional derivative.
This heuristic argument depends on the following lemma.

Lemma 6.4. Let 0 < α < 1 and define

gh(mh) = (−1)m−1

(
α
m

)
h−α−1

for any h > 0 and any positive integer m. Then for any h > 0 we have

(mh)α+1gh(mh) →
α

Γ(1 − α)

as m→ ∞, and furthermore, this convergence is uniform in h > 0.

Proof. In view of (6.1) we have

(mh)α+1gh(mh) =
α

Γ(1 − α)
mα+1 Γ(m− α)

Γ(m+ 1)

which does not depend on h > 0, so it will suffice to show that

mα+1 Γ(m− α)

Γ(m+ 1)
→ 1 as m→ ∞.

Using Stirling’s formula Γ(x+ 1) ∼
√

2πx xxe−x as x→ ∞, we have

Γ(m− α)

Γ(m + 1)
∼
√

2π(m− 1 − α) (m− 1 − α)(m−1−α)e−(m−1−α)

√
2πm mme−m

= eα+1

√
m− 1 − α

m

(m− 1 − α)(m−1−α)

mm

where
√

(m− 1 − α)/m→ 1 and

mα+1 (m− 1 − α)(m−1−α)

mm
=

(
1 − α + 1

m

)m (
m

m− 1 − α

)α+1

→ e−α−1

as m→ ∞, which finishes the proof. �
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Now take ym = mh so that ∆ym = ym+1 − ym = h, and write

h−α∆α
hf(x) =

∞∑

m=0

(−1)m
(
α
m

)
f(x−mh)h−α

= −
∞∑

m=1

(f(x−mh) − f(x)) gh(mh)h

= −
∞∑

m=1

(f(x− ym) − f(x)) gh(ym)∆ym

≈
∫ ∞

0

(f(x− y) − f(x)) gh(y)dy

≈ −1

Γ(1 − α)

∫ ∞

0

(f(x− y) − f(x))αy−α−1dy

=
1

Γ(1 − α)

∫ ∞

0

f ′(x− y)y−αdy

which is an integral expression for dαf(x)/dxα.
For the sake of completeness, we conclude this section with an analysis of

the fractional difference approximation in the case 1 < α < 2. Now we have
(
α
0

)
= 1,

(
α
1

)
= α, and (−1)m

(
α
m

)
> 0 for all m ≥ 2

and we define

(6.11) φh{mh} = (−1)m
(
α
m

)
h−α for m ≥ 2.

Lemma 6.5. For any 1 < α < 2 the measure φh defined by (6.11) is Lévy
measure, and if we let

(6.12) ah =

∫ (
y

1 + y2
− y

)
φh(dy)

then there exists a unique infinitely divisible law νh with Lévy representation
[ah, 0, φh].

Proof. Since
∫
φh(dy) =

∞∑

m=2

(−1)m
(
α
m

)
h−α

= h−α

(
∞∑

m=0

(−1)m
(
α
m

)
− 1 + α

)

= (α− 1)h−α

(6.13)
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then φh is a finite measure on (0,∞) and hence a Lévy measure. Taking
derivatives in (6.4) we have

(6.14) α(1 + z)α−1 =
∞∑

m=1

(
α
m

)
mzm−1

for α > 1 and |z| ≤ 1. Letting z = −1 yields

∞∑

m=1

m(−1)m
(
α
m

)
= 0.

Then we have

∫
y φh(dy) =

∞∑

m=2

(mh)(−1)m
(
α
m

)
h−α

= h1−α

(
∞∑

m=1

m(−1)m
(
α
m

)
+ α

)

= αh1−α

(6.15)

and so

−ah =

∫ (
y3

1 + y2

)
φh(dy)

≤
∫ 1

0

φh(dy) +

∫ ∞

1

yφh(dy)

≤ (α− 1)h−α + αh1−α

so that ah exists. Then the result follows from the Lévy representation theo-
rem. �

In view of (4.1) the infinitely divisible law νh has characteristic function
ν̂h(k) = eψh(k) where

ψh(k) =

∫

x 6=0

(
eikx − 1 − ikx

)
φh(dx)
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and in view of (6.13) and (6.15) the generator Ah = Aνh
is

Ahf(x) =

∫
(f(x− y) − f(x) + yf ′(x))φh(dy)

=
∞∑

m=2

(−1)m
(
α
m

)
h−αf(x−mh) − (α− 1)h−αf(x) + αh1−αf ′(x)

= h−α
∞∑

m=0

(−1)m
(
α
m

)
h−αf(x−mh) − h−αf(x) + αh−αf(x− h)

− (α− 1)h−αf(x) + αh1−αf ′(x)

= h−α∆α
hf(x) + αh−α (f(x− h) − f(x) + hf ′(x))

where the last term tends to zero as h→ 0 since α < 2.

