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ABSTRACT: Convergence of types is a basic tool in limit theory for sums
of random variables. In this paper we present the new concept of convergence of
semitypes, which is the appropriate generalization for problems concerning domains
of semistable attraction. We also show that the growth rate of the sampling sequence
{kn} in a−1

n µkn ∗ δ(sn)⇒ ν for a semistable but not stable limit law ν is uniquely
determined by µ.
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1. Introduction. Convergence of types is a basic tool in probability theory
(see for example Feller (1971) VIII.2). Two distributions ν and ν1 on IR1 are of the
same type if ν1 = aν ∗ δ(s) for some a > 0 and s ∈ IR1. Here aν{dx} = ν{a−1 dx},
∗ denotes convolution and δ(s) is the point mass at s. The main assertion of the
convergence of types theorem is that if for some bn > 0 we have b−1

n µn ∗ δ(sn)⇒ ν
nondegenerate and there exists an > 0 such that a−1

n µn ∗ δ(s′n)⇒ ν1 nondegenerate
then bn/an → a > 0 and ν1 = aν ∗ δ(s). One important application of convergence
of types is to domains of attraction (see for example Feller (1971) XVII.5). We
say that µ belongs to the domain of attraction of a stable law ν, and we write
µ ∈ DOA(ν), if there exist bn > 0 and sn ∈ IR1 such that b−1

n µn ∗ δ(sn)⇒ ν.
We say that two different infinitely divisible laws ν, ν1 are of the same semitype

if
ν1 = aνλ ∗ δ(s) (1.1)

for some a > 0, s ∈ IR1, and λ > 0, where νλ denotes the λ-fold convolution power
of ν, defined in terms of characteristic functions. We say that µ belongs to the
domain of semistable attraction of a nondegenerate probability distribution ν if for
some sequence of positive integers kn → ∞ with kn+1/kn → c ≥ 1 there exist
bn > 0 and sn ∈ IR1 such that

b−1
n µkn ∗ δ(sn)⇒ ν. (1.2)

In this case we write µ ∈ DOSA(ν, c). It follows from Kruglov (1972) or Mejzler
(1973) that ν is (b, c) semistable. This means that

νc = bν ∗ δ(s) (1.3)

for some b ≥
√
c and some shift s ∈ IR. It is interesting to note that infinitely

divisible laws satisfying (1.3) with s = 0 were originally introduced by Lévy (1937).
Semistable laws and their domains of semistable attraction were generalized to

finite dimensional real vector spaces (see Jajte (1979) and  Luczak (1984)) and to
simply connected nilpotent Lie groups (Nobel (1991)). An application of Theorem
3.2 in Mejzler (1973) or Proposition 7 in Nobel (1991) yields that if (1.2) holds
and additionally there exist an > 0, s′n ∈ IR1 and positive integers k′n → ∞ with
k′n+1/k

′
n → c such that

a−1
n µk

′
n ∗ δ(s′n)⇒ ν1 (1.4)

for some nondegenerate distribution ν1 then (1.1) holds, so ν and ν1 are of the same
semitype. This result is then used to show that domains of semistable attraction
are either equal or disjoint (see Nobel (1991) Corollary 5).

But in many situations one would also like to know a relationship between kn
and k′n (resp. an and a′n) as in the convergence of types theorem. This is done in
this paper. We prove a convergence of semitype theorem (Theorem 2.7 below) which
shows that in this situation if ν is semistable and not stable then k′n/kn → λ > 0
and bn/an → a > 0 as in the classical convergence of types theorem. As a corollary
we get that the growth rate of the sampling sequence {kn} in (1.2) is uniquely
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determined by µ when ν is semistable but not stable. If ν is stable then obviously
nothing can be said about {kn}.

As a corollary of our approach we derive a representation of the tail function
of a measure attracted to a nonnormal semistable law which is the key to a series
representation for these laws derived in Meerschaert and Scheffler (1996).