Theorem 6.6. Let 1 < α < 2 and let νh be the infinitely divisible law defined
in Lemma 6.5. Then νh ⇒ ν as h ↓ 0, where ν is stable with index α and
characteristic function ν̂(k) = eψ(k) where ψ(k) = −(−ik)α.

Proof. Let φ be concentrated on (0,∞) with φ(r,∞) = (α − 1)r−α/Γ(2 − α).
Then it is easy to check that φ is a Lévy measure. Now let

a =

∫ (
y

1 + y2
− y

)
φ(dy).

Since the integrand is O(y3) as y → 0 and O(y) as y → ∞ it is easy to
check that a exists. Then there exists a unique infinitely divisible law ν with
Lévy representation [a, 0, φ]. In view of (4.1) the infinitely divisible law ν has
characteristic function ν̂(k) = eψ(k) where

ψ(k) =

∫

x 6=0

(
eikx − 1 − ikx

)
φ(dx) = −(−ik)α

by a straightforward computation, see for example [15] Lemma 7.3.8. Then it
is easy to check that ν is strictly stable with index α.

Write

ψh(k) =

∫ (
eikx − 1 − ikx

)
φh(dx) = I1 + I2 + I3

where

I1 =
∞∑

m=2

eikmh(−1)m
(
α
m

)
h−α

= h−α

(
−1 + αeikh +

∞∑

m=0

(
α
m

)
(−eihk)m

)

= h−α
(
−1 + αeikh + (1 − eikh)α

)
.

(6.16)
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Using (6.13) we have

I2 = −
∫
φh(dx) = (1 − α)h−α

and similarly (6.15) yields

I3 = −ik
∫
xφh(dx) = −ikαh1−α

so that

ψh(k) = h−α(1 − eikh)α + αh−α
(
eikh − 1 − ikh

)
→ (−ik)α = ψ(k)

using eikh = 1 + ikh + O(h2) twice. Then ν̂h(k) → ν̂(k) for all k, and hence
νh ⇒ ν by the Lévy continuity theorem. �

Since νh ⇒ ν, we also have Ahf(x) → Af(x) for all x as h → 0. Since
αh−α (f(x− h) − f(x) + hf ′(x)) → 0 for all x it follows once again that (6.9)
holds, as well as (6.10).

7. Conclusion

Semistable Lévy motions are the most general class of useful approxima-
tions for simple random walks. These limit results are in terms of stochas-
tic compactness, with weak convergence along a geometric sequence of time
scales. Suitably chosen sequences of semistable Lévy motions converge to a
stable Lévy motion. Stable generators can be written in terms of fractional
derivatives. The abstract Cauchy problem for a stable generator is called
the fractional diffusion equation. This equation is useful in physics to model
anomalous diffusion, where a cloud of particles spreads faster than the classical
diffusion equation predicts. Semistable generators are discrete convolutions,
and provide a new approximation to fractional derivatives. These discrete
convolutions have power law weights on a geometric grid, and nicer scaling
properties than the usual finite difference approximation. Semistable diffusion
equations may also be useful in physics as a more flexible model for anomalous
diffusion. Finite difference approximations to the fractional derivative are also
generators of infinitely divisible semigroups, and the associated Lévy processes
also converge to Lévy motions. These laws are similar to semistable laws, but
they do not pertain to any limit theorem. Their generators are discrete convo-
lutions, with asymptotically power law weights on an arithmetic grid, but they
do not have the nice scaling properties of semistable generators. The stochas-
tic processes and approximations in this paper have natural generalizations to
multiple dimensions, which may prove a fruitful direction for further research.
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[20] K.I. Sato (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge Uni-

versity Press.
[21] S. Samko, A. Kilbas and O. Marichev (1993) Fractional Integrals and derivatives: The-

ory and Applications. Gordon and Breach, London.
[22] R. Shimuzu (1970) On the domain of partial attraction of semi–stable distributions.

Ann. Inst. Statist. Math. 22, 245–255.
[23] M. Shlesinger, G. Zaslavsky and U. Frisch, Eds. (1995) Lévy flights and related topics
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