2. Convergence of Semitypes. Suppose there exist norming constants
bn, shifts sn, and a sampling sequence kn → ∞ such that (1.2) holds for some
nondegenerate distribution ν. Then the limit measure ν must be infinitely divisible.
If one obtains the same limit in (1.2) for any choice of sampling sequence kn then
ν is stable, and we have the usual convergence of types theorem. On the other
hand, if the limit depends on an arbitrary sampling sequence then we say that
µ belongs to the domain of partial attraction of ν. For a modern approach to
domains of partial attraction using quantile constructions see Csörgő (1990) and
Csörgő and Dodunekova (1995). It is possible to construct so–called universal laws,
which belong to the domain of partial attraction of every infinitely divisible law
(see for example Feller (1971) XVII.9 and Csörgő and Totik (1993)). Thus in order
to obtain a useful extension of the convergence of types theorem, it is necessary to
place some restriction on the sampling sequence. In this section we will restrict our
attention to the situation where (1.2) holds for some sampling sequence kn which
satisfies kn+1/kn → c ≥ 1. It follows from Theorem 2.3 of Mejzlar (1973) or from
Jatje (1977) that if c = 1 then ν is stable, and otherwise ν is (b, c) semistable, that
is, (1.3) holds. If b =

√
c then ν is a normal law, and hence stable. In the following

we will only consider the case where ν is not stable, so that necessarily b >
√
c.

Suppose then that (1.2) holds for some (b, c) semistable limit law ν which is
not stable. In this section, we will prove that if additionally (1.4) holds for some
an > 0 and some sequence of positive integers k′n → ∞ with k′n+1/k

′
n → c then

bn/an → a and k′n/kn → λ. In particular ν, ν1 are of the same semitype.
Theorem 1 of Kruglov (1972) or theorem 4.1 of Mejzlar (1973) implies that the

Lévy measure φ of the nonnormal (b, c) semistable law ν satisfies

φ{t : |t| > x} = x−αθ(log x) (2.1)

where α = log c/ log b is necessarily in the interval (0, 2), and θ is periodic with
period log b. In the case where θ is a constant function, ν is actually stable, but we
have assumed that this is not the case. In view of the fact that the left hand side
in (2.1) is monotone, we also have

θ(y + δ) ≤ eαδθ(y)

θ(y − δ) ≥ e−αδθ(y)
(2.2)

for all y, δ > 0. Scheffler (1994) shows that if µ ∈ DOSA(ν, c) and (1.2) holds the
tail function V0(x) = µ{t : |t| > x} satisfies

knV0(bnx)→ x−αθ(log x) (2.3)
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for all x > 0 such that x is a continuity point of the limit. Since V0 is monotone, it
follows immediately that if xn → x > 0 and x is a continuity point of the limit in
(2.3) then knV0(bnxn)→ x−αθ(log x).

The following construction will be useful in the proof of the main result of
this section. For all x > b1 define n(x) = sup{n : bn ≤ x}, and let b(x) = bn(x),
g(x) = x/b(x). Convergence of types along with (2.1) yields bn+1/bn → b, and so
{g(x) : x > b1} is relatively compact in (0,∞) with every limit point lying in the
interval [1, b].

LEMMA 2.1. Let 1 ≤ λ < b. Then for some x0 > b1, for all x ≥ x0 we have

g(x/λ) = g(x)/λ if g(x) ≥ λ

g(x/λ) = g(x)/λ ·
bn(x)

bn(x)−1
if g(x) < λ

g(λx) = λg(x) if λg(x) ≤ b

g(λx) = λg(x) ·
bn(x)

bn(x)+1
if λg(x) > b

(2.4)

PROOF. Note that x = g(x)bn for all x > b1, where n = n(x). If λ ≤ g(x)
then n(x/λ) = n(x) and so g(x/λ) = (x/λ)/bn = (x/bn)/λ = g(x)/λ. Similarly, if
λg(x) ≤ b then n(λx) = n(x) and so g(λx) = λx/bn = λg(x). Choose n0 so that
bn/bn−1 > λ for all n ≥ n0. Since n(x) → ∞ as x → ∞ we may choose x0 so
that n(x) ≥ n0 for all x ≥ x0. If λ > g(x) then n(x/λ) < n(x). For all such x,
setting n = n(x) as before, we have x/λ ≥ bn/λ > bn−1 and so n(x/λ) = n(x)− 1.
Then g(x/λ) = (x/λ)/bn−1 = (g(x)bn)/λbn−1 = (g(x)/λ) · (bn/bn−1). Similarly, if
λg(x) > b then n(λx) > n(x). For all such x we have λx < λbn+1 < bn+2 and so
n(λx) = n(x)+1. Then g(λx) = (λx)/bn+1 = λ(g(x)bn)/bn+1 = (λg(x))·(bn/bn+1).

Since µ ∈ DOSA(ν, c) and ν is a nonnormal (b, c) semistable law, a result of
Scheffler (1995) shows that

∫
|x|ρdµ(x) is finite if 0 < ρ < α and infinite if ρ > α.

Since by (1.4) we also have µ ∈ DOSA(ν1, c) where ν1 is (b′, c) semistable ,for some
b′ ≥

√
c, in view of this moment result we see that log b′/ log c = α. Then b′ = b and

hence νc1 = bν1 ∗ δ(s1) for some s1 ∈ IR. Suppose that ν1 is stable. Then Theorem
2.1 of Meerschaert and Scheffler (1997) implies that µ ∈ DOA(ν1) and hence we
also have d−1

n µkn ∗ δ(s′n) ⇒ ν1 for some dn > 0 and some shifts s′n ∈ IR. Then
convergence of types together with (1.2) implies that ν is also stable, which is a
contradiction. Hence ν1 is also a (b, c) semistable law which is not stable. Let φ1 be
the Lévy measure of ν1. Another application of theorem 1 of Kruglov (1972) yields
φ1{t : |t| > x} = x−αθ1(log x) where θ1 is log b periodic. As in (2.3) we obtain

k′nV0(anx)→ x−αθ1(log x) (2.5)
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at continuity points x of the limit. By a simple change of scale, we may assume
without loss of generality that x = 1 is a continuity point of both limits, and that
θ(0) = 1. Now write V0(x) = x−αL(x)f(x) where

L(x) = xαg(x)−αV0(bn(x))

f(x) = g(x)αV0(x)/V0(bn(x)).
(2.6)

LEMMA 2.2. The function L(x) defined in (2.6) above is slowly varying.

PROOF. Apply lemma 2.1. It suffices to show that L(λx)/L(x)→ 1 for all 1 ≤
λ < b (see for example Seneta (1976) p.8). When λg(x) ≤ b we have L(λx)/L(x) = 1
and in the remaining case when λg(x) > b, setting n = n(x) as before, we have

L(λx)
L(x)

= (bn/bn+1)−α
kn+1V0(bn+1)
knV0(bn)

kn
kn+1

where bn/bn+1 → b−1 and kn/kn+1 → c−1 = b−α. Using this along with (2.3) the
result follows easily.

LEMMA 2.3. The function f(x) defined in (2.6) above satisfies

(a) f(λx) ≤ λαf(x)E(x) with E(x)→ 1 as x→∞ (2.7)

(b) f(x/λ) ≥ λ−αf(x)Ẽ(x) with Ẽ(x)→ 1 as x→∞ (2.8)

for all 1 ≤ λ < b.

PROOF. The proof of (a) and (b) is similar, so we will only prove part (b). Ap-
ply lemma 2.1. In the case g(x) ≥ λ we have f(x/λ)/f(x) = λ−αV0(x/λ)/V0(x) ≥
λ−α in view of the fact that V0 is monotone. In the case g(x) < λ we have
f(x/λ)/f(x) = λ−αẼ(x)V0(x/λ)/V0(x) ≥ λ−αẼ(x) by monotonicity of V0 where,
setting n = n(x) as before, we have

Ẽ(x) =
bαnV0(bn)

bαn−1V0(bn−1)
→ 1

since bn/bn−1 → b and V0(bn)/V0(bn−1)→ b−α as x→∞.

LEMMA 2.4. For all x > 0, every limit point of {f(anx)} lies between m,M
where

m = inf{θ(log y) : 1 ≤ y ≤ b}
M = sup{θ(log y) : 1 ≤ y ≤ b}

(2.9)

PROOF. If f(alx) → t along a subsequence, then we can choose a further
subsequence along which g(alx)→ y as well. If y is a continuity point of the limit
in (2.3) then along this subsequence, writing nl = n(alx), we have

f(alx) = g(alx)α
V0(g(alx)bnl

)
V0(bnl

)
→ yα · y−αθ(log y) (2.10)
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and so t = θ(log y). This certainly gives m ≤ t ≤ M . On the other hand, if y is
not a continuity point then we will apply lemma 2.3 to show that θ(log y+) ≤ t ≤
θ(log y−). Note that in view of the definition (2.1) we will always have θ(log y−) ≥
θ(log y+). Choose λ > 1 arbitrarily close to 1 such that y/λ is a continuity point,
with g(alx/λ) = g(alx)/λ for all large l. Then g(alx/λ) → y/λ and it follows
as above that f(alx/λ) → θ(log t/λ) along the chosen subsequence. Then lemma
2.3 implies that f(alx) ≤ λαf(alx/λ)/Ẽ(alx) and so t ≤ λαθ(log y/λ) for λ > 1
arbitrarily close to 1, and it follows that t ≤ θ(log y−). Next choose λ > 1 arbitrarily
close to 1 such that λy is a continuity point, with g(λalx) = λg(alx) for all large l.
Essentially the same argument as before yields t ≥ θ(log y+).

LEMMA 2.5. Suppose that for all x > 0, either 1 or b is a limit point of
{g(anx)}. Then for every x > 0, every λ ∈ [1, b] is a limit point of {g(anx)}.

PROOF. Suppose that g(aly) → 1 along a subsequence. Given x > 0 and
λ ∈ (1, b), let y = x/λ. Then along this same subsequence we have for all large l
that g(alx) = g(alλy) = λg(aly)→ λ. On the other hand, suppose that g(aly)→ b
along a subsequence. Given x > 0 and λ ∈ (1, b), let y = λx. Then along this same
subsequence we have for all large l that g(alx) = g(aly/λ) = g(aly)/λ→ b/λ. Then
every λ ∈ (1, b) is a limit point of {g(anx)}, and it follows easily that both 1, b are
also limit points.

LEMMA 2.6. Both {bn/an} and {kn/k′n} are relatively compact in (0,∞).

PROOF. First suppose that for some x > 0 we have 1 < a ≤ g(anx) ≤ d < b
for all n ≥ n0. Choose ε < min{ba/d − 1, 1 − d/ba} and enlarge n0 if necessary to
ensure that (1 − ε)b ≤ an+1/an ≤ (1 + ε)b for all n ≥ n0. Let nl = n(alx) so that
alx = g(alx)bnl

and observe that for all l sufficiently large to make nl ≥ n0 we have

bnl+1

bnl

=
al+1

al

g(alx)
g(al+1x)

≤ (1 + ε)b
d

a
< b2

as well as bnl+1/bnl
≥ (1− ε)ba/d > 1. This second inequality implies that nl+1 ≥

nl + 1 for all large l. But if nl+1 ≥ nl + 2 infinitely often then we contradict the
first inequality, since then bnl+1/bnl

≥ bnl+2/bnl
infinitely often, and this last term

tends to b2 in the limit. Hence for all large l we have nl+1 = nl+1, and this implies
that for some integer k we have nl = l + k for all large l. Then we may write
al = bl+kg(alx)/x for all large l, and since g is bounded and bl+k/bl → bk we see
that {bn/an} is relatively compact.

Otherwise lemma 2.5 holds, and in this case we will derive a contradiction. If
x > 0 is a continuity point of the limit in (2.5′) then

k′na
−α
n L(an)f(anx)→ θ1(log x)

in view of lemma 2.2. Then every limit point of k′na
−α
n L(an) is of the form θ1(log x)/t

where t is a limit point of {f(anx)}. Given ε > 0 we can choose y1, y2 ∈ [1, b]
such that both are continuity points of θ(log y) and t1 = θ(log y1) < m + ε while
t2 = θ(log y2) > M − ε. Then (2.10) implies that f(anx) has both t1, t2 as limit
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points, and so in view of lemma 2.4 and the fact that ε > 0 is arbitrarily small we
have

lim sup
n→∞

k′na
−α
n L(an) =

θ1(log x)
m

lim inf
n→∞

k′na
−α
n L(an) =

θ1(log x)
M

for any continuity point x. But the left hand side of the above expressions do not
depend on x, hence θ1(log x) is a constant. This is a contradiction, since we have
assumed that ν1 is not stable.

Then {bn/an} is relatively compact. Suppose bn/an → a along a subsequence,
and choose x > 0 such that x is a continuity point of θ(log x) and ax is a continuity
point of θ1(log x). From (2.3) and (2.5′) we have along this same subsequence that

kn
k′n
k′nV0(an

bn
an
x)→ x−αθ(log x)

k′nV0(an
bn
an
x)→ (ax)−αθ1(log ax)

which implies that
kn
k′n
→ x−αθ(log x)

(ax)−αθ1(log ax)
(2.11)

along this subsequence. It follows that {kn/k′n} is relatively compact.

THEOREM 2.7. (Convergence of Semitypes) Suppose that for some sequence
of positive integers kn →∞ with kn+1/kn → c > 1 there exist bn > 0 and sn ∈ IR1

such that b−1
n µkn ∗ δ(sn) ⇒ ν, a semistable law which is not stable. If there exist

an > 0, s′n ∈ IR1, and a sequence of positive integers satisfying k′n+1/k
′
n → c such

that a−1
n µk

′
n ∗ δ(s′n)⇒ ν1 nondegenerate then bn/an → a and k′n/kn → λ.

PROOF. Apply lemma 2.6. If along a subsequence we have (bn/an, k′n/kn)→
(a, λ) then we have both

a−1
n µk

′
n ∗ δ(s′n)⇒ ν1

a−1
n bnb

−1
n µknk

′
n/kn ∗ δ(s̄n)⇒ aνλ

(2.12)

for some sequence of shifts s̄n, so that ν1 = aνλ ∗ δ(s) for some s ∈ IR1. We
know that ν is (b, c) semistable, and although (b, c) are not unique, theorem 3.2
of  Luczak (1984) implies that we can always choose the unique smallest b > 1. If
(a0, λ0) is another limit point of the sequence (bn/an, kn/k′n) then aνλ = a0ν

λ0 ,
and then it follows from (2.1) that a0 = abk for some integer k. Then all limit
points of bn/an are of the form abk, and by relative compactness there are only
a finite number of these. To show that in fact there is only one limit point, we
will argue by contradiction. If there are more than one limit point then there is a
subsequence along which bn/an → a and bn+1/an+1 → abk for some k 6= 0. But
since an+1/an → b and bn+1/bn → b we must have bn+1/an+1 ∼ bn/an, which is
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a contradiction. So bn/an → a, and then it follows by the same argument as for
(2.11) that k′n/kn converges, and so we must have k′n/kn → λ. This proves the
direct half of the theorem, and the converse follows immediately from (2.12).

In the theorem above, the assumption that b−1
n µkn ∗ δ(sn) ⇒ ν for some

kn+1/kn → c > 1 already implies that ν is either stable or semistable. If ν is
not stable then neither is ν1. If ν is stable, then so is ν1, and in this case we can
say nothing about the behavior of the sequence {kn/k′n} or the sequence {bn/an}.
But if ν is semistable and not stable we have shown:

COROLLARY 2.8. Suppose that µ ∈ DOSA(ν, c) for some nondegenerate
semistable law ν which is not stable. Then the growth rate of the sampling sequence
{kn} is uniquely determined by µ, meaning that if

a−1
n µkn ∗ δ(sn)⇒ ν for some {kn} with

kn+1

kn
→ c

and

b−1
n µk

′
n ∗ δ(s′n)⇒ ν for some {k′n} with

k′n+1

k′n
→ c

then there exists an integer j such that kn+j/k
′
n → 1 as n→∞.

PROOF. Convergence of semitypes yields that k′n/kn → λ where ν = aνλ∗δ(s)
for some λ, a > 0 and some s ∈ IR. Since ν is (b, c) semistable and not stable we
must have λ = cj for some integer j. The result follows easily.

3. Remarks. In order for a probability measure µ to belong to some stable
domain of attraction, the tails of this measure must satisfy a regular variation
condition. In particular, in order that b−1

n µn ∗ δ(sn)→ ν nondegenerate nonnormal
we must have V0(t) = µ{x : |x| > t} regularly varying with some index −α ∈ (0, 2).
The number α is the index of the stable limit law ν. The norming constants can
be constructed from the tail function by letting bn = sup{t : nV0(t) ≥ 1}. Our
results illuminate the tail behavior of a probability measure µ which belongs to
some domain of semistable attraction, as well as the relation between the tails and
the norming constants. Suppose that (1.2) holds. Then arguing as in the proof
of lemma 2.6 it is easy to see that knb−αn L(bn)f(bnx) → θ(log x) for continuity
points x > 0 of the limit. In particular, since f(bn) = 1 by definition, we have
knb
−α
n L(bn) → 1. Define R(t) = t−αL(t) regularly varying. Then we can always

take bn = sup{t : knR(t) ≥ 1}. The representation

V0(x) = x−αL(x)f(x) (3.1)

expresses the tail of µ as the product of a regularly varying function and a bounded,
asymptotically log periodic function f . This representation is one of the key in-
grediences of a series representation for nonnormal semistable laws considered in
Meerschaert and Scheffler (1996). In fact we have f(bnx) → θ(log x) at continuity
points, together with the inequalities of lemma 2.3 at discontinuity points. Since
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continuity points are dense, this gives sharp bounds on the behavior of f . If the
Lévy measure φ of the limit ν is continuous, then we can write

V0(x) = x−αL(x)[θ(log g(x)) + h(x)] (3.2)

where L is slowly varying and h(x)→ 0 as x→∞. This extends a recent result of
Grinevich and Khokhlov (1994). In the case where φ has jumps, it seems that no
such representation is possible.

A stable measure ν satisfies ν{x : |x| > t} = Cx−α for some C > 0. For a (b, c)
semistable measure we obtain from (2.6) that ν{x : |x| > t} = x−αf(t) where f is
a bounded, asymptotically log periodic function. In this case we may take bn = bn

and kn = cn, so that g(x) = x/bn(x). If the Lévy measure φ of ν is continuous then
ν{x : |x| > t} = x−α[θ(log x) + h(x)] where h(x) → 0. If ν1 = aνλ ∗ δ(s), so that
both measures are of the same semitype, then it follows from (2.3) and theorem 2.7
that θ1(log ax) = λaαθ(log x). Alternatively, this follows from (2.1) and the Lévy
representation. Then two different semistable laws which are of the same semitype,
but not the same type, are related by a phase shift in the log periodic portion of
the tail.

From a ”statistical point of view”, domains of semistable attraction are in-
teresting because they place a weaker restriction on the tails of a measure µ than
domains of attraction. In the latter case, one can construct norming constants from
the empirical version of the tail function V0(t), using the fact that V0(bn) ∼ n.
For domains of semistable attraction, it is necessary to first construct the norming
constants bn, which capture the log periodic behavior of the tail. The functions
L and f can then be obtained using an empirical estimate of the tail V0(x), and
the sampling constants can be chosen to satisfy knb

−α
n L(bn) ∼ 1. The problem of

constructing a sequence bn from the data is still open.
Another interesting open problem is the multivariable analogue of domains of

semistable attraction. Suppose that (1.2) holds where µ, ν are full probability mea-
sure on IRd and bn are linear operators. Then we say that ν is operator semistable
and that µ belongs to its generalized domain of semistable attraction. The struc-
ture of generalized domain of semistable attraction is discussed in Meerschaert and
Scheffler (1997). The problem of convergence of semitypes, especially the assertion
on the growth rate of the sampling sequence {kn}, in the operator semistable case
is still an open and challenging problem.
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